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Abstract 

 
Scanning software applications for cybersecurity 

vulnerabilities is a crucial step is assessing the overall 
health of the application, but how can this kind of scan 
be performed to give development teams the 
information they need to make informed design 
decisions? Two pilot cybersecurity scans were 
conducted in an attempt to answer this question. A 
scanning team composed of various subject matter 
experts was established and worked closely with the 
development teams to perform these scans and capture 
metrics throughout the process. These interactions and 
metrics indicate that these scans can be performed in 
an unobtrusive way and still provide valuable 
information to development teams regarding the health 
of their application. This work is not definitive in 
nature but serves as a foundation for future work. 
 
 
1. Introduction  
 

Our team’s research began with trying to solve a 
very straight-forward question: how can development 
teams scan their application for cybersecurity 
vulnerabilities and use this information to identify risks 
and inform design decisions? Through two pilot 
scanning activities, our research team attempted to 
answer this very question. In this situation, scanning 
involved performing various types of cybersecurity 
scans in order to assess the overall cybersecurity health 
of the application. This information can then be used 
by development teams to construct a risk profile and 
inform future design decisions. 

In their default configuration, the information 
provided by many of the scanning tools does not give 
the user any information about assessing risk or 
prioritization. Vulnerabilities are returned in the form 
of raw information such as location, description, and 
supporting information to help users make their own 
determination. Users can also import default 
prioritizations and risk assessments, but there is always 
a manual component involved in this process. 

Observing this process was one of the key aspects of 
this effort. 

The end goal of this activity was to determine how 
these types of scans should be performed and gather 
lessons learned along the way. Things like how to 
assess severity of findings, how to optimize the 
scanning process, and what teams can expect in terms 
of resource commitment were all of significant interest 
to the research team. 
 
2. Preparation and overview of scanning 
process 
 

Preparation for scanning of the target application 
was a significant part of the energy required for the 
total process. Constructing a steady framework for 
performing these scans was necessary to be able to 
collect the desired metrics and gather sufficient details 
to perform follow-on activities. 

Establishing a team for performing scan was the 
most immediate need. The scanning team consisted of 
following four primary roles: facilitator, tools expert, 
cybersecurity export (CSE), and source code expert 
(SCE). The facilitator is responsible for managing the 
activities of the scan. This person makes sure that all 
the experts have the resources they need to complete 
the scan and disposition the results. The tools expert is 
responsible for setting up the tools, making sure 
they’re properly configured, perform the actual scans, 
and post-processing any of the results if necessary. 
This individual handles all aspects of running the 
scans. The cybersecurity expert is responsible for 
reviewing the results of the findings from the 
automated scans as well as performing the manual 
scans based on their expert opinion. This will help to 
catch any items that may have been too complex or 
outside the scope of the automated scanning tools. 
Finally, the source code expert is responsible for 
working with the cybersecurity expert to disposition 
the results of the automated and manual scans. 
Together the source code expert and cybersecurity 
expert will assess the severity of the vulnerabilities and 
determine which vulnerabilities require a code change. 
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One of the most crucial parts of this process was 
selecting the target application. It was important to find 
an application with a development team that was 
dedicated to getting an accurate assessment of the 
cybersecurity health of their application. Beyond the 
interest of the teams, it was also necessary to look for 
software applications that presented the right risk 
environment to scan for cybersecurity vulnerabilities. 
Based on this information, the scanning team 
determined that the appropriate piece of software 
would likely be a ground software application. Since 
the process for performing these scans is not well 
defined, it was important to find projects that were 
willing to work with the team to capture lessons 
learned and metrics to define a more formalized 
process. 

From these loose requirements, two target 
applications were identified for scanning. For the 
purposes of this paper, these applications will simply 
be identified as Project 1 and Project 2. The identity of 
the software applications was something that the 
scanning team agreed to keep anonymous for the 
security of the applications. These two pieces of 
software are mature ground applications that are 
currently deployed. Both projects are continually being 
developed to support better operation and new or 
improved functionality and have a predictable release 
cycle. Both projects are written in Java and each 
contains roughly 30k lines of code. Most importantly, 
these teams wanted to understand the cybersecurity 
risks present in their application. 

Scanning each application was broken down into a 
manual investigation by a cybersecurity expert, 
automated scanning of the operating environment for 
known configuration and third-party software exploits, 
and automated scanning of the source code for 
common weakness enumerations (CWEs) using a static 
analysis tool. [1] The source code scanning was 
performed using two static analysis tools. For the 
purposes of this paper, they will be referred to as Tool 
A and Tool B. For static code analysis scanning the 
team decided to target only CWEs found within the 
source code as a in order to measure risk. At the time 
of the scan, Tool A supported scanning for 107 
different CWEs for Java and Tool B supported 
scanning for 618 different CWEs for Java. Scanning of 
the operating environment was also performed using 
Nessus. [2] Nessus performs a scan of the operating 
environment and searches for common 
misconfigurations and known vulnerabilities that could 
be exploited. These automated scans help ensure that 
maximum coverage is achieved while using minimal 
resources. This level of coverage is crucial for 
assessing the cybersecurity risk profile of the 
application. 

Finally, in addition to scanning with the automated 
tools, manual scanning of the source code and the 
operating and environment was also performed by a 
cybersecurity expert. The expert started by using their 
understanding of the functionality of the application 
and their own expert opinion to identify potential 
attack surfaces that could be exploited. Once these 
attack surfaces were identified, the expert manually 
reviewed documents and source code to identify any 
potential vulnerabilities. 

Findings from these three types of scans were then 
reviewed by the cybersecurity expert and source code 
expert in order to assess the risk presented to the 
application. Risk was assessed primarily based on the 
potential consequence of an exploitation. There are 
many prioritization systems available for assessing 
CWE risk, but these were not utilized for this activity. 
Prioritization was assigned at the time of review by the 
cybersecurity expert and the source code expert. This 
risk and prioritization information was then used to 
inform design decisions and code fixes that would be 
incorporated into upcoming releases. 
 
3. Scanning results  
 

After the installation and setup of the scanning 
tools was performed each project was scanned using 
the three scanning approaches described in the 
previous section. These results were then taken from 
the tools and post-processed into a common format but 
remained raw in that no findings were removed. 
 
3.1. Static analysis results 
 

The process for performing the static analysis 
scanning is fairly straight forward. Each tool was 
configured specifically to only scan for CWEs. The 
raw information from the tool was then post-processed 
into an Excel-based spreadsheet and passed to the 
source code expert and the cybersecurity expert for 
review. This spreadsheet contains information about 
the location of the finding, what CWE it pertains to, 
and details of the actual concern. During their review, 
the experts assess the validity of the findings and 
assign a priority level based on assessment of potential 
harm to the system if the vulnerability were exploited. 
The prioritization information is then used to merge 
cybersecurity specific coding tasks among the other 
existing coding tasks. 

This analysis was based purely on expert opinion 
without adhering to a formal process. The only goal 
was to make a determination regarding every finding 
from the static analysis tool. The team observed the 
analysis performed by the experts in order to gather 
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information and identify pain points. This data will be 
used to create a more formalized process as part of 
follow-on activities. Many of the observations from 
this process can be found in the lessons learned 
section. 

Ideally, static code analysis should be performed at 
regular intervals throughout the development lifecycle. 
This helps to prevent a large backlog of vulnerabilities 
as development proceeds. Both of the projects scanned 
during the course of the pilot were very mature and had 
been performing these regular scans, but CWE checks 
had not been enabled. The recommended course of 
action is simply to enable CWE checks as a regular 
part of the static code analysis that is already being 
performed. While these particular scans were 
performed outside of the typical scanning cycle, it is 
easy to see how they could be incorporated.  

The results of the static analysis scans of Project 1 
and Project 2 are shown in the tables and figures 
below. These tables and figures contain information 
about the raw results as identified by the static code 
analysis tools. Full, detailed results will not be 
presented in this paper for the sake of brevity. Tables 1 
and 2 show the distribution of CWE findings identified 
by Tool A. Table 3 shows the results of a Tool B scan 
that was performed on Project 2 outside of the regular 
scanning process due to license availability issues. 
 

Table 1: Results of Tool A scan of Project 1 
CWE Description Count 
CWE-022 Improper limitation of a 

pathname to a restricted 
directory (‘path traversal’) 

35 

CWE-190 Integer overflow wraparound 3 
CWE-129 Improper validation of array 

index 
1 

 
Table 2: Results of Tool A scan of Project 2 

CWE Description Count 
CWE-089 Improper Neutralization of 

Special Elements used in an 
SQL Command ('SQL 
Injection') 

48 

CWE-022 Improper limitation of a 
pathname to a restricted 
directory (‘path traversal’) 

11 

CWE-190 Integer overflow wraparound 7 
CWE-311 Missing encryption of 

sensitive data 
3 

CWE-597 Use of wrong operator in 
string comparison 

3 

CWE-129 Improper validation of array 
index 

2 

 

Table 3: Results of Tool B scan of Project 2 
CWE Description Count 
CWE-252 Unchecked return value 6 
CWE-374 Passing mutable objects to an 

untrusted method 
17 

CWE-391 Unchecked error condition 426 
CWE-396 Declaration of catch for 

generic exception 
977 

CWE-397 Declaration of throws for 
generic exception 

677 

CWE-398 7PK code quality 2 
CWE-456 Missing initialization of a 

variable 
1 

CWE-459 Incomplete cleanup 400 
CWE-476 NULL pointer dereference 12 
CWE-478 Missing default case in a 

switch statement 
16 

CWE-484 Omitted break statement in 
switch 

17 

CWE-500 Public static field not marked 
final 

2 

CWE-543 Use of singleton pattern 
without synchronization in a 
multithread context 

5 

CWE-561 Dead code 28 
CWE-563 Assignment to variable 

without use 
57 

CWE-569 Expression issues 1 
CWE-571 Expression is always true 2 
CWE-581 Object model violation: just 

one of equals and hashcode 
defined 

4 

CWE-595 Comparison of object 
references instead of object 
code 

25 

CWE-596 Incorrect semantic object 
comparison 

1 

CWE-597 Use of wrong operator in 
string comparison 

4 

CWE-607 Public static final field 
references mutable object 

2 

CWE-662 Improper synchronization 2 
CWE-681 Incorrect conversion between 

numeric types 
6 

CWE-682 Incorrect calculation 4 
CWE-767 Access to critical private 

variable via public method 
13 

CWE-775 Missing release of file 
descriptor or handle after 
effective lifetime 

2 

CWE-845 CERT Java secure coding 
section 00 – input validation 
and data sanitization 

51 
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CWE-846 CERT Java secure coding 
section 01 – declarations and 
initializations 

7 

CWE-849 CERT Java secure coding 
section 04 – object 
orientation 

11 

CWE-851 CERT Java secure coding 
section 06 – exceptional 
behavior 

16 

CWE-854 CERT Java secure coding 
section 09 – thread APIs 

1 

 
In addition to determining the distribution of 

findings among the different CWEs, post-processing 
was performed to determine the density of the findings 
among the source code modules. The results of the 
post-processing are shown below in Figure 1 and 
Figure 2. In order to protect the identity of the projects, 
the names of the modules will remain anonymous. 

 

 
Figure 1: Distribution of findings among source 

code, Project 1 
 

Figure 2: Distribution of findings among source 
code modules, Project 2 

 
The results shown in Table 2 and Table 3 are from 

the same source code from Project 2, but different 
static analysis tools. The primary reason for the much 
larger number of findings shown in Table 2 is that Tool 
B supports a much larger number of CWEs than Tool 

A. A comparison between the results from Tool A and 
Tool B can be seen below in Table 4. 
 

Table 4: Tool A and Tool B comparison 
 Tool A Tool B 
Covered CWEs 107 618 
Total findings 74 2795 
Finding 
concurrence 

1 instance of partial 
concurrence 

 
Of the various CWEs that are covered by both Tool 

A and Tool B, there are 81 CWEs that are covered by 
both tools. Of these 81 common CWEs there were 17 
instance of no concurrence, 63 instances of potential 
concurrence, and 1 instance of partial concurrence. No 
concurrence is defined as no matching findings for a 
given CWE. Potential concurrence is defined as 
instances where no findings were identified by either 
tool, so it is not possible to make a definitive 
judgement on the overlap between the tools. Finally, 
partial concurrence is defined as an overlap of at least 
one finding for a given CWE. In this particular 
analysis, there was only 1 individual finding that was 
identified by both tools. 

After the scans were performed, the findings were 
analyzed by the cybersecurity expert and the source 
code expert to determine the validity of the finding and 
the risk associated with the finding. The risk 
assessment is based purely on the opinion of the 
cybersecurity expert and the source code expert. 
Assessing risk requires detailed knowledge of the 
target application, operating environment, and concept 
of operations of the system as a whole. A more 
formalized risk categorization process is currently 
being developed to assist teams in streamlining the 
process for assessing risk. 

If this risk is sufficiently high, a code change will 
be implemented, and design rules can be cataloged to 
help guide future development. Performing a static 
analysis scan of the code base before the peer review 
helps to focus the energy of the peer reviewers. The 
automated scan performed by the static analysis tool 
ensures 100% coverage of the source code and the 
expert review of the results ensures that the 
development team is provided with actionable 
information. The result of this process is a set of 
prioritized vulnerabilities that include a high-quality 
description of the vulnerability and potentially even 
details on a fix. These code fixes can then be inserted 
directly into the existing development lifecycle along 
with other coding tasks.    

Figure 3 and Figure 4 below show the number of 
findings that were deemed to be valid for each project. 
This activity was only performed for the findings 
identified via Tool A. The Tool B results were not 

19, 49%

6, 15%

14, 36% Module 1
Module 2
Other Modules

48, 65%
8, 11%

7, 9%

11, 15%

Module 1
Module 2

Module 3
Other Modules
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generated in time to be included in the metrics 
collection process. 

 

 
Figure 3: Findings validity for Project 1 

 

 
Figure 4: Findings validity for Project 2 

 
Conveniently, the static analysis tools provided all 

of the information that is needed to make a risk 
assessment for a given vulnerability. For example, the 
Tool A results provide users with the exact line of code 
that is of concern, a description of the problem, and 
even a generic discussion of how this type of 
vulnerability is usually addressed. The only difficulty 
associated with making a determination is marrying 
this data up with other controls that may or may not 
exist in the operating environment. This is where the 
knowledge of the source code expert is crucial.   
 
3.2. Expert review and Nessus scan results 
 

The process for performing a scan of the operating 
environment was quite similar to the process for 
performing the static analysis scan. First, the tools and 
documents of interest were identified. Once this 
information was obtained, the automated scan was 
performed and the manual review by the cybersecurity 
expert was also conducted. This information was then 
manually organized and reviewed by the cybersecurity 
expert and source code expert simultaneously. Finally, 
the experts made a determination regarding every 

finding and assigned a priority level based on expert 
opinion. Again, the process for performing the scan of 
the operating environment was left intentionally vague 
and was reviewed closely by the team to capture 
lessons learned for follow on activities. 

Similar to the static code analysis scanning, the 
operating environment should ideally be scanned at 
regular intervals during the development lifecycle. 
Even if there are no changes to the third-party 
dependencies of the target application, new 
vulnerabilities can arise over time. In many projects 
this may or may not be how this type of scanning is 
performed and may introduce additional overhead to 
the development team. For these particular projects, 
this type of scan had been performed in the past, but 
not on a regular basis. 

The products of the Nessus scan and the manual 
expert review were much less formal than the static 
analysis results. In many cases, these kinds of findings 
did not generate changes to the source beyond what 
was already identified by the static analysis tools.  
Instead, these findings can be flowed into changes to 
the configuration of the operating environment and 
procedural changes associated with using the 
applications. Additionally, these types of scans did not 
generate the same number of findings that were 
uncovered by static analysis of the source code. For 
these reasons, only a subset of the results will be 
shared. 

Scanning by the cybersecurity expert revealed 
several instances of uncontrolled information contained 
within the application documentation. For example, 
some documents contained admin login credentials. 
This poses a significant risk if used for malicious 
purposes. Scanning using Nessus also revealed 
configuration issues with Apache Tomcat serve being 
used by the applications that would leave the 
application susceptible to JDK vulnerabilities. 

After the results of the scanning were compiled into 
a final report, the cyber security expert is able to 
present the findings to the source code expert for 
review. Due to the nature of the scan, there is a much 
lower false positive rate, so the primary job of the 
source code expert is to simply understand the 
concerns, and a much lower false positive rate is to be 
expected. The results of the Nessus scan may not 
capture the all of security controls that are in place on 
the system, so this may be where there could be some 
false positives. Using the details of the security 
controls present to tailor the results proved to be the 
most time-consuming part of the process, though the 
cost associated with this activity is still reasonable. The 
cybersecurity expert must take time to understand these 
controls to better tailor their analysis. Again, risk is 
assessed based on the expert opinion of the 
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cybersecurity expert. Follow-on activities will work to 
determine a more formalized process for capturing risk 
assessments. 
 
3.3. Metrics collected during analysis 
 

During the course of the scanning, analysis, and 
dispositioning process the team collected metrics to 
better inform future activities. Metrics of concern are 
primarily analysis time and metrics distribution per 
thousand lines of code, but other metrics were 
collected along the way as well. The metrics collected 
during these pilot activities are provided below in 
Table 5 and Table 6. 

As can be seen the following tables, there was very 
little cost associated with performing these types of 
scans. For two mature software projects, it took less 
than 15 hours to perform the scans and disposition the 
results. The analysis cost can be broken down into 
three major categories: tools setup, source code expert 
analysis, and cybersecurity expert analysis. Tools setup 
encompasses setting up the analysis tools, running the 
analysis, and post-processing the results. For Project 2, 
the slightly higher number of results prompted an 
additional analysis activity to have the software lead 
developer organize the analysis into larger categories 
for the source code expert and cybersecurity expert to 
review. Nearly all of these analysis categories can see 
improvement with a more well-defined tool 
deployment process and a more formalized review 
process. A low-cost process would mean that teams 
can easily identify and rectify cybersecurity issue and 
improve the overall security of their codebase without 
being overly concerned with cost. 

While this does not include the time needed to 
make the necessary code fixes, it still encompasses a 
large portion of the cost. It shows that this type of scan 
can be readily performed without having to dedicate 
significant resources to the effort. More pilot activities 
are needed to better determine the costs associated with 
performing this type of scan, but the initial results are 
promising. 
 

Table 5: Project 1 analysis metrics 
Metric Value 
Language Java 
Lines of code 24,310 
Total findings 39 
Finding rate 1.61/thousand lines of code 
True defect rate 0.16/thousand lines of code 
Findings requiring a 
code change 

12.5% 

Analysis time Tools setup: 5-6 hrs 
SCE analysis: 2-3 hrs 

CSE analysis: 2 hrs 
Total: 9-11 hrs 

 
Table 6: Project 2 analysis metrics 

Metric Value 
Language Java 
Lines of code 36,725 
Total findings 74 
Finding rate 2.01/thousand lines of code 
True defect rate 1.39/thousand lines of code 
Findings requiring a 
code change 

69% 

Analysis time Tools setup: 2-3 hrs 
Lead analysis: 2-3 hrs 
SCE analysis: 4-5 hrs 
CSE analysis: 4 hrs 
Total: 12-15 hrs 

 
3.4. Observations based on analysis results 
 

There were many pieces of interesting information 
that can be gathered from the raw analysis data and the 
dispositioning results. Much of this information flows 
into the lessons learned that are captured in the 
following section, but there is still some information 
that is worth mentioning here. 

The first thing that is apparent is that these scans 
can be performed in a relatively short amount of time, 
even for mature software applications. Both pilot 
activities were completed with the risk assessment 
portion of the process in under 15 hours. This is 
manageable for most projects, but more scans are 
needed to gather more data points. 

The team also discovered that the analysis time 
does not necessarily scale with the number of findings 
that are uncovered. While more warnings generally 
could mean that the dispositioning process could take 
longer to complete, this is not always the case. For 
example, imagine that more warnings are discovered in 
third application, but nearly all the warnings are related 
to sanitization of user input. This type of finding is 
usually dispositioned fairly quickly and may not 
increase the dispositioning time noticeably. However, 
this will likely increase the time required to implement 
the code fixes associated with the true defects. 
 
4. Conclusions and lessons learned  
 

At the conclusion of each scanning process the 
team convened to discuss the lessons learned and what 
could potentially be improved for future efforts. There 
were many lessons learned as part of these pilot 
activities, but they roughly follow the different phases 

Page 7358



© 2018 California Institute of Technology. Government sponsorship acknowledged. 

of the scanning process from setup and installation 
though disposition. 
 
4.1. Setup lessons learned 
 

There is relatively little cost associated with 
preparing to perform these kinds of scans. The 
metrics collected during these pilot activities showed 
that the total time to perform analysis was no more 
than 15 hours. Of this total time, it took less than 3 
hours for a knowledgeable user to set up the various 
automated scanning tools and another 2-3 hours to 
create the associated post-processing scripts. This cost 
can further be reduced as the deployment process is 
refined through follow on activities.  

When scanning the source code specifically for 
cybersecurity vulnerabilities, configuration of the 
scanning tools is very important. While these tools 
often have utility beyond just scanning for 
cybersecurity vulnerabilities, limiting the functionality 
can be helpful to focus teams. Static analysis tools can 
often generate a lot of false positives which can be 
time consuming to disposition. Adding additional noise 
through unnecessary queries can make this an even 
bigger problem. Make sure to sit down with the team to 
determine what are the most effective queries to be run 
for the given analysis. Another option for solving this 
issue is to create segregated dashboards so that queries 
are effectively grouped. The best option would likely 
be to have a portion of the development team that is 
dedicated to performing these scans, analyzing the 
results, establishing the risk, and distributing this 
information to other members of the team as necessary. 

There is very little overlap between the different 
static code analyzers when comparing results 
against matching CWEs. It is possible to conclude 
from this finding that to truly get the best results users 
should run as many static code analyzers as possible 
for a given analysis to get the best coverage of the 
CWEs. This of course means that more output will be 
generated and the analysis time will be increased. To 
mitigate this teams should perform these scans 
regularly and address the findings frequently to ensure 
that the process does not become unmanageable. 

The source code, operating environment, and 
associated documentation must all be examined as 
part of the scanning process. There are different 
pieces of information contained in each one of these 
domains. It is not sufficient to examine only one area. 
Additionally, there are some vulnerabilities that only 
present themselves through a combination of more 
minor warnings that are distributed among the different 
domains. 
 

4.2. Scanning and post-processing lessons 
learned 
 

Most of the information needed to perform this 
type of analysis is readily available. The scanning 
tools provide users with most of the necessary 
information for diagnosing vulnerabilities within their 
codebase. The risk assessment/prioritization process is 
the missing piece that must be addressed in follow-on 
activities. 

Due to the sensitive nature of the information 
contained in the results, special measures must be 
taken when sharing the results. The raw results that 
are being shared contain information that would 
potentially be very valuable to an attacker. Because of 
this it makes sense to keep the results in a segregated 
area that is protected from more general information 
about the codebase. This area should only be accessible 
to the minimal set of developers required. Protecting 
the results of the scans means that risk items are 
protected and vulnerabilities are not revealed to a 
larger audience. 

The number of vulnerabilities that exist within 
the codebase are not based on the number of lines 
of code, but instead on the functionality of the code. 
It might be reasonable to expect that doubling the 
amount of code being scanned would result in double 
the amount of vulnerabilities uncovered, but this is not 
the case. However, for example, if an application has 
more opportunities for user input, or makes use of a 
network connection, this codebase will likely have 
more vulnerabilities than a similarly sized application 
with less user input or no interface with a network 
connection. This can make it extremely difficult to 
estimate the actual effort associated with performing 
this kind of cybersecurity scan. Again, the 
recommendations from this lesson learned is to 
perform scans regularly so as not to create a large 
backlog of findings. 

The vulnerabilities are often not evenly 
distributed throughout the code. There will be many 
modules that have very few or even now cybersecurity 
vulnerabilities. Again, this is primarily due to the 
architecture and the functionality of the application. 
For instance, if there is a particular module in the 
application that is responsible for handling user input 
this module is likely to have a higher density of the 
cybersecurity vulnerabilities than other modules in the 
application. If a particular module has a high 
distribution of vulnerabilities, this means it may be a 
good target for further analysis. It could also mean that 
the team may need consider refactoring the module to 
better protect the application.  
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4.3. Dispositioning lessons learned 
 

Grouping warnings into different categories is 
helpful for the dispositioning process. Some 
scanning tools can handle this step automatically, but if 
not, this is something to be considered. As previously 
mentioned, these scanning tools can often generate a 
large amount of output. This step can help break this 
output down into more manageable tasks that can be 
distributed to different members of the development 
team. Ultimately this helps to streamline the process of 
assessing the risk associated with a finding or set of 
findings. 

The cybersecurity expert and the source code 
expert must work together in order to make a 
determination about the validity of finding. Each 
finding from the scanning tools can be examined from 
the perspective of the cybersecurity expert as well as 
the perspective of the source code expert. The 
cybersecurity expert may have information about the 
finding that can better explain its importance to the 
source code developer. Likewise, the source code 
developer may have information about the operation of 
the application that negates the importance of the 
finding. Essentially, they must work together as a team 
to come to agreement about the severity of a given 
finding. This is true for determining the risk associated 
with a given finding. If the common risk assessment 
technique is applied (likelihood vs. consequence) the 
source code expert can assist in determining the 
likelihood of a finding being exploited, while the 
cybersecurity expert can speak to the consequence of 
the vulnerability being exploited 

True positives can be used to create a rolling list 
of design rules. As vulnerabilities are uncovered in the 
code and fixes are implemented, a database of design 
rules can be formulated. These design rules and 
patterns can help to reduce the number of 
vulnerabilities that are introduced during regular 
development activities. 

Code fixes are related to the type of finding, 
more so than the individual finding. For instance, 
let’s assume that the scanning tools flag multiple 
findings in the source code that there is potential for 
privilege escalation. However, what the scanning tools 
are unaware of are any outside protections that would 
prevent this kind of escalation. So, in this instance, 
none of these findings would be considered to be valid 
and it is possible to disposition them all at the same 
time. There are some instances where this is not the 
case, but during our pilot activities most categories of 
findings followed this pattern. This information can be 
used to streamline the disposition and risk assessment 
process. 

A detailed process for prioritizing and assessing 
risk associated with vulnerabilities must be created. 
This area is where the majority of the analysis time 
was spent. Creating a formalized process will drive 
down the overall analysis time and is something that 
will be addressed in future work. 
 
5. Future work and extensions 
 

This pilot activity was conducted with the intention 
of leading into many follow activities. Some of these 
activities were known before starting the pilot scans 
and helped to shape how the scans were conducted, but 
more of these activities were discovered during the 
course of the pilot. 

The primary follow-on activity is to define a 
formalized process for performing these types of 
cybersecurity scans. The metrics collected as a part of 
the original scans will be used to help inform this 
process. This will likely be an iterative activity that 
will involve scanning more projects and further 
refining the process. The formalized process is 
important for ensure teams are performing these scans 
in a way that is consistent and repeatable. The team 
plans to continue collecting metrics on any additional 
scans that occur in order to better understand the 
relationship between lines of code, number of findings, 
and overall time to complete the analysis. This 
information can be very helpful when teams have very 
little budget to use and would like to better understand 
the commitment that is required to perform this kind of 
scan. 

In addition to the more formalized process, the 
scanning team determined that training and exposure 
materials to publicize this activity internally would also 
be helpful. Making development teams aware that this 
type of scan is necessary to perform is beneficial on its 
own, but this activity has the added benefit of 
potentially identifying early adopters that would be 
willing to participate in the process of refining the 
scanning process. This activity also allows teams to 
voice their concerns in a more generic way so that the 
team has a chance to address them either in the 
formalized process or in future exposure materials or 
training activities. The end goal is to provide teams 
with a way to incorporate this information into their 
development lifecycle by providing them with 
information about what aspects of the lifecycle this 
kind of scan affects. 

One of the most surprising results from this pilot 
activity was the lack of overlap between Tool A and 
Tool B when comparing the results of the CWE scans. 
This begs the obvious question of why the results are 
so different. Determining which tools provide the best 
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results will be important for maximizing the return on 
investment for implement these kinds of scans. The 
first step in solving this problem would be to 
performing a benchmarking activity. This could be 
done by running both analyzers against a source code 
test suite that contains known vulnerabilities and then 
comparing the results of the tools to see how many 
false positives are identified and how many true 
positives are identified. The are several open source 
test suites that could be used for this purpose. For 
example, the Juliet test suite is a collection of 
artificially injected CWEs for both Java and C that 
could be used to perform such a comparison. This 
information could then lay the foundation for future 
work to judge the effectiveness of different static code 
analysis tools for performing cybersecurity scans. 

During the process of analyzing the data from the 
various scans the team had some issues managing all 
the sources of information. There is an internally 
available tool called SCRUB that could potentially be a 
good solution to this problem. SCRUB is a peer review 
tool that is used to run static analysis tools, post-
process the results, and aggregate the results into a 
centralized location for review. [3] Users can also 
manually input findings into the SCRUB results if 
something is discovered that was no identified by the 
automated tools. SCRUB can also be used to link users 
back to the source code so they are able to review the 
code to make a determination on a particular finding 
regarding the risk that it presents to the project. 
SCRUB also has the added benefit of allowing 
multiple users to review the code and findings 
simultaneously and then vote on their resolution. In 
this situation, SCRUB could be used by the scanning 
team to perform automated scans, collect manual 
inputs from cybersecurity experts, and then allow 
source developers and cybersecurity experts to review 
findings independently while still gathering input from 
both sides. This approach serves to streamline the 
review process by focusing on only the findings that 
have been deemed worthy of debate when making 
design decisions. Finally, since SCRUB is already 
being used to drive peer reviews, this information 
could easily be rolled in to the existing process to 
minimize the impact to development teams. 

One of the primary pieces of feedback the team 
received from the developers on the pilot projects was 
that it would be really helpful to have some kind of 
mechanism for prioritization of the findings from the 
static analysis tools. There are many different methods 
of prioritizing these warnings. MITRE maintains 
several different prioritization techniques as part of 
their CWE list that can be used to ranking the different 
findings. Each of these rankings are slightly different 
and have different underlying methodologies. NASA 

also maintains a yearly ranking of what they consider 
to be the top 25 CWEs for both ground and flight 
software. This activity should examine the applicability 
of these ranking systems and attempt to make a 
recommendation as to which ranking system makes the 
most sense for these types of scans. Creating an 
effective prioritization system will help to streamline 
the process for assigning risk to a given finding or set 
of findings. 
 
6. Conclusion 
 

At the start of this activity the scanning team was 
attempting to gather information about how to best 
incorporate cybersecurity scanning into the 
development lifecycle in a way that gives teams the 
information they need about risks in order to make 
informed design decisions. 

These scans were performed with a relatively small 
amount of effort given the maturity of the projects 
being scanned. This indicates that scanning a well-
established project and assessing the risk of the 
vulnerabilities discovered is something that could be 
done relatively easily by most teams. The necessary 
information to assess risk is commonly readily 
available and can be combined with the information 
provided by the scanning tools to make an effective 
determination. Beyond the metrics collected, there 
were many lessons learned from this pilot process 
regarding how to best perform these kinds of scans and 
present this information to teams for decision making 
purposes. 

Future work is needed to better understand the best 
way to implement these scans on a large scale. 
Creating a formalized process that is able merge into 
existing process will require further research, but these 
pilot scans have served their purpose as a proof of 
concept. Benchmarking the different static analysis 
tools is likely a required step before rolling out these 
kinds of scans on a large scale. The use of facilitating 
tools could help to streamline the review and risk 
assessment process. A prioritization methodology 
would also be helpful for objectively assessing risk and 
presenting teams with consistent data for making 
design decisions. 

Ultimately, this work will be continued with the 
end goal of creating a formal process and a stable set of 
tools for performing these kinds of scans 
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