
Immutable Infrastructure Calls for Immutable Architecture:
Deploying a Changeless Architecture in the Cloud

Anders Mikkelsen
Netcompany

Oslo, Norway
anderm@netcompany.com

Tor-Morten Grønli
Kristiania University College

Mobile Technology Lab
Department of Technology

Oslo, Norway
tor-morten.gronli@kristiania.no

Rick Kazman
University of Hawaii

Shidler College of Business
United States of America

kazman@hawaii.edu

Abstract

With the advent of cloud computing and the concept
of immutable infrastructure, the scaling and deployment
of applications has become significantly easier. This
increases the possibility of “configuration drift” as an
operations team manages this cluster of machines, both
virtual and actual. In this paper we propose a revised
view on configuration and architecture. We propose that
software deployed on a public or private cloud should,
to the furthest possible extent, be immutable and source
controlled. This reduces configuration drift and ensures
no configuration problems in production as a result of
updates or changes. We will show an example of a
software project deployed on Amazon Web Services with
an immutable Jenkins setup which manages updating
the whole cluster and is self-regenerating. We will also
discuss how this lends itself naturally to interoperability
between clouds, because of the infrastructure-agnostic
nature of this approach.

1. Introduction

The thing about perfection is that it is
unknowable, it’s impossible, but it’s also
right in front of us, all the time! - Kevin
Flynn

Traditional software systems are constructed with
architectures designed for current times and planned
with architectures for the near future. However,
software development is a rapidly and ever-evolving
industry and is continuously influenced by a huge
number of factors such as changes in requirements, new
versions of frameworks and third-party components, and
technical debt [1], to name but a few. Our response
to development and maintenance in such a changing
environment is to no longer “go with the flow”, but
rather to reject uncertainty and embrace immutability.

Immutability is defined as an entity being

unchangeable, or changeless. This makes such entities
eternally knowable, as they will never change during
their lifetime and, even when completely destroyed, the
information about their composition is still perfectly
valid. Mutable entities or, in the case of software
architecture, systems, are in their essence unknowable.
Unknowable systems are naturally difficult to debug,
manage and maintain as you can never know with any
certainty that what you are looking at is the correct
base for implementing corrections. Furthermore, as
you implement a correction to an obvious problem,
that problem might actually be an accident due to an
undocumented change in the architecture.

To develop software systems with a high degree
of productivity and predictability, we are need to be
able to rapidly identify how to solve any emergent
problem and we need to be confident this change will
not break some other functionality or system quality.
Several approaches within the domain of software
testing partially address this issue, but do not provide
a solution. Further to this, how can we continuously and
rapidly develop a software project, and ensure that the
production version is immutable and thus knowable at
all times?

The primary challenge here is mapping all variables
and handling them accordingly. Current approaches
focus on managing the architecture according to a
known state and provisioning virtual machines (VMs)
with necessary dependencies. This is achieved with
Continuous Delivery where the deployment of the
system to production is fully automated and continuous
[2, 3]. We believe this existing approach does not solve
the problem of the system being free from configuration
dependencies, but it implements mutable tools that are
constantly altering the system to achieve the closest
approximation to the desired state based on changes to
the tools themselves.

“Desired” is however neither known nor certain. Our
vision and our approach revolves around continuously
updating the entire architecture with new complete
images with all dependencies whenever a change is

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60142
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7058

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


called for, including any tools for build, deployment
or operations. This imaging is achieved by using
containerization technology to ensure that the respective
component of the architecture is agnostic with respect to
the underlying infrastructure and its configuration. For
this research we have employed the Docker container
system as a contextualized base for implementation.
Instead of attempting to manage state, the system will
always be trackable to source-controlled images. In
essence we replace the state instead of updating or
modifying it. Containerization of the entire architecture
is key to this approach and the architecture running
in production is always knowable because it is always
unchangeable in its current iteration. To the best
of our knowledge this stateless approach to software
architecture has not previously been addressed by
research.

2. Related Work

Cloud computing has received considerable attention
in the software engineering community and has been
embraced by the industry as the preferred emerging
platform for software hosting. Cloud computing utilizes
three major distribution models; Software as a Service
(Saas), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS). Here we concentrate on SaaS with
applications delivered as services over the Internet and
the hardware and systems software in the data centres
providing these services. The idea is built around
an economy of scale, where the ultimate goal is to
provide more resources, better scalability and flexibility
for less money [4]. Cloud computing indicates a
movement away from computing as a product that
is owned and towards computing as a service [5].
Service in this context is a concept that deals with
the utilisation of reusable fine-grained components
across a vendor’s network, and cloud-based services are
usually billed using a pay-per-use model [6]. Further
to this, cloud computing is facilitating a focus on
the software development process and architectural
optimization with is current features for infrastructure
and deployment abstraction.

Current deployment and maintenance of a software
architecture is managed in three phases. Build,
Deployment and Operations. This rings true both
for traditional management and the new paradigm of
DevOps [2]. DevOps is an abbreviation of Development
and Operations, which seeks a closer collaboration
between the two camps, and more crucially, treating
infrastructure and architecture as code to automate the
previously time-consuming and manual provisioning
process [2, 3].

Continuous Integration is often used as an umbrella
for both CI and Continuous Deployment (CD). CI
is, in its most basic implementation, the process of
continuously building and testing the code of a software
project with unit and/or integration tests [7]. Usually
for the purpose of having a small iteration cycle from
implementation to product, and having a broad suite of
tests to verify expansions to the product to not break old
features. In this sense it also becomes a programming
paradigm in which no code is expected to be submitted
without proper tests that allow regression testing in all
subsequent builds. If the test suite is sufficiently broad
and of a high quality, confidence is built in the team
for pushing code changes and new implementations can
be delivered quickly to the end user [8]. Test Driven
Development (TDD), which is a programming paradigm
for writing tests before producing the implementation
code, is closely linked to the field of CI. As shown by
Amrit and Meijberg [8], it is not a prerequisite because
there is not consensus whether this approach increases
or decreases performance, but it helps to explain the
benefits of a test oriented approach to delivering a
product. The typical implementation of CI is hosting the
code of a project on a distributed repository like GitHub
or BitBucket, running a CI server like Jenkins or Travis
CI, and having it react to all changes on a dedicated
release branch. CD is quite simply the process of
having delivered every successful build in a CI process
to production. For example automatically replacing
running backend services or uploading a revision to
Google Play Store or the App Store. The collective idea
of CI and CD combined is to continuously improve a
product, without breaking old functionality, and having
an uptime of as close to 100% as possible [8].

The recognized challenges in maintenance of large
scale architectures are to a great extent context
dependent and there has been some recent research
addressing the impact of continuous deployment
together with DevOps on the architecture [9]. Keeling
[10] highlights that this impact is dependent on
the software design and has different magnitude for
lightweight architectures and flexible designs. Keeling
[10] highlights further that benefits of DevOps are
achieved first when the typical architectural quality
attributes security, availability, reliability etc. are
consciously addressed. These issues present a renewed
interest in fundamentals for software architecture and
combined with cloud computing distribution, new
issues to address come to light. Bellomo et al.
[11] note that DevOps, continuous integration, and
continuous deployment can not be achieved at scale
without architectural support, and also identify a set
of architectural tactics—recurring design primitives—to

Page 7059



achieve these goals.
Many of the services needed to support this

new paradigm are often included in public clouds.
While having a low learning curve, and at times
high configurability these services undeniably lead
to a dependence on the cloud provider and have
potentially long correction times if fundamental bugs
are uncovered, because you do not have direct access to
the infrastructure. Often, you can also experience issues
with API reliability and reporting delays, as shown by
Zhu et al. [12].

In the example by Zhu et al. [12], they discuss
the pros and cons of heavily and lightly baked images
for deploying software. Heavily baked is a clearly
defined Amazon Machine Image, with only minor post
instantiation actions while lightly baked includes recipes
for post instantiation configuration (through the Chef
framework). While this is a sound comparison for
deployment practices using only virtualization, it fails
to consider the architecture itself being containerized
on top of a VM. This would possibly lead to a slightly
longer build time compared to a lightly baked approach.
This is due to the fact that all configuration must be
included into the image, but post build configuration will
be eliminated and deployment time will be much faster.
In addition, you could avoid most of the API reliability
issues by simply rerunning build and deployment as
everything is immutable and can crash at any time.
In this sense, we can get the best of both worlds by
virtualizing the infrastructure and containerizing the
architecture and configuration.

When you consider cloud technologies and
containerization, you cannot escape talking about
micro-services. It is also a difficult subject to define.
One of the most concrete presentations outside of
academic circles came from Lewis and Fowler in 2014
[13]. As understood by practitioners and academics
alike the three main pillars of MSA are those of
improving speed of change, small cohesive units and
scalability [14, 15, 16, 13].

Whether Microservices Architecture (MSA) is a
style or a constrained implementation of Service
Oriented Architecture (SOA) is a contested point [15,
17]. Constraints in this context means putting less
emphasis on SOA concepts such as the enterprise
service bus. Some would say it is a best-practice
approach to SOA, while others like Shadija et al. would
say it is a separate paradigm [16, 18, 19, 15, 17]. There
are also presentations among practitioners that embrace
both ends of this spectrum, by defining multiple
implementations of MSA. Some closely resemble SOA,
in a more fine-grained form, others like Mulesoft,
don’t [14]. These differing opinions lead to there not

being a clear definition of MSA or even microservices
themselves in an academic context [19, 15, 16, 18],
however there appears to be some universal constants
concerning microservices that practitioners agree upon.

• They are strongly tied to the practice of
Continuous Integration (CI) [8]

• They should all be logically small (High Cohesion
in Features) [15, 13]

• They each run in their own process [13]

• They communicate with each other via a
lightweight interface, often a REST API [16, 18]

Kang et al. [20] discuss challenges with
containerizing micro-services in a cloud environment
and summarizes the three primary challenges as
minimizing cross-configuration of services, maintaining
state of running services and providing safe access to
host resources.

Lenk et al. [21] have done a survey, testing
virtual machine interoperability on an operating system
and application level. They introduce a testing
method called Testing Interoperability on Operating
System and Application (TIOSA). They continue with
a detailed execution process for testing and verifying
interoperability with meticulous testing on both the OS
and application level. The results and conclusions of this
paper shows that VM interoperability is hard, and more
importantly that it is not a reality in clouds yet. Mei et
al. [22] compare cloud computing to service computing
and pervasive computing. From this comparison we can
see that clouds vary on a fundamental level by being
abstract in both location, context and granularity. Being
that the cloud is such an undefinable environment, we
should ensure that our architecture is as agnostic to the
cloud as possible, including any services it provides.

3. Design and implementation

The system being analyzed as an example for this
paper is a backend system for a multi-platform mobile
app used for streaming digital content from multiple
providers. The system is designed to automatically
build and redeploy a multitude of different apps based
on the content and configuration of individual users of
the different providers, in a single aggregated format.
The various services of the backend architecture is
constructed with Vert.x [23]. All services are clustered
using the default clustering framework for Vert.x,
Hazelcast. A simple content management system is
created in Ruby on Rails and continuous delivery is

Page 7060



managed by a Jenkins build server. All application
components are containerized using Docker. The
main focus of the example is the continuous delivery
component, but the entire architecture is designed with
immutability in mind.

The architecture is deployed on Amazon Web
Services (AWS) in autoscaling groups. An AWS Auto
Scaling grouping is a set of VMs that are all created
from the same launch configuration and can be scaled
up and down in instance count, based on a variety of
metrics. All services have their own dedicated cluster
of autoscalable virtual machines (VMs) spread across
three availability zones. Data storage is handled by
Amazon DynamoDB [24]. The Key/Value store is
handled by Amazon Elasticache. All connections and
configurations of these services are handled in code.

3.1. Prototype architecture

Figure 1. Architecture of implementation

Figure 1 shows the relationships of the logical
architectural components for this implementation of an
immutable architecture. It is primarily deployed
in an AWS environment, supported by source
code repositories hosted on GitHub, and Slack for
notifications and messaging. Each box in the diagram
represents a component, such as Amazon EC2, or a

logical service component such as a load balancer or a
notification service. As we can see, our build servers
are running Jenkins master nodes inside an AWS auto
scaling group. We are also running Jenkins slaves
within a scaling group.

The Master nodes have a unified Docker image
while, conversely, slaves can be a multitude of different
configurations built into separate Docker images. For
this architecture it consists of one slave configuration
for building Android apps, and a separate configuration
for building java projects and the Jenkins master and
slave configurations. The current Dockerfile for this
prototype builds a generalized slave with preinstalled
tools like Maven, Gradle, Java, Selenium, etc. For a
more advanced production ready setup you could further
build smaller images for specific build tools, or use other
prebuilt images for these purposes. You could have
a Node image, a Maven image, and a Gradle image
f.ex. Then you could spin up a new container for each
part of the build process and that way parallellize your
builds without having to worry about race conditions,
mutex etc. on slaves running multiple stages in parallell
because in effect you have isolated systems building the
different parts of your application.

The Android build slave will, based on input
parameters, download and install a specific version of
the Android SDK on the Docker image. This gives us
the opportunity to store a wide range of versions as we
go along. This eats up a lot of build time, but gives
us startup times of maybe a couple of seconds to start
an actual android build. We don’t need to download
particular packages on the fly during installation, as
we spent that resource of time during build instead of
runtime.

Because our Jenkins configuration is immutable we
can simply scale up masters to handle large numbers
of jobs because nothing stored on each master node
is of any non replaceable importance. Job execution
is handled by incoming webhooks that spread to any
available master through the load balancer. Job status
is pushed to an external notification service, in our
case the industry standard Slack tool, but in theory
any notification service responding to webhooks can
be used. A possible issue here can be ”lost jobs”
if a master tracking a particular job suddenly dies.
This prototype does not handle that case, but the plan
in a future iteration is having a service that oversees
GitHub webhook activation and completion down the
line. This can be a homegrown solution, or a cloud
offering like AWS CodePipeline. CodePipeline is an
offering from Amazon for automating various pipelines,
most commonly Continuous Integration/Deployment
scenarios.

Page 7061



On the application side of things the Amazon EC2
Container Service (ECS) is leveraged as a manager for
the replacement of immutable architectural components
as the entire configuration can be kept in source code,
alongside the business logic for the services. Should
a particular service require more resources it can be
updated in source and then replaced as a new immutable
configuration through the ECS. Services such as this
with repository based configuration is critical for
implementing immutable architectures. Further, the
ECS will manage all containers of individual services.
Replacing any faulty ones with fresh containers, scale
up and down etc.

Multiple other cloud services are integrated with
to manage the live cycle of a service, and all of
these have their individual configuration in the source
repository of their parent service. One such example
is the use of AWS CloudWatch alarms for managing
different parts of a service’s life cycle based on internal
AWS metrics and other external metrics. Having the
service configuration in the source repository turns it
into immutable configuration as the build job for these
services would then redeploy any modified alarms up
deployment of the parent service. So any commit in the
repository will directly correlate to a particular version
of an alarm. Preferable for complete history you would
replace any dependent or supportive services like this
alongside the parent service and tag it with a new
version to keep as much as possible of the architecture
immutable.

3.2. Implementation

Implementing this immutable configuration comes
with a set of three major challenges. The obvious first
challenge is to package services in such a way that no
configuration needs to be done after instantiation of the
image. For Jenkins this is easy as most configuration
are possible to override during initialization. Where
this is not possible, most often with third party plugins
and manual configurations, we must use scripts and
other tools to manually configure our image. This adds
complexity but is also testable. We can run tests as part
of the image build process and, in the spirit of DevOps,
simply break the build whenever we encounter a state
that is unexpected. In our development environment we
can also easily start our images and do integration tests
in a production-like environment. For this particular
example we have used Docker Compose. With the
Docker Compose tool we can set up multiple services
and configure them to have whatever state we want, so
we can emulate a mini cloud right on our development
machine.

Docker is used as an example here but any other
containerization technology may be used for this
purpose. Most cloud providers have support for at
least one type, most commonly Docker, as a main
offering. Whatever abstraction level you would want to
operate on, whether it is bare metal, virtual machines
or something like the AWS Elastic Container Service
which has the possibility of removing infrastructure
configuration entirely, containers will allow you to
always replace and never modify the architecture.

The second challenge comes with handling the
necessary secrets for these services, like ssh keys,
username/password combinations, API keys etc. In this
example with Jenkins, secrets are initialized on first
startup if they do not already exist. The current solution
is generating the secrets in a development environment
and including these into the image. These secrets are
available on the resulting instance of Jenkins either way
so there will be no difference in security state compared
to by natural initialization.

For production environments you could store these
secrets in an external store like an encrypted AWS S3
bucket, or another store provided by your environment,
but have the information about fetching said secrets
clearly defined in the source. For example consider the
object key for an item in a bucket on S3. Following
the principles of immutable architecture (IA) any new
key, would be a new object, which would need to be
updated in any relevant services utilizing it. This way
we retain the IA. A future iteration could also have a
build step that automatically recreates secrets for every
build to increase security above what would be provided
by a standard Jenkins instance restarting.

The third major challenge with this approach
is setting up connection parameters for the Jenkins
instances. Each Jenkins instance must be able to
communicate with any slaves it provisions and they must
be able to communicate with the correct master. This
needs to be built into the commands used to run the
relevant slave. Solutions to this challenge will vary
depending on the relevant cloud being used. On AWS
metadata about the underlying instance is available by
polling the instance itself. This is a brittle approach,
as it is reliant on AWS. This works for the context of
the scope of this paper, but more robust cross-cloud
implementation would have a base image that is agnostic
to its environment. We would then build on that by
defining a global environment variable in the base image
that we can easily override in an AWS image. We could
do the same for any other provider.

If the provider does not have this information
available in a fashion resembling this approach we
would have to be more creative with scripts to collect

Page 7062



the necessary metadata. In our specific case we also
need to configure the individual IPs of hosts for the
Slack plugin. This is needed so that we can display
specific host information for debugging on any failed
job. The complexity or impact on performance of this
will vary greatly with the underlying infrastructure. In
an on-premises configuration this metadata might not
be easily accessible and might require port scanning or
something similar to expose it. This will create a slight
performance penalty in the deployment of the individual
components, but won’t impact otherwise.

4. Results

Describing the entire architecture in detail is beyond
scope of this example, but suffice it to say that it is
designed around the same principles. All services are
clustered and intercommunicate freely, by using the
same metadata for describing public and private IPs,
cluster ports and so forth. When everything is packaged
in this way, we can push a new version of our Jenkins
master image on demand. This will rebuild itself,
and further rebuild the entire clustered architecture to
the new version, even during load as destruction and
instantiation of new docker containers is trivial.

This short explanation shows how this approach
increases initial development time, because we must
handle all configurable variables at build time as
the final image is meant to be changeless. The
biggest payoff however, is that images are prebuilt
and configured when instantiating new instances, thus
greatly decreasing deployment time compared to post
instantiation configuration tools like Chef [25], simply
because there is no post instantiation configuration
required.

4.1. Scenario 1: Adding or updating a job on
the Jenkins Server

When adding, or updating, either a periodic job or a
job for building and deploying a service/application in
the architecture we would normally develop and test a
new job, or update an existing one, on a development
environment running a Jenkins server. Either on a
continually running environment or on-demand. With
this new approach we can simply modify the job,
rebuild the image and redeploy it on our local machine
emulating the complete production environment using
Docker Compose. This way we shed the need for a
continuously running development or stage environment
with all its incumbent costs. Using Compose and other
Docker images we can also recreate the environment
as close to production as at all possible, by recreating
services we depend on in sidecar containers that either

mock that service or provide a local variant.
When we are satisfied with the performance of our

new job and it has passed testing in the local production
environment we can push the new version to source
control and our live Jenkins server will rebuild itself
and redeploy a new version of itself with the new job
available, in exactly the same configuration which we
were running in our local production environment. To
ensure that no currently running jobs from any Jenkins
Master are dropped, a production implementation of
this architecture should manage http routing to the new
environment and then drain the old environment before
removing it entirely.

Figure 2. Adding/Updating a Jenkins Job

4.2. Scenario 2: Updating configuration of
architectural or application components

When updating components of the architecture itself
like databases, configuration docs, caches or load
balancers, or application components, the process will
be exactly the same, as everything is containerized.
Using databases as an example we could have this
further separated into database containers and data
containers which hold the actual data of the database.
All the data will be shared into database containers. If
we need to update or change the database, say from
version 1.0 to 1.2 we can modify the Docker file for our
database container to install the correct version and then
rebuild this to a new image version.

We can then do testing of this on our local
production environment before redeploying this into the
live production environment. On this redeployment the
old database containers will be trashed and replaced by
the new image versions. In other words, we retain the
immutability of our architecture as no modification has
been done. Parts of the architecture have been destroyed
and replaced. So instead of modifying the state we

Page 7063



have entirely replaced it. To give an analogy: if this
were a SQL database, the analogy would be that we do
not adjust the schema of a running database to reflect a
change in a model, we would replace the entire database
with a new one with a new schema, that has no explicit
connection to the old version. It would be as if the old
one never existed. It is simply a reflection of a specific
point in time represented by a commit in a repository.

Because we define all versions of an architecture as
immutable we can run both versions concurrently, to
do a green/blue deployment. Knowing that no change
has been performed in runtime to adapt to changing
conditions, we can be confident that the changes we
introduce will not introduce unexpected bugs, because
we have thoroughly tested the transition from an old to
a new version locally already. This obviously creates a
higher demand on resources in the interim period, but
also facilitates a clean rollback when necessary. When a
rollback is performed the new version will be removed
and the old version is retained. Because all versions are
immutable we can be confident that the end result of a
rollback is always directly relatable to a specific commit
in source code, and not a specific commit in source
code plus a list of potentially idiosyncratic changes
done at runtime. This mutable state introduced by
runtime changes might not be correctly reset after such
a rollback.

In this approach we can see how we move
operations into the DevOps mindset. Now developers
and operations will work in the same manner and
cooperation on images will be much more natural than
planning upgrades of running hosts before redeploying
a container. The operations team can use the prepared
application image whenever an architectural upgrade is
ready.

Figure 3. Classic / IA Workflow

5. Discussion

In this section we will discuss the implications
of configuration drift and the benefits associated
with containerizing and cloud interoperability. We
will separately address the issues of eliminating
configuration mutation, further discussing having image
versions under version control, and what the impacts on
interoperability are.

5.1. Avoiding configuration drift by
eliminating configuration mutation

As shown in our Jenkins example we have
eliminated configuration mutation by imaging the entire
installation of Jenkins and only allowing modification
in a development environment. This way we can
thoroughly test new configuration options, modules and
plugins and deploy a new state whenever the new
version is ready for production. As mentioned by
Ebert et al. [2] configuration tools are great enablers
for DevOps as they reduce complexity and allow
reproduction of the production system on development
machines. With imaging the configuration tools in
question we can achieve the same thing, just for the
configuration tools themselves, and thereby the entire
architecture. Any maintenance will also be done on
a development environment and pushed to the Jenkins
master cluster for regeneration. This way we can ensure
that whatever is in source control is always what we
will find in the live version. Depending on the options
provided by the cloud provider one should always try to
find the most optimal way of storing the Jenkins secrets.

This approach of deploying configuration tooling
will decrease the long tail and unreliability described
by Zhu et al. [12] and potentially eliminate it if we
expand this process to the entire architecture. If all the
different dependencies for different services are actually
just layered docker images we have a single point of
reliability to worry about which is the repository API
[12]. This means the deployment tool in question,
be it Jenkins, Chef [25] or any other, will effectively
just build and spin up predefined Docker images in a
structured manner instead of installing and configuring
anything. We can now test the Docker images at build
time and just retry any builds that fail on a single
host instead of managing and doing post instantiation
processes on multiple hosts.

5.2. Containerizing everything and having all
image versions in source control

In our opinion the challenges presented by Kang et
al. [20] can be mitigated by taking containerization

Page 7064



further. In the example of storage, they consider that
an example might store user profiles on disk. This
”disk” might just be a docker volume running on a
separate docker image as part of the same overall
application. This volume will be persisted between
startups by the docker engine. If the VM running
the containers die, these containers can again have
functionality for synchronizing from the cluster without
considering the new VM. The same can be said for
service discovery. They describe using a ”sidekick”
process for handling registration and discovery, which
increases the complexity and cross-configuration of the
image. They should rather have a secondary docker
image that handles service registration and discovery on
behalf on the application image and link them. Creating
an application interface between them will also make it
possible to interchange service discovery frameworks if
necessary, e.g. using a different cloud.

We want our application to be completely agnostic
to any configuration outside of the container we control.
This introduces challenges with managing secrets,
environment variables and technologies that require host
parameters like public/private IP. An example would be
Hazelcast for our Vert.x cluster. These are solvable
challenges but they nonetheless add to development
time. The upside when the basics are configured is an
image that is self-contained and agnostic to its hosting
environment. Much like the light baking described by
Zhu et al. [12] we can reduce the image as much
as possible to limit configuration and we do not have
to worry about installing packages needed for other
containers running on the same host as these images are
also self-contained. The key difference is that the baking
is on the docker layer instead of the VM layer. This also
ensures the immutability of the original VM, as it will
only be defined by the VM image it is spawned from
and never changed.

5.3. Using this technique for cloud
interoperability

By isolating our software architecture as much as
possible from the underlying infrastructure we facilitate
for cloud interoperability. The reason for this is that
we can construct basic docker images of all application
services and dependencies, and then simply create cloud
specific docker images on top of this to easily deploy
anywhere [3]. For this to work we must containerize
everything. From build, through deployment and even
operations. The crux of interoperability and probably
the most challenging aspect will be the containerization
and scaling of the database(s) of choice and other
stateful services across clouds [20].

The conclusions in the paper by Lenk et al. [21] are
sobering and clearly show the great challenges that lie
ahead for VM conversion between clouds. On the other
hand, Kang et al. [20] quite thoroughly show how you
can model your architecture with micro-services and
containerization to alleviate the need to do migrations.
With proper containerization and service discovery you
can simply deploy your containers on another cloud
with another VM, and not spend time figuring out
VM conversion, because the underlying VM is, in
the end, unimportant. Where our approach takes this
concept even further is to containerize the entirety of
the architecture; not just the application but also build,
deployment and operations. By packaging all of this
we can truly become cloud independent and can use
resources from multiple clouds based on the specific
requirements and cost constraints of our system. For
example if we have exhausted storage capacities within
our cost or performance specification within one cloud
we might want to expand to another, as explained by Mei
et al. in their second research question [22].

6. Conclusion

Mutable systems are in their essence unknowable.
Immutable systems on the other hand, are eternally
knowable due to the fact that they are changeless.
With the introduction of Immutable Infrastructure a
corresponding shift toward Immutable Architecture is
natural, and in this paper we have highlighted the
concept and provided an example of its use and some
of the implementation considerations that this approach
entails.

We have also discussed Immutable Architecture as
a concept and noted that there appears to be little
research into this approach to architecture and DevOps
maintenance and evolution. The main contribution of
this paper is to highlight the approach of containerizing
all parts of the architecture and its environment.

Key concepts of Immutable Architecture:

1. Containerize everything, from operations to
applications, to separate Architecture from
Infrastructure as completely as possible.

2. Capacity to run a fully qualified production
environment on developer machine, removing the
need for a staging environment.

3. Live environment is fully knowable and directly
documented through source code.

Just as Immutable Infrastructure allows us to
transcend dependence on individual stateful pieces

Page 7065



of infrastructure so should we develop Immutable
Architecture to transcend dependence on the underlying
cloud infrastructure. Only then can we truly experience
cloud interoperability and simplify maintenance and
evolution.

7. Future Research

Future research in this area should be devoted
towards work on developing immutability and layering
of (architectural) images. As a response to the
current (isolated) focus on envisioning and planning
future architectures through the lens of micro-services,
research should look at the architecture itself as a
composition of micro layers. We are now at the
beginning of the era where we treat infrastructure as
code. As such, we must not only treat it as scripts for
configuration but as actual software.

The example in this paper can, in the future, be
built upon to exemplify how Immutable Architecture
should look, with the key elements being an absence
of state and zero configuration after instantiation.

References

[1] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao,
S. Haziyevy, V. Fedaky, and A. Shapochkay, “A case
study in locating the architectural roots of technical
debt,” in Proc. 37th, 2015.

[2] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,
“Devops,” IEEE Softw., vol. 33, no. 3, pp. 94–100, 2016.

[3] M. Callanan and A. Spillane, “Devops: Making it easy to
do the right thing,” IEEE Softw., vol. 33, no. 3, pp. 53–59,
2016.

[4] C. Binnig, D. Kossmann, K. T., and S. Loesing, “the
weather tomorrow?: towards a benchmark for the cloud,”
in Second International Workshop on Testing Database
Systems, 2009.

[5] A. e. a. Khajeh-Hosseini, “The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise,”
Software: Practice and Experience, vol. 42, no. 4,
pp. 447–465, 2012.

[6] L. e. a. Vaquero, “A break in the clouds: towards
a cloud definition,” ACM Computer Communication
Review, vol. 39, no. 1, pp. 50–55, 2008.

[7] M. Shahin, M. A. Babar, and L. Zhu, “Continuous
integration, delivery and deployment: A systematic
review on approaches, tools, challenges and practices,”
IEEE Access, 2017.

[8] C. Amrit and Y. Meijberg, “Effectiveness of test driven
development and continuous integration a case study,”
IEEE Xplore: IT Professional, 2017.

[9] M. Shahin, “Architecting for devops and continuous
deployment,” Proceedings of 15th ASWEC, 2015.

[10] M. Keeling, “Lightweight and flexible emerging trends
in software architecture from the saturn conferences,”
2008.

[11] S. Bellomo, R. Kazman, N. Ernst, and R. Nord,
“Toward design decisions to enable deployability;
empirical study of three projects reaching for the
continuous-delivery holy grail,” in First International
Workshop on Dependability and Security of System
Operation (DSSO 2014), 2014.

[12] L. Zhu, D. Xu, A. Tran, X. Xu, L. Bass, I. Weber, and
S. Dwarakanathan, “Achieving reliable high-frequency
releases in cloud environments,” IEEE Softw., vol. 32,
no. 2, pp. 73–80, 2015.

[13] J. Lewis and M. Fowler, “Microservices: A definition of
this new architectural term,” 2014. Online; accessed 9
Nov. 2017.

[14] Mulesoft, “The top 6 microservices patterns,” tech. rep.,
Mulesoft, 2017.

[15] D. Shadija, M. Rezai, and R. Hill, “Towards an
understanding of microservices,” 23rd International
Conference on Automation and Computing, University
of Huddersfield, Huddersfield, 2017.

[16] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis,
and N. Josuttis, “Microservices in practice, part 1 :
Reality check and service design,” IEEE Software, 2017.

[17] P. D. Francesco, “Architecting microservices,” IEEE
International Conference on Software Architecture
Workshops, 2007.

[18] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis,
and N. Josuttis, “Microservices in practice, part 2 :
Service integration and sustainability,” IEEE Software,
2017.

[19] S. Hassan and R. Bahsoon, “Microservices and their
design trade-offs: A self-adaptive roadmap,” 2016.

[20] H. Kang, M. Le, and S. Tao, “Container and microservice
driven design for cloud infrastructure devops,” in 2016
IEEE International Conference on Cloud Engineering
(IC2E), 2016.

[21] A. Lenk, G. Katsaros, M. Menzel, J. Revelant, R. Skipp,
E. Leon, and G. V.P., “Tiosa: Testing vm interoperability
at an os and application level – a hypervisor testing
method and interoperability survey,” 2014.

[22] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm
comparisons and some thoughts on research issues,”
IEEE Softw., vol. 33, no. 3, pp. 7–11, 2016.

[23] “Vert.x.” (Date last accessed 5-Jun-2018).

[24] “Dynamodb.” (Date last accessed 14-Jun-2018).

[25] “Chef.” (Date last accessed 7-Jun-2018).

Page 7066


