

Evaluating Security Assurance Case Adaptation

Sharmin Jahan
University of Tulsa
shj594@utulsa.edu

Allen Marshall
University of Tulsa

allen-marshall@utulsa.edu

Rose F. Gamble
University of Tulsa
gamble@utulsa.edu

Abstract

Security certification processes for information
systems involve expressing security controls as
functional and non-functional requirements, monitoring
deployed mechanisms that satisfy the requirements, and
measuring the degree of confidence in system
compliance. With the potential for systems to perform
runtime self-adaptation, functional changes to remedy
system performance may impact security control
compliance. This impact can extend throughout a
network of related controls causing significant
degradation to the system’s overall compliance status.
We represent security controls as security assurance
cases and implement them in XML for management and
evaluation. The approach maps security controls to
softgoals, introducing achievement weights to the
assurance case structure as the foundation for
determining security softgoal satisficing levels.
Potential adaptations adjust the achievement weights to
produce different satisficing levels. We show how the
levels can be propagated within the network of related
controls to assess the overall security control
compliance of a potential adaptation.

1. Introduction

With the emergence of autonomous systems,
multiple domains seek to exploit the potential benefits
of allowing systems to make dynamic decisions and
repairs at runtime. These systems may craft adaptations
from internal resources [2, 4], from an external source
like a cloud [23], or from machine learning or genetic
algorithms [14] applied to existing code or historical
execution traces. Security-critical systems need
additional assurances that self-adaptation will not
compromise their compliance with security constraints.

Assurance cases represent structured claims and
arguments for those claims, crafted in the form of
subclaims, strategies for satisfying the arguments, and
evidence related to the strategies [8]. Assurance cases
[22] are a tool for documenting how a system satisfies
its requirements. An assurance case contains a root

claim or goal stating a requirement, along with an
argument indicating why the claim of compliance with
the requirement should be trusted. An assurance case
argument, structured as a tree, links the goal to subgoals
and ultimately traces each subgoal to supporting
evidence. Assurance cases are commonly represented
using a graphical notation called Goal Structuring
Notation (GSN) [11]. Security assurance cases have
been used to focus on the acceptability of a security
solution to known vulnerabilities. They may be domain-
specific, given that certain types of systems and domains
have known threat vectors. The overall objective is to
determine the evidence to support threat mitigation [16].

Security controls are part of the compliance
requirements for US federal information systems found
in the NIST SP800-53 [19]. The 800-53 also outlines
how organizations determine which security controls
are relevant to their systems. Subsets of these controls
have been extended to multiple domains. For example,
any nonfederal business receiving Controlled
Unclassified Information from a US government entity
must show that they have a process in place to comply
with the NIST SP800-171 [21], which contains a subset
of the 800-53. Thus, understanding security controls and
how to certify compliance is becoming a normal part of
doing business with the US government. Certification
requires that there are mechanisms deployed to ensure
security control effectiveness for those controls
necessary for secure system operation. Some level of
risk is acceptable as part of the certification process,
leading to different levels of system trustworthiness.
Assurance cases for security controls should allow for
the representation of these trustworthiness levels.

Information systems that can self-adapt their
functionality, communication, and decision-making
processes during runtime increase the burden of
determining compliance with security requirements.
The challenge is to determine how a functional change,
not necessarily made for security reasons, can impact
security control certification, and provide additional
reasoning on whether to proceed with an adaptation.

In this paper, we express 800-53 security controls as
functional and non-functional requirements by
extending an initial security assurance case template
[17]. We use the extended template to determine how a

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60168
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7312

functional adaptation that locally affects one security
control can propagate to other security controls,
reducing overall compliance confidence. The new
template incorporates metadata from the security
controls that detail what the control provides to and
requires from predefined related controls, forming a
network of dependencies among the controls.

We use the concept of network vulnerability metrics
[24] to calculate achievement weights of subclaims
(subgoals) that support each security assurance case
claim (root goal). By expressing the security assurance
case claims as softgoals [5], we adapt an existing
algorithm [12] to measure the satisficing level of each
security control and its impact on its related security
controls in the network based on its local achievement
weight. Because we allow adaptations to be configured
at runtime, the change operation that the system
performs may cause a reduction in the achievement
weights associated with the subgoals, requiring a
recalculation of the satisficing level at the root goal and
throughout the network. We demonstrate the approach
with a sample application, showing how the
achievement weights and satisficing levels compare to
the implementation of each potential adaptation defined.

2. Related Work

An assurance case evolution technique has been
proposed using a model management approach [13].
with the objective of maximizing the reuse of assurance
case components when evolution invalidates part of an
assurance case. This framework provides an algorithm
that identifies reusable components of an assurance case
and relies on human intervention to correct branches
that are not found to be reusable. Other exploration in
evolving assurance cases considers the problem of
checking the quality of a new assurance case that
replaces a faulty assurance case once a flaw is detected
[6, 7]. The approach represents flaws in the original
assurance case using a formal problem model and can
determine which of the problems are resolved by the
new assurance case. Our work differs in its approach
and several of its assumptions. We do not assume the
availability of a set of flaw descriptions for the original
assurance case, but instead assume that an impact
assessment of the potential adaptations is provided that
can be used to dynamically calculate achievement
weights of the affected subgoals.

Assurance case quality evaluation has also been
studied by Lin et al. [15]. Their approach assigns
confidence levels to claims in assurance cases. It relies
on the existence of a known, valid assurance case, and
computes confidence levels for other assurance cases
based on both metrics of similarity to the valid assurance

case and the Dempster-Shafer theory for uncertain
reasoning. We similarly assign numeric weights to main
goals in the form of satisficing levels, and our approach
also propagates achievement weights from child goals
to parent goals. In contrast, we consider specific issues
associated with security assurance cases for NIST
security controls, such as the existence of control
enhancements and related controls that propagate and
affect networked compliance scores.

Lipson [16] states that the credibility of an assurance
case depends on incorporating appropriate evidence into
the argumentation. Failure to organize appropriate
evidence may weaken the argument, because at a low
level the argument is linked with its evidence.
Organizing the evidence involves an understanding of
claims (compliance goals), system context, system
enablers (dependencies) and potential threats. The
approach relies on a framework [8] to categorize
security property evidence for the argument and a
template to help evaluate the quality of evidence.

Security certification can be a useful technique for
maintaining stable security behavior, because
certification schemes involve evaluation of the system
by considering security claims and evidence. A security
certification framework for a cloud-based system is
proposed to verify security certificate validation [1, 2].
In this framework, a certification model template and
instance are developed, and probes are deployed to
collect evidence about system consistency.
Inconsistencies are listed, and adaptations can be
triggered based on the misconfiguration report.

Chung and Nixon [5] designed a non-functional
requirement (NFR) expression framework, in which
they represent NFRs as “softgoals” and use the concept
of “satisficing” to measure softgoal achievement.
Satisficing provides a degree of satisfaction for a
softgoal based on positive or negative evidence. It has
been used to bridge nonfunctional and functional
requirements by analyzing the interdependencies
between them and provide insights for conflict analysis
[18]. The framework defines a Softgoal Inter-
dependency Graph (SIG) by decomposing the softgoals
into subgoals based on AND/OR relationships over
which a satisficing algorithm is performed. To
quantitatively evaluate the SIG, a process called
“Softgoal using Weight” (SGW) is deployed [12]. The
SIG leaves are operational subgoals that assigned
achievement weights by a subject matter expert based
on the contribution value of the subgoal attribute to the
parent goal. A satisficing algorithm uses the propagation
of the achievement weights to quantify the impact the
attributes have on the high-level goal.

Satisficing would be more applicable to a self-
adaptive system if achievement weights could be
calculated at runtime. One approach is to determine a

Page 7313

quantitative vulnerability metric based on a defined
community structure of a complex weighted network
[24]. The community is defined as subnetwork of several
nodes connected with a high degree of strength. Using
hierarchical agglomerative algorithm (HAA), a
community can be detected, along with its connections
with other communities, to quantify vulnerability. The
vulnerability metric depends on number and strength of
external connections with other communities, the
degree of dependency on other communities, and the
internal (within a community) connection density and
strength. The internal strength serves as primary factor
for measuring vulnerability, which denotes the impact
of the connection’s weight on the community. It is this
measure that can be used for an achievement weight.

3. NIST Security Controls

For the security assurance cases, we use the NIST
SP800-53 [19] (called 800-53) security controls as
shown in Figure 1. A security control associates a title
with each identifier. AU-4 refers to the 4th control within
the Audit family of controls. The actor is either the
information system or the organization. The control
statement follows the actor designation. It may be a
single statement, like AU-4, or separated into distinct

parts, like AU-5(a) and AU-5(b). The statement can
contain a mix of functional and non-functional
requirements. Tailoring, a major part of security control
certification, is performed when the organization
instantiates what is required by the [Assignment: …] for
the information system under consideration.

The related controls infer a dependency relationship
among the controls. For AU-5, they are AU-4 and SI-
12. There are other controls that tag AU-5 as a related
control, such as AU-4, with different dependencies. The
relationships may be tightly coupled, where AU-5 relies
on the audit storage capacity determined in AU-4, or
loosely coupled, where AU-4 provides AU-5 with a
parameter it obtains from its related control AU-11.
These inter-dependencies can be used to assess the
impact of a self-adaptation on not just a single security
control, but on the network of security controls. AU-
5(1) is a control enhancement, which provides
additional specification decisions and constraints. The
related controls can be inherited from the main control
or the enhancement can have its own related controls
that are not shared with the main control. Controls are
assigned to a baseline set related to the impact on the
confidentiality, integrity, or availability of the system if
a breach occurs. For example, AU-5 appears in the
baseline set for moderate impact, while AU-5(1)
appears in the baseline set for high impact systems.

Figure 1. Security Controls AU-4, AU-5, and AU-5(1)

Page 7314

Figure 2. AU-5(1) Assessment Guidelines

The NIST SP800-53A [20], companion to the 800-

53, provides assessment guidelines for each security
control. Figure 2 shows the guidelines for AU-5(1).
Notice that it dissects the security control statement into
evaluative portions, providing distinct labels for each
portion. We use both the security control and its
guidelines to create and instantiate a security assurance
case for a specific information system using GSN.

4. Sample Application

We demonstrate security assurance case expression,
evolution, and satisficing evaluation on a sample Smart
Inventory Management System (SIMS). The
architecture is shown in Figure 3. The components
operate concurrently, each with their own MAPE-K
(monitor-analyze-plan-execute-knowledge) loop which
is a common control loop to perform self-adaptation.
Measure collects sensor data and emits a local signal
indicating if the current reading is outside a defined
threshold. The sensor readings are passed to Process, a
cloud service, that adjusts the sensor threshold based on
the received readings. Measure and Process create audit
records that are sent to Audit’s message queue, which
then stores them in an audit trail.

The process flow for SIMS appears in Figure 4.
Process flow understanding is needed because it is

possible to formally express the low-level functionality
that is part of a security control and directly prove the
implementation complies with it [17]. A formal proof
can be part of the argument needed within a security
assurance case as described in the next section.

Figure 3. SIMS Architecture

Figure 4. SIMS Audit Component Processes

The MAPE-K loop in each component monitors for
anomalies in the system and activates the planner to
generate an adaptation. The checkCongestion process in
Figure 4 provides the monitor with information about
the input queue. Imagine that the monitor has received a

Page 7315

certain pattern of information from checkCongestion
that causes it to invoke the analyze phase. Here it is
determined that the input queue is filling too rapidly for
Audit, but that Measure and Process are not the
problems. The planner configures three potential
adaptations.

A1: Increase the capacity ratio limit, delaying the
generation of an audit trail capacity alert.

A2: Introduce a new storage buffer and alter Audit to
offload older records in its audit trail to the new
buffer.

A3: Change Audit to overwrite old records and
disable capacity alert within the same audit trail.

We return to these adaptations after introducing the
assurance cases for the security controls.

Figure 5. GSN Template for
Security Assurance Case

5. Creating Security Assurance Cases

Given that 800-53 security controls have a similar
structure as in Figure 1, we extend a basic GSN template
[10] to allow for dependency and achievement weight
expressions as shown in Figure 5. We instantiate the
security assurance cases from the template using an
approach found in [9]. The 800-53A directs the
expansion of the assurance case into subgoals, context
elements, and strategies for each control. Evidence can
be formulated by multiple means, such as testing, model
checking, and proof. We express the template in XML,
based on CertWare [3] but without the use of its display
facilities to allow for more coding flexibility.

In Figure 5, the root goal is the main security control
with attributes that coincide with the labeling and

control statement (Figures 1 and 2). The impact baseline
allocation is provided. The “provides” attribute holds
the provision set of state variables and conditions that
are part of the mechanisms needed for compliance with
the security control. This set flows through a
SupportedBy link that is augmented with a diamond to
indicate the security control source for the provision set.
In Figure 5, provision sets flow to the main control from
related controls and enhancements. The achievement
weight, 𝑎𝑎𝑤𝑤, is assigned to all goals. It holds the current
value calculated at the goal for assessing the satisficing
level of the main goal as discussed in Section 7.

Context nodes are connected through an
InContextOf link (hollow arrow). Context nodes hold
the assignment tailoring as discussed in Section 3.
Attached to subgoals, they may hold functional
requirement weights for how flexible they are to change.
The strategy connects the main goal by a SupportedBy
link (filled arrow) to the assurance case argument from
which the subgoals and solutions extend. Modules
represent low-level operational goals for argumentation
related directly to the verification and validation
processes employed. The triangles mean the node is
uninstantiated. The joined triangles mean the node is
both undeveloped and uninstantiated.

Figure 6 instantiates the security assurance case
template for AU-5(1) using 800-53A labels. The
subgoal Req1 is a functional requirement represented by
an invariant expressed in Linear Temporal Logic, as “it
is always the case that the audit trail size is less than the
capacity ratio limit associated with the record storage
capacity or an alert occurs.” The context nodes in the
instantiation have the tailoring for capRatioLimit and
the various alert parameters segregated in Figure 2. AU-
5 holds the capacity value in its provision set for AU-
5(1) that it acquires from its dependency on AU-4. AU-
5(1) assigns the value of capAlert which it provides to
AU-5. The modules M1-M6 are the operational goals
related to the process flow for SIMS in Figure 4.

6. Adapting Assurance Cases

To illustrate performing and evaluating an
adaptation on a security assurance case, we expand
Module M5 in Figure 6 to show the argument of
maintaining a satisfactory impact on the checkCapacity
process. Figure 7 shows the expanded module for M5,
which has the argument over the proof process of our
system. The proof process is modeled as operational
goals to maintain the invariant subgoal from Figure 6.

We assume the MAPE-K loop planner can describe
the needed changes to the XML that represents the
security assurance case and construct the adapted
assurance cases for A1 through A3 as described in
Section 4.

Page 7316

Figure 6. Security Assurance Case for AU-5(1)

Figure 7. Expanded checkCapacity Module

Adaptation A1 directly affects the assurance case
for AU-5(1) by changing the capRatioLimit tailored
value in the context node Context: AU-5(1)[3] of
Figure 6. Figure 8 reflects the change to the adapted
Context: AU-5(1)[3] node, where the tailored value
increases from 75% to 90%. It also includes the XML

for that context node where the adaptation increases
capRatioLimit as shown on line 31. The impact to the
achievement weight is shown on line 34.

Figure 8. AU-5(1) with Adaptation A1

Adaptation A2 introduces a new buffer into the
Audit component, but AU-5(1)’s assurance case has
no solution node to satisfy the new subgoal. Because
there exist security controls that refer to offloading
audit records to alternate storage, we assume the
planner can reuse the evidence that such logging is
sufficient to comply with operation goal G-6.

Figure 9 reflects the adapted operational goal G-6
from Figure 7 for adaptation A2. This adaptation
introduces a new branch for G-6 to be satisfied with an
argument using an external buffer to store older
records in the audit trail through G-6(Sub1), G-6(S1),

Page 7317

G-6(EVD1). The XML produced by the planner
reflects the argument additions. Line 31 shows a
reduced achievement weight to 0.5, reflecting the
potential for a negative impact on the goal. The goal
for the new supporting argument is added at line 34.

Figure 9. AU-5(1) with Adaptation A2

Figure 10 shows the affected operational goals G-
4 and G-6 from Figure 7 due to adaptation A3. The
adaptation affects G-6 and G-4 by substituting their
functions with overwriting older records and disabling
the capacity alert, respectively, to satisfy module M5’s
goal. The XML lines 31and 35 indicate the reduced
achievement weights to 0.2 that impact the goal
specified in line 12.

7. Goal Satisficing Level Determination
 using Achievement Weights

Maintaining the security control in the self-

adaptive system is a non-functional requirement.
Using concepts discussed in Section 2, we represent
each main security control as a softgoal and use the
subgoals and operational goals from its security
assurance case to create direct edges that form a
Softgoal Interdependency Graph (SIG) [18]. The SIG
results in a tree with only AND relationships. We

adapt the Soft Goal using Weight (SGW) approach
[12] to determine the satisficing level of the assurance
case. A modified vulnerability metric calculation [24]
provides the achievement weight of each softgoal.
Satisficing calculations can indicate the impact of an
adaptation on the security assurance case, including
propagation of required state values from other
security controls. The remainder of the section defines
the formulas and their adaptations from the original
approaches [12, 24]. We show how the achievement
weights and satisficing levels are calculated for
adaptations A1-A3 and the level of satisficing that
results from each.

Figure 10. AU-5(1) with Adaptation A3

Using the SGW approach [12], we define a
softgoal interdependency graph, SIGA, for the security
assurance case, A, as a tree of goals with the main
security goal, 𝑚𝑚𝐴𝐴, as the root. SIGA = (GA, DA) where

• GA = {𝑚𝑚𝐴𝐴} ∪ OA
• OA = set of subgoals and operational goals for

A that support the main security control, 𝑚𝑚𝐴𝐴
(root)

• For all goals 𝑔𝑔 ∈ GA, 𝑎𝑎𝑤𝑤(𝑔𝑔) is the
achievement weight calculated for that goal.

• DA = the set of edges (p, c), representing
dependencies among the parent (p) and child
(c) goals in SIGA.

The related security controls introduce inter-
dependencies that form a network of security controls.
As assurance cases, they only have knowledge of the
controls on which they depend. However, from the

Page 7318

MAPE-K loop perspective, the inter-dependencies can
be traversed as an adaptation is evaluated. A partial
dependency graph appears in Figure 11. The links
specify the provision sets passed from source
(diamond) to target control. This expression facilitates
the propagation impact evaluation of an adaptation.

The security control network (SCN) = (M, DM),
where

• M = {⋃ 𝑚𝑚SIG }, the set of all SIG root goals
• DM = set of weighted, directed edges with

provision sets representing dependencies
among security controls (Figure 11).

Figure 11. Sample Security Control Network

The community structure advocated by the
approach in [24] provides for a higher degree of
influence across the edges. In our representation, a
security control and its enhancements form a natural
community, as represented by the green box
surrounding AU-5 and AU-5(1) in Figure 11. To
calculate 𝑎𝑎𝑤𝑤(𝑔𝑔) for 𝑔𝑔 ∈ GA, we measure the
vulnerabilities of the community structure in the SCN.
The achievement weight is inversely related to
community vulnerability as described in [24].

Achievement weight is then defined for a SIGA as
 𝑎𝑎𝑤𝑤(𝑔𝑔) = 𝐼𝐼(𝑔𝑔), for leaf nodes, 𝑔𝑔 ∈ OA

 = 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝑎𝑎𝑤𝑤(𝑐𝑐)�, for all 𝑐𝑐 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔)
 for non-leaf nodes, 𝑔𝑔 ∈ GA

where 𝐼𝐼(𝑔𝑔) is the impact factor defined on the state
variables supporting the operational goals at the SIG
leaves. Currently, 𝐼𝐼(𝑔𝑔) must be determined by the
certifiers prior to deployment given potential changes
to state variables and the organization’s risk policy.

Table 1 provides sample values for 𝐼𝐼(𝑔𝑔) related to
the state variables affects by adaptations A1-A3. A
lower value has more negative impact on achievement
weights. In a community, the control enhancements
(e.g. AU-5(1)) propagate their achievement weights to
their community parent (e.g. AU-5) as one of its edges.

Table 1. Sample Impact Table
𝐼𝐼(𝑔𝑔) capRatio

-Limit
capacity auditTrail insertion-

Point
1 = 75 % = 100 Store

record
≤ #records

0.9 > 100

0.5 < 75% < 100 Offload
older
record

> #records

0.2 > 75% Overwrite
older
record

0 ≤ 0% or
≥ 100%

≤ 0 Drop
record

< 0

Determining the satisficing level of a main control
softgoal, such as AU-5, relies on the SCN. A partial
SCN is shown in Figure 11. The satisficing level,
𝑆𝑆𝑆𝑆(𝑚𝑚), of main goal 𝑚𝑚 is the average of achievement
weights that include 𝑎𝑎𝑤𝑤(𝑚𝑚) and the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚) as
defined by the direction that the provision sets are
passed. For example, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(AU-4) = {AU-2,
AU-5, AU-6, AU-7, AU-11, SI-4} from Figure 1, with
a subset shown in Figure 11. Thus,
 𝑆𝑆𝑆𝑆(𝑚𝑚) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤(𝑚𝑚)
 + ∑ 𝑎𝑎𝑤𝑤(𝑔𝑔)𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚))

A control enhancement, 𝑒𝑒, that has a neighbor
outside of its community can potentially have
𝑆𝑆𝐿𝐿(𝑒𝑒) ≠ 𝑎𝑎𝑤𝑤(𝑒𝑒). In this case, 𝑆𝑆𝐿𝐿(𝑒𝑒) has priority.
When security controls are mutually related with the
same provision, the algorithm cannot double count the
impact. To resolve this issue, our satisficing algorithm
preserves the last calculated achievement
weight, 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑔𝑔), and uses that achievement weight as
the neighbor’s achievement weight to stabilize the
network-based calculation. We assume that when
deployed, the SIMS security controls have an
achievement weight of 1. We show how adaptations
A1-A3 directly lower certain achievement weights and
propagate the impact through the SCN.

8. Adaptation Results

Table 2 shows the achievement weight changes for
AU-5’s partial community after applying adaptations
A1-A3 to the security assurance case for AU-5(1).
Though we focused on Module M5, other modules are
also affected by the adaptations and are reflected in
Table 2.

Page 7319

Table 2. 𝒂𝒂𝒘𝒘(𝒈𝒈) in AU-5 Community
Goal Base A1 A2 A3
Opp-G1 1 0.2 1 1
Opp-G2 1 1 1 1
Opp-G3 1 1 1 1
Opp-G4 1 1 1 0.2
Opp-G5 1 1 0.5 1
Opp-G6 1 1 0.5 0.2
M1 1 1 1 1
M2 1 1 0.5 0.2
M3 1 1 0.5 0.6
M4 1 1 1 1
M5 1 0.867 0.833 0.733
M6 1 0.867 0.833 0.733
G1 1 0.956 0.778 0.711
AU-5(1) 1 0.956 0.778 0.711
AU-5 1 0.956 0.778 0.711

Table 3 shows the satisficing level computed for
each main security control at the base (deployed) level
and after applying adaptations A1-A3. Note that
𝑆𝑆𝐿𝐿(AU-5(1)) = 𝑎𝑎𝑤𝑤(AU-5(1)) because the A1-A3 are
internal to that security control. AU-5 is affected by
A1-A3 because of its relationship with AU-5(1). The
effects of A1 and A2 only propagate to AU-5 since the
adapted provisions remain in the community.
Adaptation A3 impacts AU-5 and AU-4 because
capAlert is in the propagated provision set (Figure 11).

Table 3. Satisficing Levels
 Base A1 A2 A3

AU-2 1 1 1 1
AU-4 1 1 1 0.928
AU-5 1 0.985 0.926 0.903

AU-5(1) 1 0.956 0.778 0.711
AU-11 1 1 1 1
SI-12 1 1 1 1

9. Adaptation Evaluation

To evaluate the alignment of the adaptive system

behavior with the satisficing level determination in
Section 8, we deploy A1-A3 in the SIMS application.
We embed checkpoints as probes in the checkCapacity
module (M5 in Figures 6 and 7) and log the effects on
the audit trail. Figure 12 shows how the checkpoints
are placed to determine if (i) a record is generated
(CK1), (ii) the capRatioLimit is maintained (CK2),
(iii) the audit trail capacity is maintained with
capability to store a record within the auditTrail
(CK3), (iv) the alert is properly performed by capAlert
(CK4), (v) the proper insertionPoint can be found to
store the next record while maintaining the existing
auditTrail contents (CK5), and (vi) the record is stored
in auditTrail (CK6).

We ran tests with sufficient audit trail capacity and
insufficient audit trail capacity. With sufficient
capacity, adaptation A1 performs better than A2 and
A3. Allowing more records to flow into the audit trail

is a local change that impacts only a single state
variable and does not propagate outside the
community. Thus, A1 is not heavily relied on by the
assurance case argument or proof for all audit
functionality. A2 and A3 impact several operational
goals that are needed for the overall argument or proof.
Table 4 shows the results with insufficient capacity in
which the audit trail can hold only 50 records. Column
1 represents the base deployment (B), followed by the
adaptations when the number of records needed is 75
and 100. A1 does poorly with insufficient records. A2
performs the best but requires addition buffer storage.
A3 performs worse than A1 overall. A3 fails at CK4
by disabling capAlert and fails at CK5 when overwrite
functionality violates the requirement that the
insertion point maintains the records in the audit trail.

Figure 12. checkCapacity Checkpoints

Table 4. Performance Evaluation Results
 #Rec CK1 CK2 CK3 CK4 CK5 CK6
B 75 75 37 50 75 50 50
B 100 100 37 50 100 50 50
A1 75 75 43 50 75 50 50
A1 100 100 43 50 100 50 50
A2 75 75 74 50 75 75 75
A2 100 100 99 50 100 100 100
A3 75 75 74 50 37 37 75
A3 100 100 99 50 37 37 100

10. Limitations and Future Work

In this paper, we extend a security assurance case

template to specify goal achievement weights and
interdependencies among a network of related security
controls. The specification introduces the calculation
of a satisficing level of a security control for a potential
self-adaptation based on its internal changes and from
propagated satisficing levels in the network. We
implement the security assurance cases using XML to
perform the adaptations and measurements at runtime,
as demonstrated using a sample application with three
adaptations and embedded checkpoints. We discuss
the alignment of the adaptation failure rates with the
calculated satisficing levels. Using system domain
knowledge, experts can introduce satisficing level
thresholds to identify acceptable adaptations.

Scalability is a potential limitation to the approach
given the size of the security control network of related

Page 7320

controls for a large-scale system. The XML
representation can streamline the automated
assessment process when an adaptation is considered.
Though codifying the security assurance cases in
XML is potentially burdensome during design, once
codified, achievement weight and satisficing level
determination could be optimized. Evaluating
scalability will be part of future work, which will also
examine patterns of applications and adaptations to
determine the influence the presumed dependencies
actually have on related controls.

Acknowledgement. This material is based on
research sponsored by Air Force Research Laboratory
under agreement number FA8750-16-1-0248. The
U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of
the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of Air
Force Research Laboratory or the U.S. Government.

11. References

[1] M. Anisetti, et al., “A certification framework for
cloud-based services,” SAC, 2016.

[2] C. A. Ardagna, et al., "A Certification Technique for
Cloud Security Adaptation," IEEE Int’l. Conf. on Services
Computing, pp. 324-331, 2016.

[3] CertWare, https://nasa.github.io/CertWare/

[4] S. W. Cheng, D. Garlan, and B. R. Schmerl,
“Evaluating the Effectiveness of the Rainbow Self-Adaptive
System”, IEEE SEAMS, pp. 132-141, 2009.

[5] L. Chung, and B. A. Nixon, “Dealing with Non-
Functional Requirements: Three Experimental Studies of a
Process-Oriented Approach”, 17th Int’l Conf. on Software
Engineering, pp. 24-28, 1995.

[6] M. Felici, “Evolutionary Safety Analysis: Motivations
from the Air Traffic Management Domain”, Int’l Conf. on
Computer Safety, Reliability, and Security, Springer-Verlag,
pp. 208-221, 2005.

[7] M. Felici, “Modeling Safety Case Evolution –
Examples from the Air Traffic Management Domain”, Int’l
Wksp on Rapid Integration of Soft. Eng. Techniques,
Springer-Verlag, pp. 81-96, 2005.

[8] J. Goodenough, H.F. Lipson, and C.B. Weinstock,
“Arguing Security – Creating Security Assurance Cases”,
US Computer Emergency Readiness Team – Build Security
In, 2007.

[9] R. Hawkins, et al., “Weaving an Assurance Case from
Design: A Model-Based Approach,” IEEE 16th Int’l. Symp.
on High Assurance Systems Engineering, 2015.

[10] S. Jahan, A. Marshall, and R. Gamble, “Self-
Adaptation Strategies to Maintain Security Assurance
Cases”, 12th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, 2018

[11] T. Kelly and R. Weaver, “The Goal Structuring
Notation –A Safety Argument Notation,” Proc. of the
Dependable Systems and Networks Workshop on Assurance
Cases, 2004.

[12] N. Kobayashi, et al., “Quantitative Non-Functional
Requirements Evaluation Using Softgoal Weight”, J. of
Internet Services and Information Security, Institute of
Engineering – Polytechnic of Porto, 6:1(37-46), 2016.

[13] S. Kokaly, et al., “A model management approach for
assurance case reuse due to system evolution”, ACM/IEEE
19th Int’l Conf. on Model Driven Engineering Languages
and Systems, 2016.

[14] C. Le Goues, et al., “GenProg: A Generic Method for
Automatic Software Repair”, IEEE Trans. on Software
Engineering, 38:1(54-72), 2011.

[15] C. Lin, et al., “Measure Confidence of Assurance Cases
in Safety-Critical Domains”, Proc. of the 40th Int’l Conf. on
Soft. Eng., pp. 13-16, 2018.

[16] H.F. Lipson and C. B. Weinstock, “Evidence of
Assurance: Laying the Foundation for a Credible Security
Case”, available at https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/evidence-
assurance-laying-foundation-credible-security-case, 2008.

[17] A. Marshall, S. Jahan, and R. Gamble, “Toward
Evaluating the Impact of Self-adaptation on Security Control
Certification,” 13th Int’l Conf. on Soft. Eng. for Adaptive and
Self-Managing Systems, 2018.

[18] J. Mylopoulos, L. Chung, and B. Nixon, “Representing
and Using Nonfunctional Requirements: A Process-Oriented
Approach”, IEEE Trans. on Soft. Eng., 18:6(483-497), 1992.

[19] NIST, “Security and Privacy Controls for Federal
Information Systems”, NIST Special Publication 800-53,
Revision 4, 2013.

[20] NIST, Assessing Security and Privacy Controls in
Federal Information Systems and Organizations”, NIST
Special Publication 800-53A, Revision 4, 2014.

[21] R. Ross, et al. “Protecting Controlled Unclassified
Information in Nonfederal Information Systems and
Organization,” NIST SP800-171, 2015.
[22] J. Rushby, “The Interpretation and Evaluation of
Assurance Cases”, Technical Report SRI-CSL-15-01, SRI
International, 2015.

[23] C. Walter, et al., “Toward Predicting Secure
Environments for Wearable Devices”, Proc. of the 50th
Hawaii Int’l Conf. on System Sciences, 2017.

[24] D. Wei, X. Zhang, and S. Mahadevan, “Measuring the
vulnerability of community structure in complex networks”,
Reliability Engineering and System Safety, Vol. 174, pp. 41-
52, 2018.

Page 7321

