
Cyber Deception Architecture: Covert Attack Reconnaissance Using a Safe

SDN Approach

Toru Shimanaka

Fujitsu System Integration

Laboratories

shimanaka.tohru@jp.fujitsu.com

Ryusuke Masuoka

Fujitsu System Integration

Laboratories

masuoka.ryusuke@jp.fujitsu.com

Brian Hay

Hume Center

Virginia Tech

brianhay@vt.edu

Abstract

Significant valuable information can be

determined by observing attackers in action. These

observations provide significant insight into the

attacker’s TTPs and motivations. It is challenging to

continue observations when attackers breach

operational networks. This paper describes a

deception network methodology that redirects traffic

from the compromised Operational Network (O-Net)

to an identically configured Deception Network (D-

Net) minimizing any further compromise of

operational data and assets, while also allowing the

tactics, techniques, and procedures of the attacker to

be studied. To keep the adversary oblivious to the

transfer from the O-Net to the D-Net, we employ a

sophisticated and unique packet rewriting technique

using Software Defined Networking (SDN)

technology that builds on two other strategies. This

paper discusses the foundational strategies and

introduces a new strategy that improves behavior for

our described scenarios. We then provide some

preliminary test results and suggest topics for further

research.

1. Introduction

1.1. Background

An adversary who conducts Advanced Persistent

Threat (APT) cyber attacks is often a nation state or

an organization backed by significant resources and

with purposes beyond monetary gain (e.g. data theft,

establishing long-term presence, etc.). As such, their

attacks are targeted and very sophisticated. They are

determined to penetrate the target’s well-protected

networks and can maintain an undetected presence in

the network for a long period of time [1]. In addition,

they are likely to come back in, using alternate attack

vectors, even if some (or all) of their previous

activities are discovered and mitigated.

They frequently follow the Cyber Kill Chain

Methodology [2]; conducting an extensive survey of

their target organization and developing malware or

attack methodologies customized for the target’s

environment before they start their attacks. Then the

adversary uses spear phishing, watering holes, supply

chain attacks, insiders, and/or other techniques to

deliver their payload and build a beachhead inside the

target’s network. When successful, a malicious

backdoor program can be installed on one of the

compromised devices in the network to build a

remote operation environment connected to their

external C2 (Command and Control) server. The

adversary is then able to conduct reconnaissance on

the compromised network to find additional targets

and/or discover where sensitive information is stored,

often moving laterally within the target environment

to reach more strategic positions. During such time,

the adversary generally takes steps to avoid detection

and uses legitimate tools and commands as much as

possible so that it is difficult to discern the

adversary’s activities from legitimate ones.

Depending on the overall objective, they might

exfiltrate sensitive data and take actions to cover their

tracks, leave false flags and indicators, or maintain

their stealthy existence within the target network.

Many cybersecurity textbooks and industry best-

practices dictate that when a compromised PC is

discovered, it should be disconnected or quarantined

from the network to prevent further damage.

However, when dealing with APT attacks, this

procedure is not always the best approach, as it often

results in a loss of valuable information about the

attack and the adversary. Even if you identify and

stop the intrusion once, the adversary could learn

from their failure and be very likely to come back

again using more sophisticated tools and techniques

which may be more challenging to detect. After

detecting a suspected APT attack in progress, it can

be used as an opportunity to apply cyber deception [3,

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60166
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4] to obtain intelligence on the adversary, identify

their TTPs, understand their purposes and intentions,

and potentially, to keep them complacent with their

current TTPs and delay the development and use of

more sophisticated tools and tactics.

1.2. Challenges

Deploying cyber deception (vs. immediately

shutting down an intrusion and patching the system),

however, is a potentially dangerous reaction as we

are allowing the adversary to continue the attack. In

addition, the Cyber Deception campaign needs to be

conducted covertly so that the adversary does not

notice what is going on and alter behavior. When

operating a Deception Network, it is important to

both contain and observe the attack in real time and

do so safely and covertly. More specifically, we need

to accomplish the followings:

1) Switch communications between the

compromised host(s) and endpoints on the

Operational Network to corresponding

endpoints on the Deception Network without

any adverse side effects.

2) Maintain the session between the

compromised host(s) and the C2 server out on

the Internet through the process described in

(1) above.

3) Ensure that these defensive operations do not

provide the adversary with observable effects

that could alert them to the cyber deceptive

activities.

These are the challenges that this article and our

technical solution address.

1.3. Core Concept

The most important objective of all is that the

adversary does not notice that we are conducting a

cyber deception operation. To achieve this, we

deceive the adversary into believing they are

maintaining control of the compromised host on the

Operational Network (O-Net) from their command

and control (C2) server. In addition, it should also

appear to the adversary that they are communicating

with the other network nodes (PCs and servers) on

the O-Net, through the compromised host, without

any observable differences in behavior during the

changeover to the Deception Network (D-Net). This

deception effect is accomplished by ensuring the D-

Net is configured nearly identically to the O-Net.

(Figure 1). Once the adversary resides within the D-

Net, we can monitor all activity in a safe environment,

allowing normal operations to continue on the O-Net.

To achieve this effect, we employ Software Defined

Networking (SDN) technologies (See Sec. 2 for

details). Each O-Net subnet and the corresponding D-

Net subnet are connected through two OpenFlow

switches as shown in Figure 1. We give the D-Net the

same network configuration and each endpoint (e.g.

workstations, servers, and routers) uses the same IP

addresses, name, and roles/functions as the

corresponding endpoint on the O-Net. The primary

differences between the O-Net and the D-Net are (1)

the MAC addresses of endpoints and, (2) there is

only non-sensitive or fake information on the D-Net.

Information accessed or stolen from the D-Net does

not impact operations and may be selected or created

so as to deliberately misinform the adversary.

Whenever a compromise is detected on the O-Net,

we start rewriting the packet information flowing

between the compromised host and other endpoints

on the O-Net, resulting in each flow being directed

into the D-Net. As we do not know in advance which

host may become compromised, it is necessary to

Figure 1. Allow the adversary uninterrupted remote-control of the compromised PC from the C2 server

while transferring the network activities of the compromised PC from the O-Net to the D-Net

Page 7293

rewrite packets dynamically. For that purpose, we

picked Software Defined Networking (SDN)

technology, specifically OpenFlow-enabled switches

and a corresponding OpenFlow controller (Ryu).

Flow tables of OpenFlow are used extensively to

match and process packets to enable necessary packet

rewriting.

When rewriting packets using flow tables to deceive

the adversary, we must consider a few objectives.

Communications between the compromised hosts and

the endpoints on the O-Net need to be switched to

ones the corresponding D-Net hosts without any

noticeable effect. In addition, communication

between the compromised host and the C2 server

outside of the target’s organization needs to continue

uninterrupted. With the naive “match packet IP

address, then rewrite its MAC address” (strategy #1),

you can transfer UDP packets from the O-Net to the

D-Net, but TCP communication cannot be

established as the ARP information on the endpoint

on D-Net does not get updated. Since TCP

communication fails to establish, strategy #1 is not an

acceptable strategy.

With “match packet MAC address and ARP packets,

then rewrite its MAC information” (strategy #2), this

enables TCP communication within the O-Net subnet

and the D-Net subnet where the compromised host

resides. However, it cannot sustain communications

between the compromised host and both the C2

server and the other D-Net subnets at the same time.

This is because the packets to the C2 server and the

packets to the other D-Net subnets require them to be

sent through the different routers respectively.

To fully achieve our goals, strategy #3, which

employs both strategy #2 and the new “match packet

network IP address, then switch port accordingly”, is

utilized. This allows for TCP communications

between the compromised host and the O-Net to be

transferred to the D-Net without noticeable effects

and allows for TCP communications between the

compromised host and the C2 server to continue

uninterrupted. Table 1 summarizes the three

strategies.

1.4. Structure of this paper

The remainder of this paper is organized as follows.

Section 2 provides a brief introduction to SDN and

OpenFlow. Section 3 describes work related to this

research. Section 4 describes the architecture and

implementation of the proposed deception technique.

Section 5 describes evaluation results of the proposed

technique. Section 6 concludes the paper and

provides some avenues for future research.

Table 1 . Packet rewriting strategies

Strategy Description Comments

#1 match packet IP

address, then

rewrite its MAC

address

Naive, works only

for UDP packets

#2 match packet

MAC address

and ARP

packets, then

rewrite its MAC

information

Works for TCP

within the subnets,

but not for comm.

with both the C2

servers and other D-

Net subnets at the

same time

#3 strategy #2 +

match packet

network IP

address, then

switch port

accordingly

This solution works

for all internal and

external

communications

2. SDN and OpenFlow

Software Defined Networking (SDN) is an

architecture that dynamically controls the network

with software. OpenFlow [5] is one of the SDN

implementations, and its standardization is advanced

by the Open Network Foundation (ONF). OpenFlow

has the following features:

1) Separation of control plane and data plane

There are two functions for switches: to

communicate with other switches to determine

how network traffic should be forwarded; and to

then actually forward (or drop) packets

accordingly. The former occurs in the control

plane, and the latter in the data plane. For legacy

switches, those two functions happen in the same

place, namely within the switch. For OpenFlow,

those two planes are separated with the control

plane activities being moved to an external

OpenFlow Controller, which dictates traffic

forwarding rules to the switch in the form of flow

table entries. The data plane remains on the

switch and utilizes the controller-provided flow

tables to make the necessary forwarding decisions.

2) Flexible packet processing

Flow tables enable flexible packet processing.

The OpenFlow Controller adds, removes, or

modifies entries in the flow tables of its

associated switches. These rules can not only

cause the switch to forward or drop packets, but

also result in packets that are rewritten on the fly

or sent to a specific set of output ports. The

rule(s) applied to a given packet are selected

Page 7294

based on matching fields between the rule and

incoming packet.

In this research, we created an OpenFlow controller

using the Ryu [6] framework. In addition, we

implemented a REST API to configure the flow

tables using Northbound APIs of the OpenFlow

Controller. (Northbound APIs are APIs to control an

OpenFlow Controller from an application.) We used

the Open vSwitch [7] as our OpenFlow switch

implementation, although the techniques are not

specific to that particular switch and could be applied

to a variety of other OpenFlow enabled devices.

3. Related work

There have been several attempts to covertly

observe cyber attacks before. We describe four major

approaches and compare them with our approach:

3.1. Sandbox

A sandbox such as Cuckoo [8] is a type of malicious

software analysis system. It simulates physical

operating systems in a virtual environment. The

sandbox executes or opens potentially malicious

artifacts (ex. codes and documents) in an isolated

environment and observes the resulting behavior of

the system. This approach can be effective at

observing the types of activity applied in the

exploitation stage of the kill chain, but are less useful

if one wants to observe advanced post-compromise

activity such as lateral movement and practically no

use to understand adversary’s intentions. Sandboxes

do have limitations, which include anti-sandboxing

mechanisms in malware itself (e.g., timeouts before

malicious activity begins, detection of system

artifacts that are typically found in sandboxes, and

detection of human behavior or recent activity which

is often absent in sandboxes) [9]. Our focus is to

observe how a human adversary performs his/her

attack after a successful malware infection and has

established a beachhead.

3.2. Honeypot

A honeypot is a decoy computer system designed to

look like a legitimate system an adversary will want

to break into while, unbeknownst to the adversary,

they are being covertly observed [10]. A honeypot is

generally deployed on the perimeter of the

organization’s network such as an Internet facing

server. They can also be placed throughout an

organization’s network, but it requires the adversary

to be lured to the honeypot through the Operational

Network (O-Net), and it can be a dangerous and

high-risk process. We transfer the attack to the

Deception Network (D-Net), which is a type of high-

interaction honeypot within the organization as soon

as a compromise on one of endpoints is detected.

This does not require luring the adversary through the

O-Net and the adversary cannot access the O-Net

once the attack is contained within the D-Net.

3.3. Moving Target Defense (MTD)

Vincent E. Urias et al. proposed the Moving Target

Defense (MTD), whose aim is to increase attack

difficulty [11] by dynamically changing the targeted

network. This method differs from our purpose of

observing attacks safely and covertly. Though they

prepare the Deception Network (D-Net) with the

same configuration as the Operational Network (O-

Net) to contain the attack, they create the O-Net in a

fully realized virtual environment. Our architecture

consists of an O-Net consisting of actual physical

PCs, servers and network equipment and the D-Net

built in a virtual environment. Although we usually

use a D-Net in a virtual environment, the D-Net can

be physical as well.

3.4. Deception on Operational Networks

Recent cyber deception technologies are interwoven

directly into the Operational Networks (O-Nets) for

detection, diversion, resource depletion, uncertainty,

and intelligence purposes.

Reconnaissance Deception System (RDS) was

proposed in [12] to delay or thwart malicious

network reconnaissance. This is done through

providing the adversary a different virtual network

view at the assignment of a new DHCP lease by

virtually blowing up a single subnet into a multitude

of virtual subnets with hosts on the original subnet

scattered randomly among them along with

honeypots. The network topology can appear

different for the adversary every time the new virtual

network view is provided. This is confusing, but not

stealthy nor fit for our intelligence purpose. From the

technical perspective, its deception happens within

the scope of a single subnet and does not involve

more sophisticated packet rewriting strategies like

strategy #3 in Table 1.

Shadow Networks [13, 14] is a solution that

leverages the advantages of both low- and high-

interaction honeypots. It projects (connects through

virtual switches) many low-interaction honeypots

Page 7295

Figure 2. O-Net, D-Net, and Deception

Management Network

onto the O-Net. When an attacker probes into one of

low-interaction honeypots, a high-interaction

honeypot can be swapped in to take its place. When a

connection is attempted from the one of the

honeypots to a physical computer, a host emulator

can step in to take the place of the physical computer.

In this system, SDN is used to prevent collisions

between the duplicated IP addresses. To realize this,

Shadow Networks changes the destination to another

one within the O-Net (likely within the same subnet)

through relatively straight-forward packet

manipulations and does not involve more

sophisticated packet rewriting strategies like strategy

#3 in Table 1.

4. Architecture and Implementation

We propose a Cyber Deception Architecture

consisting of a network configuration and an attack

transferring mechanism to transfer network

communications from the O-Net to the D-Net, using

the OpenFlow technologies. In this section, we

describe its architecture, with a focus on how the

transfer mechanism is implemented by using

OpenFlow.

4.1. Network Configuration

Figure 2 shows an example network configuration

we use to illustrate our architecture in this paper. The

two primary components of our architecture are an

Operational Network (O-Net) and a Deception

Network (D-Net) configured to be identical to the O-

Net. For our research, we typically use a physical O-

Net and a virtual D-Net that uses a single physical

server. However, our proposed technique would be

extendable to any combination of a

physical/virtual/hybrid O-Net and a

physical/virtual/hybrid D-Net. To control the

operation, there is also a Deception Management

Network.

To avoid alerting the adversary that the attack has

been transferred from the O-Net to the D-Net, each

endpoint on the D-Net has the same IP address as the

corresponding endpoint on the O-Net.

The O-Net has an OpenFlow switch as an access

switch for each subnet. The O-Net connects to the

corresponding subnet on the D-Net through the

OpenFlow switch and the corresponding OpenFlow

switch on the D-Net. Initially, the flow tables of the

two OpenFlow switches are set to block any

communication between the O-Net and the D-net.

4.2. Attack Transfer Mechanism

The deception operation of the attack transfer is

performed by the Deception Controller on the

Deception Management Network, by controlling the

OpenFlow Controller, which, in turn, controls the

OpenFlow Switches. The Attack Transferring

Mechanism uses the steps shown in Figure 3 to

facilitate a safe and covert attack transfer. Each step

is described in detail in the following section.

0) Detect a Compromise. [This step is out of

scope of this paper] As an example, the Log

Search Engine detects a compromise on the O-

Net through an adversary’s access of a decoy file.

The Log Search Engine then sends a

compromise alert to the Deception Controller.

1) Prepare D-Net. Upon receiving the compromise

alert, the Deception Controller creates and

executes a script to (Step 2) instruct the

hypervisor to turn off the shadow (corresponding

endpoint on the D-Net) of the compromised PC,

and (Step 3) instruct the OpenFlow Controller

using the REST API to set the flow tables to the

OpenFlow Switches to transfer the

Figure 3. Attack Transfer Mechanism

Page 7296

communications of the compromised PC to the

D-Net.

2) Shutdown Shadow. When instructed by the

Deception Controller, the hypervisor turns off

the shadow of the compromised PC on the D-Net.

This step is necessary because the compromised

PC transferred to the D-Net, not its shadow,

interacts with other endpoints on the D-Net.

3) Create Flow Tables. When instructed by the

Deception Controller, the OpenFlow Controller

sets the flow tables customized for each

OpenFlow Switch to match, rewrite, and change

the output ports of, packets.

4) Manipulate Packets. The OpenFlow Switches

stores the flow tables provided by the OpenFlow

Controller and starts matching, rewriting, and

changing the output ports of, packets

accordingly.

After the completion of these steps, the OpenFlow

switches work in coordination to transfer the

communications between the compromised PC and

the O-Net to the ones between the compromised PC

and the D-Net while the session between the

compromised PC and the C2 server is maintained.

The following section describes the packet

manipulation by the flow tables used to achieve this.

4.3. Packet Manipulation by the Flow Tables

We implement our sophisticated and unique packet

rewriting strategy #3 (Table 1) using the flow tables.

Figure 4. Packet Manipulation by the Flow Tables

Page 7297

As a reminder, strategy #3 is “match packet MAC

address and ARP packets, then rewrite its MAC

information” and “match packet network IP address,

then switch port accordingly” combined. There are

three separate packet manipulations in the strategy #3.

A) Match ARP packets, then rewrite their MAC

information and change output ports

B) Match packets by their MAC addresses, then

rewrite the packet MAC addresses and change

output ports

C) Match packets by their network IP addresses,

then switch output ports accordingly

As mentioned in the Introduction, manipulation (A)

is necessary. ARP packets need to be rewritten to

ensure that TCP communications between the

compromised PC and the endpoint on the D-Net are

established. This is essential as ARP is used to

associate the MAC address with the IP address.

When an endpoint X on the D-Net attempts to send a

packet to the IP address of the compromised PC, X

uses an ARP request packet to determine the MAC

address for the compromised PC’s IP address. The

ARP request packet reaches the compromised PC,

but the ARP response packet will be sent to the

endpoint on the O-Net corresponding to X. Therefore,

X will never find the MAC address of the

compromised PC, failing to communicate to the

compromised PC. When the ARP packets, including

the ARP response packets from the compromised PC,

are rewritten as in (A), X can determine the MAC

address of the compromised PC.

With manipulation (B) along with (A), packets

to/from the compromised PC are sent to/from the

endpoints on the D-Net, thus the communications of

the compromised PC are successfully transferred

from the O-Net to the D-Net.

However, to ensure that communications of the

compromised PC beyond the subnet of the O-Net and

the corresponding D-Net subnet work correctly,

manipulation (C) is necessary. Without (C), the

communication between the compromised PC and

the C2 server, hosted outside the network and the

communication between the compromised PC and

other subnets could not be maintained simultaneously.

This is due to the fact that the router for the

communication of the compromised PC to/from the

C2 server and the router for the communications of

the compromised PC to/from the endpoints on the

other subnets on the D-Net are different. With (C),

the packet is sent out from the appropriate port

depending on the network IP address of the packet.

Figure 4 shows in detail how the mechanism

(deception architecture) works in the following

subsections. At the top of figure 4 are the subnets

(Network-2 of the O-Net and D-Net), PC-21, PC-22,

PC-23, and PC-24 on the subnet Network-2 of the O-

Net. Router-1, and PC-11 on the subnet Network-1 of

the O-Net. PC-22 is the compromised PC. There is a

C2 server operated by the adversary somewhere on

the Internet. The OpenFlow Switch-21 is the access

switch of the subnet Network-2. An endpoint on the

D-Net has the same name as the corresponding

endpoint on the O-Net. (We use ’ in this paragraph as

a substitute for “shadow” to represent the D-Net

version of an O-Net endpoint.) Therefore, there are

PC-21’, PC-23’, and PC-24’ on subnet Network-2’ of

the D-Net. Router-1’, and PC-11’ on the subnet

Network-1’ of the D-Net. The OpenFlow Switch-22

bridges the subnet Network-2 and the subnet

Network-2’. PC-22’, the shadow of the compromised

PC-22, has already been removed by the Deception

Controller and the hypervisor before this transfer

process is initiated.

4.3.1 ARP from the compromised PC

To make the compromised PC-22 logically belong

to the D-Net, ARP request and ARP reply packets

from the compromised PC are rewritten. The

destination MAC address in the Ether header and the

destination MAC address (Target Hardware Address)

of the ARP are rewritten from the MAC address of

the endpoint on the O-Net to the MAC address of its

shadow (the corresponding endpoint) on the D-Net.

The output port for the packet is changed to the one

for the OpenFlow Switch-22.

4.3.2 ARP to the compromised PC

Corresponding to Section 4.3.1, we also need to

control the ARP packets sent from the D-Net's

endpoint as if the compromised PC is on the same

subnet. The source MAC address in the Ether header

and the source MAC address (Sender Hardware

Figure 5. Rewriting an ARP Reply from PC-21

(shadow) to the compromised PC-22

Page 7298

Address) of the ARP (see Figure 5) addressed to the

compromised PC-22 from an endpoint on the D-Net

are rewritten to the MAC address of the

corresponding endpoint on the O-Net. The output

port for the packet is changed to the one for the

OpenFlow Switch-21.

4.3.3 Packet from the compromised PC

The ARP tables of the endpoints on the O-Net and

D-Net are bridged coherently through the activity

described in Section 4.3.1. To send a packet other

than ARP, the destination MAC address in the Ether

header of the packet is rewritten to the MAC address

of the shadow on the D-Net. The output port for the

packet is changed to the OpenFlow Switch-22. Since

the priority of the flow tables for this operation is

lower than the flow tables for rewriting the ARP

packet, this applies to packets other than ARP.

Broadcast packets from the compromised PC-22

must be sent to the endpoints on the D-Net instead of

those on the O-Net. To achieve this, we use the

OpenFlow Group function. Broadcast packets from

PC-22 are sent to the group that combines the

connection port of PC-22 and the output port of

OpenFlow Switch-22. With this configuration,

broadcast packets are sent only to the endpoints on

the D-Net.

4.3.4 Packet to the compromised PC

As discussed in Section 4.3.3, packets from the

endpoints on the D-Net PC need to be rewritten so

that the compromised PC appears to be on the same

subnet. The source MAC address in the Ether header

addressed to the compromised PC-22 from the

endpoint on the D-Net is rewritten to the MAC

address of the corresponding endpoint on the O-Net.

The output port for the packet is changed to the one

for OpenFlow Switch-21. In addition, we need to

forward broadcast packets from the endpoint on the

same subnet of the D-Net to the compromised PC-22.

By sending this packet to the group described in

Section 4.3.3, these broadcast packets reach only PC-

22 on the O-Net and no other endpoints on the O-Net.

4.3.5 Maintaining the connection with C2 server

To maintain the connection between the

compromised PC and the C2 server out on the

Internet, the packets going out to the C2 server (and

other endpoints outside of the corporate network)

need to be handled differently from the packets going

to the other subnets within the corporate network. For

this purpose, the destination MAC address of the

packet from the compromised PC-22 addressed to

another subnet within the corporate network is

rewritten to the MAC address of the Router-1

(shadow) on the D-Net and the output port is changed

to the one for OpenFlow Switch-22. The source

MAC address of Router-1 (shadow) in the Ether

header of the packets form another D-Net subnet is

rewritten to the MAC address of Router-1 of the O-

Net and the output port is changed to the one for

OpenFlow Switch-21.

No changes are required for the packets between

the compromised PC and the C2 server and all

communication between them continue uninterrupted

through Router-1.

5. Evaluation

5.1. Strategies #1 and #2 Tests

We confirmed the network behaviors of strategies

#1 and #2 in Table 1. For strategy #1, we used a

simple setup of three PCs connected to an OpenFlow

switch in a virtualized environment. The TCP

communication attempts between the compromised

PC and the endpoint on the D-Net were not

successfully established due to the lack of ARP

packet rewriting.

For strategy #2, we used a smaller version of the

environment as described in Subsection 5.2.

Communications between the compromised PC and

the endpoints on the D-Net were observed to be

working properly. Even though communications

between the compromised PC and the C2 server out

on the Internet were maintained, the communications

to the endpoints on other subnets of the O-Net failed

to be transferred to the corresponding subnets of the

D-Net. Instead, the latter communication was sent to

the subnets of the O-Net. This is not a desirable result

and introduces additional risk to the O-Net.

5.2. Test Methodology

To test our solution (strategy #3), two servers were

connected by a switch. One server provides a

virtualized environment for the O-Net (including

OpenFlow Switches) and the C2 server on the

Internet, and another server provides a virtualized

environment for the D-Net (including OpenFlow

Switches) and the Deception Management Network.

Both the O-Net and the D-Net have six subnets and

31 endpoints as shown in Figure 6.

For purposes of evaluation, attacks were conducted

on the compromised PC from the C2 server. We

Page 7299

observed from the adversary’s point of view (i.e.

from the C2 server) to try to identify any differences

detected before and after the attack transfer from the

O-Net to the D-Net. In addition, we watched other

negative triggers (like session termination) during the

transfer.

We automated the following post-compromise

activities selected from common attacks and let the

sequence run on the compromised PC from the C2

server's console before and after the transfer. The

script consists primarily of network-related

commands.

1) sysinfo: Get system and user information

2) idletime: Get the time since user’s last operation

3) getpid: Get the process ID of the current attack

process

4) ps: List current processes

5) post/windows/gather/enum_services: Get names

and configuration info of services

6) getproxy: Get information about proxy

7) post/windows/gather/credentials/enum_cred_sto

re: Get credentials of IE

8) post/multi/gather/thunderbird_creds: Get

credentials of Thunderbird

9) ls -lR C:\\Users\\: List the users

10) post/windows/gather/enum_ie: Get IE browser

history

11) post/windows/gather/dumplinks2: List files

recently used

12) post/windows/gather/enum_applications: List

installed applications

13) net user / net localgroup: Get information about

local accounts, groups and administrators

14) net share: Get shared folder information

15) show_mount: List currently attached mounts

16) ifconfig: Get network interface information

(MAC address, IP address)

17) arp: Get the ARP table

18) route: Get the routing table

19) netstat: Get connection information

20) net use: Get SMB remote connection

information

21) post/windows/recon/computer_browser_discove

ry: List neighbor computers

5.3. Evaluation result

From the adversarial perspective (both on the

compromised host and on the C2 server) the

automated attack script in Section 5.2 produced

identical results before and after the transfer from the

O-Net to the D-Net. The session between the

compromised PC and the C2 server remained

uninterrupted during and after the transfer. In

addition, no negative triggers were observed. Figure

7 shows the shortened output of the script.

6. Conclusion

[*] ifconfig

Interface 12
============
Name : vmxnet3 Ethernet Adapter
Hardware MAC : 00:50:56:a5:04:e7
MTU : 1500
IPv4 Address : 10.10.22.102
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::84f4:5832:cee4:1469
IPv6 Netmask : ffff:ffff:ffff:ffff::

[*] arp

ARP cache
=========

 IP address MAC address Interface
 ---------- ----------- ---------
 10.10.22.1 00:50:56:a5:72:73 12
 10.10.22.101 00:50:56:a5:61:6c 12
 10.10.22.103 00:50:56:a5:20:29 12
 10.10.22.104 00:50:56:a5:2c:a7 12
 10.10.22.201 00:50:56:a5:0d:69 12
 10.10.22.255 ff:ff:ff:ff:ff:ff 12
 224.0.0.22 00:00:00:00:00:00 1
 224.0.0.22 01:00:5e:00:00:16 12
 224.0.0.252 01:00:5e:00:00:fc 12
 239.255.255.250 00:00:00:00:00:00 1
 239.255.255.250 01:00:5e:7f:ff:fa 12
 255.255.255.255 ff:ff:ff:ff:ff:ff 12

 ~~~ 
[*] net use 
[+] Net use list 
 
Status  Local  Remote 
------  -----  ------ 
        D:     \\sh201\share 
OK      M:     \\file\share\topsecret 
 
 
[*] post/windows/recon/computer_browser_discovery 
[+] Found 4 systems. 
.... 
[*] Netdiscovery Results 
==================== 
 
  TYPE     IP            COMPUTER NAME  VERSION  COMMENT 
  ----     --            -------------  -------  ------- 
  0x11003  10.10.22.102  KG201          6.1       
  0x11003  10.10.22.104  YM201          6.3       
  0x31003  10.10.22.103  KI201          6.3       
  0x51003  10.10.22.101  UN201          6.1       
 
meterpreter >  

Figure 7. Logs collected by adversary 

Figure 6. Evaluation Environment 

Page 7300



Our objective is to contain and observe an APT-like 

attack safely and covertly so that we can monitor 

adversarial behavior in real time to understand their 

TTPs, purposes, and intentions. To achieve this 

objective, we propose creating and deploying a 

Deception Network (D-Net) with the same network 

topology and endpoints, using the same IP addresses 

of the corresponding endpoints on the Operational 

Network (O-Net). When we detect a compromise on 

the O-Net, we transfer the communications between 

the compromised PC and the O-Net endpoints to the 

ones between the compromised PC and the D-Net 

while keeping the communications between the 

compromised PC and the C2 server intact. That is 

achieved by using OpenFlow's flow tables for 

matching and rewriting packets. We have confirmed 

that we can contain the compromised PC without the 

adversary observing any difference before and after 

the cyber deception and that the session remained 

intact during and after the transfer. 

The focus of the paper, the attack transferring 

mechanism through SDN is important but is still just 

one piece of the whole Cyber Deception puzzle and it 

needs to be incorporated into the entire cyber 

deception operation. We have combined the 

mechanism with carefully crafted honey tokens on O-

Net and intelligence gathering in D-Net so that as 

soon as the attacker touches a honey token, it triggers 

the attack-transferring mechanism automatically, 

leading to endpoint and network intelligence 

gathering on D-Net. We tested this system in cyber 

war games and it worked seamlessly and successfully 

deceived the red team for many hours until the game 

ended. 

For future research and analysis, we will continue 

our empirical evaluations of the technology and work 

to develop scientific and objective evaluation 

methods, to continue to refine the technology. For 

technology refinement, we plan to implement and 

evaluate our cyber deception architecture for IPv6 

using our already implemented Northbound API for 

matching and rewriting the Neighbor Discovery 

Protocol (NDP) of IPv6, the ARP equivalent of IPv4.  

Potential flaws revealing the deception include 

network latency changes and server content 

continuity before and after the switch from the O-Net 

to the D-Net. In follow-on research, we will test 

network latency changes in various real and 

virtualized configurations. In more and more 

virtualized operational networks, however, network 

latency may not provide significant clues for the 

adversary to determine if he or she is in a deceptive 

environment or not. Server content continuity is an 

important consideration in balancing maintenance 

and other costs, and realism of the deceptive 

environment and would require innovative solutions, 

which is a focus on our follow-on research. 

 

7. References 

 
[1]  FireEye, “M-Trends 2018”, Available at 

https://www.fireeye.com/blog/threat-

research/2018/04/m-trends-2018.html 

[2]  E. M. Hutchins, M. J. Cloppert and R. M. Amin, 

“Intelligence-Driven Computer Network Defense 

Informed by Analysis of Adversary Campaigns and     

Intrusion Kill Chains”, Leading Issues in Information 

Warfare & Security Research, vol. 1, pp. 80, 2011.  

[3]  Kristin E. Heckman, et. al., “Cyber Denial, Deception 

and Counter Deception: A Framework for Supporting 

Active Cyber Defense,” Springer, 2015. 

[4]  Cliff Wang and Zhou Lu, "Cyber Deception: 

Overview and the Road Ahead," pp. 80-83, IEEE 

Security & Privacy, March/April 2018. 

[5]  Open vSwitch, “Open vSwitch: Production quality, 

multilayer open virtual switch.” Available at: 

http://www.openvswitch.org/ 

[6]  Nippon Telegraph and Telephone Corporation, “Ryu 

Network Operating System”, Available at: 

http://osrg.github.com/ryu 

[7]  Open Networking Foundation, “OpenFlow Switch 

Specification Version, 1.3.0,” June 25, 2012, 

Available at: 

https://www.opennetworking.org/images/stories/down

loads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.0.pdf 

[8]  Cuckoo Sandbox, Available at: 

http://www.cuckoosandbox.org/ 

[9]  Dilshan Keragala, “Detecting Malware and Sandbox 

Evasion Techniques”, SANS Institute InfoSec 

Reading Room Detecting Malware and Sandbox 

Evasion Techniques, The SANS Institute, 2016. 

[10] Brian Scottberg, William Yurcik, and David Doss, 

“Internet Honeypots: Protection or Entrapment?”, 

Proceedings of International Symposium on 

Technology and Society, August 2002, pp. 387-391. 

[11] Vincent E. Urias, William M.S. Stout, “Computer 

Network Deception as a Moving Target Defense”, 

2015 International Carnahan Conference on Security 

Technology (ICCST), September 2015. 

[12] "Deceiving Network Reconnaissance Using SDN-

Based Virtual Topologies", IEEE Transactions on 

Network and Service Management, Vol. 14, No. 4, 

December 2017, pp. 1098-1112. 

[13] Steven M. Silva, et. al., US Patent No. US9021092B2, 

2015. 

[14] Chad O. Hughes, et. al., US Patent No. US8978102B2, 

2015. 

Page 7301


