

Data-driven Selection of Security Application Frameworks During
Architectural Design

Humberto Cervantes
Universidad Autónoma

Metropolitana - Iztapalapa
 hcm@xanum.uam.mx

Junsung Cho, Geumhwan Cho,

Hyoungshick Kim
Sungkyunkwan University

js.cho@skku.edu,
geumhwan@skku.edu,

hyoung@skku.edu

Rick Kazman
University of Hawaii at Manoa

 kazman@hawaii.edu

Jina Kang
National Security Research

Institute
4558kang@nsr.re.kr

Jungwoo Ryoo
Pennsylvania State University at

Altoona
 jxr65@psu.edu

Abstract

The selection of application frameworks is an

important aspect of architectural design. Selection
often requires satisficing, that is, searching a
potentially large space of design alternatives until an
acceptable solution is found. There is, however, little
help for architects in selecting software frameworks. In
this paper we investigate the criteria used by
practicing software architects in selecting security
frameworks. We also propose how information
associated with some of the criteria that are important
to architects can be obtained manually or in an
automated way from online sources such as GitHub.
Our ultimate goal is to identify measures associated
with these criteria that can be helpful in providing
support for architects to select software frameworks.

1. Introduction

Software architecture design is the activity of
making design decisions to identify elements that
compose the architecture of a software system.
Architectural design can be performed systematically
using a method such as Attribute-Driven Design
(ADD) [3]. Generally, the design of a software
architecture is performed by reusing proven solutions
to recurring design problems. These proven solutions
can be conceptual in nature, such as design patterns
[4], or they can be concrete, such as application
frameworks. An application framework (or just

framework) is a collection of reusable software
elements that provide generic functionality addressing
recurring domain and quality attribute concerns across
a broad range of applications. There exist application
frameworks for many problem domains including user
interfaces, object-oriented to relational mapping
(ORM), generation of reports, and security. An
example of an application framework for ORM is
hibernate . Using this framework involves including 1

several library (Jar) files along with annotations in
certain classes so that the framework can successfully
persist these classes in a relational database. Other Java
frameworks follow a similar usage pattern.

Architects generally select frameworks as part of
the design process, and selecting an appropriate
framework is an important design decision which may
be costly to revert. The goal of our research is to help
software architects make better and more informed
design decisions, particularly regarding the selection of
application frameworks during architectural design. In
this paper we identify a list of criteria that can be used
in the selection of software security frameworks. Using
this list of criteria we surveyed practicing software
architects to understand how important these criteria
are to them. We then investigate how data associated
with a subset of these criteria can be obtained from
online sources such as GitHub to provide relevant
information to the architects.

2. Context of the study

1 http://hibernate.org/

1

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60170
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7331

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hcm@xanum.uam.mx
mailto:js.cho@skku.edu
mailto:geumhwan@skku.edu
mailto:hyoung@skku.edu
mailto:kazman@hawaii.edu
mailto:4558kang@nsr.re.kr
mailto:jxr65@psu.edu

In this section we discuss the evaluation criteria we
chose, and the frameworks we selected for our study.

2.1. Criteria

Application frameworks can be categorized
according to different characteristics, or criteria, that
are taken into account for their selection. We based this
list of criteria on informal interviews with software
architects, and later validated it with a survey, as we
will describe in Section 3. Table 1 lists the criteria we
selected and the meaning of each one of them.

The criteria are listed in order of importance, as
determined by our survey respondents (see
http://sites.psu.edu/frameworks/survey/). But it should
be noted that the differences in scores from top to
bottom were not large: the most important criterion
was just 25% more highly ranked than the least
important.

Table 1. Selection criteria

Criterion Meaning

Functional
completeness

The framework offers the functions
that are needed

Ease of
integration

The framework integrates easily with
other technologies that are used in the
project.

Community
engagement

How quickly bugs are fixed

Quality of
documentation

Good documentation and examples
are available

Cost The framework is free or reasonably
priced

Usability The framework is easy to use

Learnability The framework is easy to learn

Support The vendor or community provides
support, answers questions quickly

Familiarity I or my team were already familiar
with it

Popularity Lots of other projects are already
using this framework

Run-time
performance

The framework does not introduce an
unacceptable performance penalty

Evolution New, useful features are regularly

added to the framework

2.2. Selected frameworks

In this study we have chosen to focus on open
source software security frameworks supporting the
Java programming language and dedicated to the
quality attribute of security. This is because the domain
of security frameworks is rich, with many products
available, and Java has been the most popular
programming language for enterprise applications for
well over a decade . Thus our chosen domain is a rich 2

one. And we chose the most popular security
frameworks within this chosen domain. But this
selection was simply to scope our analysis efforts. Note
that none of the techniques that we apply are specific to
either the Java language or to the domain of security.

Table 2. Considered security frameworks

ID
Name and

version Focus Description

F1

Spring

Security
3

(v 4.1.0) A&A

Highly customizable

authentication and

access-control framework.

F2

Bouncycastle
4

(v 1.54) CRY Java cryptography APIs.

F3

JAAS
5

(Java SE 8) A&A

The Java Authentication and

Authorization Service is part

of the Java security APIs.

F4

JCE
6

(Java SE 8) CRY

The Java Cryptography

Extension is part of the Java

security APIs.

F5

Apache Shiro
7

(v 1.2.4) A&A

Powerful and easy-to-use Java

security framework that

performs authentication,

authorization, cryptography,

and session management.

F6

Jasypt
8

(v 1.9.2) CRY

Java library which allows the

developer to add basic

2https://www.tiobe.com/tiobe-index/
3 http://projects.spring.io/spring-security/
4 http://www.bouncycastle.org/
5 http://www.oracle.com/technetwork/java/javase/jaas
6 http://docs.oracle.com/javase/8/docs/technotes/guides/
security/crypto/CryptoSpec.html
7 http://shiro.apache.org/

2 Page 7332

http://sites.psu.edu/frameworks/survey/

encryption capabilities to

his/her projects with

minimum effort.

F7

HDIV
9

(v 2.1.11) WEB

Open-source Java web

application security

framework that eliminates or

mitigates web security risks

by design for some of the

most used JVM web

frameworks.

F8

OWASP

ESAPI
10

(v 2.1.0) WEB

This is the Java EE language

version of OWASP ESAPI

(Enterprise Security API).

F9

Keyczar
11

(v 0.71) CRY

Open source cryptographic

toolkit designed to make it

easier and safer for developers

to use cryptography in their

applications.

F10

OACC
12

(v 2.0.0) A&A

OACC provides a high

performance API that

provides permission-based

authorization services for Java

applications.

F11

jGuard
13

(v 1.0.4) A&A

jGuard is a library that

provides easy security

(authentication and

authorization) for Java web

applications.

F12

PicketLink
14

(v 2.7.1) A&A

PicketLink provides an

alternative to JEE Security,

providing a rich, powerful and

flexible API to secure your

applications.

We include standalone security frameworks and

APIs that are part of full stack frameworks (such as
JAAS). We exclude non-security frameworks (such as
presentation layer frameworks like ZK) which, while
they may include security functionality, do not
primarily focus on security. We constrain our scope in

8 http://www.jasypt.org/
9 http://www.hdiv.org/
10 https://github.com/ESAPI/esapi-java-legacy
11 https://github.com/google/keyczar
12 http://oaccframework.org/
13 http://jguard.xwiki.com
14 http://picketlink.org/appsecurity/

this way to avoid making “apples and oranges”
comparisons; that is, to avoid comparing frameworks
with fundamentally different objectives. Table 2 lists
the frameworks that we considered for this paper. It
should be noted that the majority of these frameworks
have a relatively narrow focus, as described in the
frameworks’ homepages. This focus is typically either
authorization and authentication (A&A - 6
frameworks), cryptography (CRY - 4 frameworks), or
protection of web applications against attacks (WEB -
2 frameworks). The descriptions in table 2 come from
the frameworks’ homepages.

3. Survey of practicing architects
To understand the criteria used by architects in
selecting security frameworks, we created a survey
which can be found at the following URL
(https://goo.gl/forms/bDT3b9yNkp4FxxCw1). The
survey consists of questions regarding:

1. The participant’s background (years of
experience in total and as architect, years of
experience with Java frameworks)

2. Which of the frameworks from Table 2 the
architect is familiar with, and whether he or
she was responsible for selecting the
framework in a project

3. Framework-specific questions for up to five
frameworks, including which of the criteria in
table 1 were taken into account when a
particular framework was selected (these were
multiple answer questions with answers
ranging from “primary reason for selection” to
“did not take into account”).

4. How each one of the criteria in table 1 is
evaluated (this was a free text response)

We received 14 responses to our survey. 85.6% of
the respondents had 10 or more years of experience in
software development. 78.6% had 4 or more years as
an architect or technical lead, all of the respondents had
5 or more years of experience using Java Frameworks.
80% of the respondents had been responsible for the
selection of a security framework in a project where
they worked.

The frameworks that were more popular among the
respondents were the following (the percentage
indicates the relative number of participants that
claimed they were familiar with it):

● Spring Security (86.7%)
● JAAS (73.3%)
● JCE (66.7%)
● BouncyCastle (33.3%)

Due to limited space, we only provide highlights of the
results from the survey but the complete results can be

3 Page 7333

https://goo.gl/forms/bDT3b9yNkp4FxxCw1

reviewed at the following address
http://sites.psu.edu/frameworks/survey/. Of these
frameworks, Spring Security was overwhelmingly
chosen by the respondents in 11 of the 14 responses.
Other architects also selected JCE, JAAS and
Bouncastle but these frameworks were only selected
once each.

4. Data collection

In this section we present data that is collected for 4
of the criteria listed previously: functional
completeness, community engagement, evolution and
popularity. These criteria were selected to explore
different strategies of data collection from online
sources.

4.1. Functional completeness

We measure functional completeness in terms of
coverage of the domain. For this reason we scrutinize
each framework to determine how many distinct areas
of security concerns the framework addresses. Security
tactics exhaustively define the facets of software
security that a framework could be architected to
address. Tactics are generic design primitives that have
been organized according to the quality attribute that
they primarily affect: availability, modifiability,

security, usability, testability, and so forth [2]. Tactics
have been used to guide both design and analysis [3]
[9]. The way that we employ tactics here is as a kind
of analysis: tactics describe the space of possible
design objectives with respect to a quality attribute,
and by determining which tactics a framework realizes,
we get a measure of the functional completeness of the
framework. In this way we can rank the frameworks
according to the degree of each framework’s coverage
of security tactics. Security tactics abstract the
complete domain of design choices for software
security. Figure 1 shows the security tactics hierarchy.
There are four broad software-based strategies for
addressing security: detecting, resisting, reacting to,
and recovering from attacks. These are the top-level
design choices that an architect can make when
considering how to address software security. The leaf
nodes further refine these top-level categories. For
example, to resist an attack an architect may choose to
authorize users, authenticate users, validate input,
encrypt data, etc. Each of these is a separate design
choice that must be implemented, either by custom
coding or by employing a software component such as
a framework.

Figure 1: Security Tactics Hierarchy

By understanding which specific tactics are

addressed by a security framework, we measure its
functional coverage (reported as the number of tactics
that are covered by the framework). For example, a
security framework may specialize in providing
encryption features and hence is only implementing
the ‘Encrypt Data’ tactic. This means that the

functional coverage of the framework is quite limited
as it only covers a single tactic.

To measure functional coverage, we first
reviewed the published descriptions of all the
frameworks under investigation. These descriptions
were primarily obtained from the frameworks’
homepages. An example is the description from the

4 Page 7334

http://sites.psu.edu/frameworks/survey/

Spring Security framework: “Spring Security is a
framework that focuses on providing both
authentication and authorization to Java applications.
Like all Spring projects, the real power of Spring
Security is found in how easily it can be extended to
meet custom requirements”. We also looked for
additional materials such as online articles and
tutorials. This initial review gave us an idea of the

overall emphasis of each framework in their
coverage. We then delved into the individual
Application Programming Interfaces (APIs) that
support specific security tactics to verify the claims
made in the frameworks’ descriptions.

Table 3: Extract of the template used to capture horizontal coverage information

Tactics
group

Tactics
question

Supported
?
Yes/No/Not
sure

If you answered Yes/Not Sure, please
describe the features of the
framework, which support the tactic
(provide links if necessary) or
describe why you are not sure.
Preferably use official documentation.

If you answered Yes/Not
Sure, please list the packages
in the framework API, which
are associated with the tactic.
Use official API
documentation to fill this
section.

6 Resisting
attacks

Does the
framework
support the
authentication
of actors ?

An example is
ensuring that an
actor (user or a
remote
computer) is
actually who or
what it purports
to be.

Yes Spring Security provides different
authentication options:

● In Memory Authentication
● JDBC Authentication
● LDAP Authentication

http://docs.spring.io/spring-security/site/
docs/4.0.4.RELEASE/reference/html/jc.
html#jc-authentication

See also a list of technologies that can
be integrated for authentication
purposes:

http://docs.spring.io/spring-security/site/
docs/4.0.4.RELEASE/reference/html/int
roduction.html#what-is-acegi-security

org.springframework.security.a
uthentication
org.springframework.security.a
uthentication.dao
org.springframework.security.a
uthentication.encoding
org.springframework.security.a
uthentication.event
org.springframework.security.a
uthentication.jaas

...

To ensure the consistency across our data

collection, the information was captured using a
template (see table 3). This template served as a
checklist, by listing all the known security tactics. It
also served as a questionnaire, eliciting information
such as whether a specific tactic is handled by the
framework of interest, the details of the APIs used to
realize the tactic, and additional justifications for how
a decision on a framework’s support for the tactic
was made.

Table 4 summarizes the functional coverage of all
the security frameworks we considered in this study
(Y’s mean the tactic is covered by the framework, the
numbers F1 to F12 correspond to the frameworks
listed in table 2). Note that in the table we omitted the
tactics not covered by any of the frameworks we
reviewed. Thus the tactics that are covered are the
following:

● T1 - Identify actors
● T2 - Authenticate actors
● T3 - Authorize actors
● T4 - Encrypt data
● T5 - Limit access
● T6 - Validate input
● T7 - Verify message integrity
● T8 - Detect intrusion
● T9 - Maintain audit trail

Table 4 reveals that there are three distinct groups

of software security frameworks. The first group
includes frameworks that focus on cryptography.
This group includes Jasypt, Keyczar, JCE and
Bouncy Castle. The second group includes
frameworks that focus on authentication and
authorization. This group includes JGuard, OACC,
PicketLink and JAAS. Finally, the third group

5 Page 7335

http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security

includes frameworks that strive to provide a
comprehensive set of security features including
cryptography, authentication, authorization, and
others in the security tactics hierarchy. This third
group includes OWASP ESAPI, Spring Security and
Apache Shiro. These three groups can be contrasted
with the focus that was initially identified by the
descriptions in the framework homepages (see Table
2).

Table 4. Functional Coverage

 Resist Attacks
Detect
Attacks

Rec
over

 T1 T2 T3 T4 T5 T6 T7 T8 T9

F1 Y Y Y Y

F2 Y Y Y Y

F3 Y Y Y Y

F4 Y Y Y Y

F5 Y Y

F6 Y Y

F7 Y Y

F8 Y Y

F9 Y Y Y Y Y Y Y Y Y

F10 Y Y Y Y Y

F11 Y Y Y Y Y

F12 Y Y Y

4.2. Community Engagement

We propose three different measures to evaluate
the community engagement for frameworks. The first
measure is the ratio of resolved issues vs. open
issues. Issues include reported bugs that need to be
fixed, and feature enhancement requests. We consider
that a high resolution ratio indicates that the
community that develops the framework actively and
works towards improving its quality. The second
measure is the average resolution time (ART), that is
the average time it takes for issues to be resolved.
This measure is calculated by Tr(i)- Tp(i) where Tp(i)
is a timestamp created when an issue i is posted, and
Tr(i) is a timestamp when the issue i is resolved. A
smaller ART indicates that the members of the
community actively work towards quickly addressing
issues and improving the quality of the framework.

The third measure is the number of contributors (and
committers). A high number of contributors also
indicates that there is a vigorous community
committed to the development of the framework.

It should be noted that the calculation of these
measures require that the framework has a publicly
accessible issue tracking system. We used the official
GitHub API v3 (https://developer.github.com/v3/) to
obtain the issue tracking data in the case of Spring
Security, PicketLink, OACC, Keyczar, ESAPI and
Hdiv, all of which are using GitHub to handle project
issues. Bouncy Castle and Apache Shiro use JIRA
(https://www.atlassian.com/software/jira), which is a
proprietary issue tracking tool developed by
Atlassian. JIRA allowed us to export project issues as
an Excel file. The Other frameworks, jGuard and
Jasypt, are using sourceforge.net
(https://sourceforge.net/), and we simply collected the
necessary data manually. Of all the frameworks
considered, only JAAS and JCE do not have publicly
accessible issue tracking systems as they are
developed as part of the Java API.

Fig 2: Ratio of resolved issues

Figure 2 shows the ratios of resolved issues

including bug fixes and change requests (new
features) for each of the frameworks evaluated. Here,
"resolved" means a developer has either fixed the
reported problem or satisfied the change request in a
framework. We can see that PicketLink (99.20%) is
the highest ranked security framework in terms of the
ratio of resolved change requests. Moreover, Hdiv
(93.33%), OACC (100% bug fixes and 72.73%
changes), JGuard (91.49% bug fixes and 35.82%
changes), Bouncy Castle (92.81 bug fixes and
87.37% changes), and Spring Security (92.92 bug
fixes and 82.04% changes) are significantly better
than the other frameworks in their ratio of resolved
issues. Note that PicketLink, Hdiv, and Keyczar do
not offer ways to distinguish bug fixes from other

6 Page 7336

types of change requests in their issue tracking
system, which is why we classify them as generic
changes (bars shown in green).

Figure “Distribution of issue resolution time for
the security frameworks” on the accompanying
website (https://sites.psu.edu/frameworks/) shows the
distribution of the percentage of issues resolved
across time periods (in days) for the different
frameworks. For example, in the case of Spring
Security, around 35% of the issues are resolved
between 0 and 20 days after they are raised. If issues
found in a security framework are promptly resolved,
ART becomes increasingly skewed to the left. For
this measure, OACC, Hdiv, OWASP ESAPI,
Keyczar, PicketLink produce desirable results.
However, OWASP ESAPI and Keyczar had a
significant portion of their issues that went
unresolved. Therefore, our data can be interpreted as
showing that OACC, Hdiv and PicketLink have
higher community engagement as they have a low
ART and a high percentage of resolved issues.

Fig 3: Number of committers

Figure 3 displays the results with respect to the

number of committers for the different frameworks.
Most of the frameworks, except for Jasypt and
Bouncycastle are hosted in GitHub which provides
information about the number of committers (called
contributors). JGuard provides information about the
committers in its homepage. Bouncy Castle, however
does not provide clear information about the number
of committers and this is why it is not included.
JAAS and JCE are part of java so this metric does not
apply for them. We can see that Spring Security has
the highest number of contributors (158) compared
with the other frameworks.

4.3. Evolution

In this paper we use the terms “evolution” and
“maintainability” to denote how easy it is for a
community of developers to modify a framework to

fix bugs (including newly emerging security threats),
and to add features (corresponding to new security
requirements or variants on existing security
requirements). While these terms are not identical,
they are strongly related. The degree to which a
system can be easily evolved is the degree to which it
is easy to find the location of a bug or feature, and
independently modify the code responsible for that
bug or feature. A system that is not maintainable
typically suffers from problems such as high
coupling, low cohesion, large monolithic modules,
and complex code. All of these characteristics inhibit
the evolution of the system, which is why we
consider these two terms to be largely
interchangeable.

For the purposes of this work we have chosen to
examine the architectural complexity of each of our
candidate frameworks, as measured by its
Decoupling Level (DL)--an architecture-level
coupling metric. DL measures how well a system's
modules are decoupled from each other and has been
shown to strongly correlate with true maintenance
costs [7]. This metric can be calculated by the Titan
tool suite [11].

Titan takes, as input Design Structure Matrix that
contains the dependency relations among project
source files. In the examples presented here these
dependency relations were generated by a
commercial reverse-engineering tool called
Understand. Given this input Titan clusters the files 15

and calculates the DL metric based on this clustering.
The details of the algorithm and the empirical
validation of DL can be found in [7].

Table 5 presents the results of the DL calculations
for 10 of the 12 frameworks (we were unable to
obtain the source code for JAAS and JCE, and so
could not calculate their DL values). With the DL
metric, the higher the value the better. The maximum
DL value was obtained by JGuard (0.813) while the
minimum value was obtained by OWASP ESAPI
(0.304). The average DL value over the 11 measured
projects is 0.62, which is about the average for all
open source projects that we have studied.

But, as with any other metric, DL values by
themselves are just numbers and hence difficult to
interpret; these numbers must be put into a context. In
[7] an analysis of 129 large-scale software projects,
covering a broad range of application areas (108 open
source and 21 industrial projects) was carried out.
60% of these projects were shown to have DLs

15 http://www.scitools.com

7 Page 7337

https://sites.psu.edu/frameworks/

between 0.46 and 0.75, with 20% having DLs above
0.75 and 20% having DL values below 0.46.

Table 5. Results of the DL Calculations

Project DL

JGuard 0.813

Bouncy Castle 0.784

Jasypt 0.774

Spring Security 0.737

PicketLink 0.675

Keyczar 0.609

HDIV 0.586

Apache Shiro 0.562

OACC 0.450

OWASP ESAPI 0.304

JAAS n/a

JCE n/a

From this data we can conclude that JGuard,

Bouncy Castle, and Jasypt are in the top 20% of
software projects, in terms of their DL and that
OACC and OWASP ESAPI are in the bottom 20%.
As mentioned above, DL values for JAAS and JCE
could not be obtained.

4.4. Adoption and Popularity
Adoption and popularity are also important criteria
for evaluating a security framework. While the
respondents to our survey did not rank this as a major
criterion, more widespread adoption and popularity,
we postulate, implies higher quality, better support,
greater likelihood of longevity, and better usability.
Hence we included it in our survey as a factor worth
measuring. Of course, a more highly adopted and
popular framework may be inferior in some other
ways, such as having less coverage than newer or less
known frameworks. This is, once again, why we
have chosen orthogonal measures of framework
quality in our evaluation method.

We used Stack Overflow
(http://stackoverflow.com) to quantify the security
frameworks’ adoption and popularity. This website is
the most popularly used platform by programmers to
discuss technical issues, in the form of Questions and
Answers (Q&A). We conducted our searches by
using the official names of security frameworks as

keywords on the Stack Overflow website, but some
name variants were also used. For example, we
employed several combinations of keywords--such as
‘spring security’ and ‘spring-security’--to search for
postings on the Spring Security framework. Also, we
used the advanced search option ‘answers:1..’ to filter
out questions without answers, as we consider these
as less relevant. The number of matches to our
queries is the number questions posted regarding
each security framework. We believe that this is a
reasonable approximate measure for the adoption and
popularity of a framework.

Figure 4 shows the overall results for the
Adoption and Popularity criteria. Among the security
frameworks evaluated, Spring Security is by far the
most popular with 10453 questions on
StackOverflow.

Figure 4: Number of questions on Stack

Overflow

5. Discussion

In this section we analyze the results presented in
the previous sections and we discuss threats to
validity.

5.1. Analysis of results

The data in section 4 shows that it is possible to
gather data associated with the criteria presented in
section 2 from online sources using a variety of
strategies. We believe that the data that we collected
could be useful to practicing architects in selecting a
security framework, and most of this information can
be obtained at low cost, in terms of effort.

Ideally, we would like to gather and process data
automatically for all of the criteria, but some of these
criteria are difficult to measure by gathering online
information or by direct analysis, and some require
human intervention. Criteria whose data is difficult to
obtain purely from online sources include Ease of
Integration, and (total) Cost (of ownership).
Functional completeness requires manual data

8 Page 7338

gathering and processing. While it would be possible
to create a tool that performs text analysis of the
frameworks’ homepages and identify keywords that
can be connected to specific tactics (such as
“authorization”), this is currently outside the scope of
our research, and the feasibility and precision of such
an approach is unknown. On the other hand, data for
criteria such as Community Engagement, which is an
important criterion for architects, can be gathered in a
relatively simple and automatable way, based on
publicly available information, as we have shown.
And other measures, such as maintainability scores,
can be fully automated.

5.2. Threats to validity

Some threats to validity of the work presented in
this paper include the possibility of having a
sampling bias with respect to the frameworks we
selected. Security is a quality attribute that is
addressed directly by frameworks but other quality
attributes such as performance or availability are not
directly addressed by specific frameworks; that is, we
are not aware of many ‘performance’ frameworks.
We believe, though, that it is possible to find other
frameworks for quality attributes such as usability or
testability.

The fact that we have only studied security may
reflect a confirmation bias, as we may be falsely
believing that criterion data can be collected for any
framework that can be directly associated with
tactics.

One additional threat comes from the fact that the
data for the coverage metric had to be collected
manually in the sense that it has to be interpreted, as
opposed to the data for the other metrics. This may
lead to a form of experimenter’s bias. While this form
of collecting evidence is not optimal, we believe that
our approach is justified (and, in fact, unavoidable) in
that the coverage metric is essential as it is the only
one that focuses on the intent of the frameworks and
their users.

Another threat to validity is that, at this point, we
have not obtained feedback from practicing architects
to understand if they would be willing to make a
selection decision based solely on the criteria and the
data that we have obtained. We have tried, however,
to leverage our extensive experience in working with
practitioners to select criteria that we believe would
be of use. Still, we might be subject to optimism bias
here.

Also, we acknowledge the fact that the size of our
survey respondents sample is small. Even though we

sent the survey link to several different online groups,
we obtained what we consider is a small number of
responses. We believe this is due to the fact that our
questionnaire requires a fairly specific and hence
narrow profile (Java developers who are familiar
with, and have participated in the selection of,
security frameworks).

Finally, not all of the data can be accurately
obtained in a fully automatic way. One of our goals
in this work was to automate as much as possible of
the measurement process, requiring only easily
obtainable, widely used project data. For example, to
measure evolution, we used the DL metric, which can
be automatically calculated using just the source
code. But this is sometimes challenging. For
example, it is not possible to differentiate bug fixes
from feature requests in some of the frameworks,
which is needed to calculate the community
engagement metric. And functional completeness
requires the input of an expert analyst. Nonetheless,
we largely achieved our goal of automated
measurement; the functional completeness measure is
relatively straightforward and does not need to be
repeated for each release of a product.

6. Related work

Our work is unique in the sense that there is a
lack of research publications focused on comparing
and evaluating software security frameworks.
However, there have been attempts to provide general
guidance on how to select the best framework
irrespective of the application domain. [1] discusses
29 criteria that can be used to evaluate frameworks.
Although the list of criteria is useful, the collection of
data for many of these criteria (such as “design
patterns” or “coupling”) is not straightforward. [6]
provides an extensive review of the evaluation and
selection of software packages, which are complete
software systems such as Computer-Aided Software
Engineering tools or Enterprise Resource Planning
systems. Similar to the previously discussed work,
their paper proposes an extensive list of criteria to
evaluate software packages. Although software
packages are different from frameworks, many of the
same criteria can be used when selecting frameworks.
Their review, however, does not mention the
automated collection of data associated with the
packages, which is one important contribution of our
work.

The work of [5] presents an empirical study on
the selection of open source software. By
interviewing 16 developers from different

9 Page 7339

development companies, the authors arrived at the
conclusion that the selection process is often
constrained by the situation (for example, company
policies) and that the developers use a ‘first fit’ rather
than a ‘best fit’ approach towards selection. In their
opinion, these situations limit the use of more
established selection methods. We believe that our
approach may help developers avoid the ‘first fit’
approach by providing them with means to evaluate
different alternatives from information that can be
gathered, for the most part, in an automated way.

The work of [8] surveys 18 selection approaches
for Commercial Off-The-Shelf (COTS) products.
From these different approaches, they synthesize a
general selection process which considers five steps
that are: 1) Define evaluation criteria, 2) Search
COTS products, 3) Filter results based on
requirements, 4) Evaluate the candidates on the
filtered results, 5) Make selection (using decision
making techniques). Our work can be of particular
use in step 4 of their general selection process.

The topic of evaluating and choosing frameworks
has also received considerable attention in the
popular press, e.g. [10].

7. Conclusion

In this paper we have performed a study of
criteria that are useful to architects in the selection of
application frameworks. Our study has allowed us to
understand which criteria are important to
practitioners and how data associated with some of
these criteria can be gathered from online sources.

At this point we have only gathered data for a
small number of criteria and our future work includes
identifying means to gather data for additional
criteria, although this may be challenging for some
criteria such as Learnability or Ease of Integration.
Future work also includes creating a tool that
provides support to architects in the application
framework selection process, based on the
information that is gathered from online sources.

While the goals of this study are rather
narrow--looking at the decisions affecting adoption of
security frameworks for Java applications--the
methodology that we have applied is not specific to
either Java or security. This was simply our initial
target. But we believe that the reasoning, criteria, and
tools that we have used to collect data in this paper
are generic. Thus we can claim that this research
represents a first step towards creating scorecards for
third-party components, supporting the rapid
selection of such components.

8. References
[1] S. Ahamed, A. Pezewski, and A. Pezewski, Towards
framework selection criteria and suitability for an
application framework," Proceedings International
Conference on Information Technology: Coding and
Computing (ITCC), 2004, 424-428 Vol.1.

[2] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 3rd edition, Addison-Wesley,
2012.

[3] H. Cervantes, R. Kazman, Designing Software
Architectures: A Practical Approach, Addison-Wesley,
2016.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software, Addison-Wesley, 1995.

[5] Ø. Hauge, T. Østerlie, C-F. Sørensen, and M. Gerea,
“An Empirical Study on Selection of Open Source
Software - Preliminary Results”, Proceedings of the 2009
ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development (FLOSS '09),
2009.

[6] A. Jadhav and R. Sonar, “Evaluating and Selecting
Software Packages: A review”, Journal of Information and
Software Technology, 51 555-563, 2009

[7] R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng,
“Decoupling Level: A New Metric for Architectural
Maintenance Complexity”, Proceedings of the International
Conference on Software Engineering (ICSE) 2016, (Austin,
TX), May 2016.

[8] A. Mohamed, G. Ruhe, and A. Eberlein. COTS
Selection: Past, Present, and Future. In ECBS ’07
Proceedings of the 14th Annual IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems, pages 103– 114. IEEE
Computer Society, Mar. 2007.

[9] Ryoo, J., Kazman, R., Anand, P., “Architectural
Analysis for Security”, IEEE Security and Privacy,
November/December 2015,13:6, 52-59.

[10] P. Selle, “13 Criteria for Evaluating Web
Frameworks”,
https://www.safaribooksonline.com/blog/2013/10/14/13-cri
teria-for-evaluating-web-frameworks/, 2013.

[11] L. Xiao, Y. Cai, R. Kazman, “Titan: A Toolset That
Connects Software Architecture with Quality Analysis”,
Proceedings of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE 2014), (Hong Kong), November 2014.

10 Page 7340

