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Abstract 
 
Significant valuable information can be 

determined by observing attackers in action. These 

observations provide significant insight into the 

attacker’s TTPs and motivations. It is challenging to 

continue observations when attackers breach 

operational networks. This paper describes a 

deception network methodology that redirects traffic 

from the compromised Operational Network (O-Net) 

to an identically configured Deception Network (D-

Net) minimizing any further compromise of 

operational data and assets, while also allowing the 

tactics, techniques, and procedures of the attacker to 

be studied. To keep the adversary oblivious to the 

transfer from the O-Net to the D-Net, we employ a 

sophisticated and unique packet rewriting technique 

using Software Defined Networking (SDN) 

technology that builds on two other strategies. This 

paper discusses the foundational strategies and 

introduces a new strategy that improves behavior for 

our described scenarios. We then provide some 

preliminary test results and suggest topics for further 

research.  

 

 

1. Introduction  

 
1.1. Background 

 
An adversary who conducts Advanced Persistent 

Threat (APT) cyber attacks is often a nation state or 

an organization backed by significant resources and 

with purposes beyond monetary gain (e.g. data theft, 

establishing long-term presence, etc.). As such, their 

attacks are targeted and very sophisticated. They are 

determined to penetrate the target’s well-protected 

networks and can maintain an undetected presence in 

the network for a long period of time [1]. In addition, 

they are likely to come back in, using alternate attack 

vectors, even if some (or all) of their previous 

activities are discovered and mitigated.  

They frequently follow the Cyber Kill Chain 

Methodology [2]; conducting an extensive survey of 

their target organization and developing malware or 

attack methodologies customized for the target’s 

environment before they start their attacks. Then the 

adversary uses spear phishing, watering holes, supply 

chain attacks, insiders, and/or other techniques to 

deliver their payload and build a beachhead inside the 

target’s network. When successful, a malicious 

backdoor program can be installed on one of the 

compromised devices in the network to build a 

remote operation environment connected to their 

external C2 (Command and Control) server. The 

adversary is then able to conduct reconnaissance on 

the compromised network to find additional targets 

and/or discover where sensitive information is stored, 

often moving laterally within the target environment 

to reach more strategic positions. During such time, 

the adversary generally takes steps to avoid detection 

and uses legitimate tools and commands as much as 

possible so that it is difficult to discern the 

adversary’s activities from legitimate ones. 

Depending on the overall objective, they might 

exfiltrate sensitive data and take actions to cover their 

tracks, leave false flags and indicators, or maintain 

their stealthy existence within the target network.  

Many cybersecurity textbooks and industry best-

practices dictate that when a compromised PC is 

discovered, it should be disconnected or quarantined 

from the network to prevent further damage. 

However, when dealing with APT attacks, this 

procedure is not always the best approach, as it often 

results in a loss of valuable information about the 

attack and the adversary. Even if you identify and 

stop the intrusion once, the adversary could learn 

from their failure and be very likely to come back 

again using more sophisticated tools and techniques 

which may be more challenging to detect. After 

detecting a suspected APT attack in progress, it can 

be used as an opportunity to apply cyber deception [3, 
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4] to obtain intelligence on the adversary, identify 

their TTPs, understand their purposes and intentions, 

and potentially, to keep them complacent with their 

current TTPs and delay the development and use of 

more sophisticated tools and tactics.  

 
1.2. Challenges 

 
Deploying cyber deception (vs. immediately 

shutting down an intrusion and patching the system), 

however, is a potentially dangerous reaction as we 

are allowing the adversary to continue the attack. In 

addition, the Cyber Deception campaign needs to be 

conducted covertly so that the adversary does not 

notice what is going on and alter behavior. When 

operating a Deception Network, it is important to 

both contain and observe the attack in real time and 

do so safely and covertly. More specifically, we need 

to accomplish the followings: 

 

1) Switch communications between the 

compromised host(s) and endpoints on the 

Operational Network to corresponding 

endpoints on the Deception Network without 

any adverse side effects. 

2) Maintain the session between the 

compromised host(s) and the C2 server out on 

the Internet through the process described in 

(1) above. 

3) Ensure that these defensive operations do not 

provide the adversary with observable effects 

that could alert them to the cyber deceptive 

activities. 

 

These are the challenges that this article and our 

technical solution address.  

 
1.3. Core Concept 

 
The most important objective of all is that the 

adversary does not notice that we are conducting a 

cyber deception operation. To achieve this, we 

deceive the adversary into believing they are 

maintaining control of the compromised host on the 

Operational Network (O-Net) from their command 

and control (C2) server. In addition, it should also 

appear to the adversary that they are communicating 

with the other network nodes (PCs and servers) on 

the O-Net, through the compromised host, without 

any observable differences in behavior during the 

changeover to the Deception Network (D-Net). This 

deception effect is accomplished by ensuring the D-

Net is configured nearly identically to the O-Net. 

(Figure 1). Once the adversary resides within the D-

Net, we can monitor all activity in a safe environment, 

allowing normal operations to continue on the O-Net.  

To achieve this effect, we employ Software Defined 

Networking (SDN) technologies (See Sec. 2 for 

details). Each O-Net subnet and the corresponding D-

Net subnet are connected through two OpenFlow 

switches as shown in Figure 1. We give the D-Net the 

same network configuration and each endpoint (e.g. 

workstations, servers, and routers) uses the same IP 

addresses, name, and roles/functions as the 

corresponding endpoint on the O-Net. The primary 

differences between the O-Net and the D-Net are (1) 

the MAC addresses of endpoints and, (2) there is 

only non-sensitive or fake information on the D-Net. 

Information accessed or stolen from the D-Net does 

not impact operations and may be selected or created 

so as to deliberately misinform the adversary. 

Whenever a compromise is detected on the O-Net, 

we start rewriting the packet information flowing 

between the compromised host and other endpoints 

on the O-Net, resulting in each flow being directed 

into the D-Net. As we do not know in advance which 

host may become compromised, it is necessary to 

Figure 1. Allow the adversary uninterrupted remote-control of the compromised PC from the C2 server 

while transferring the network activities of the compromised PC from the O-Net to the D-Net  
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rewrite packets dynamically. For that purpose, we 

picked Software Defined Networking (SDN) 

technology, specifically OpenFlow-enabled switches 

and a corresponding OpenFlow controller (Ryu). 

Flow tables of OpenFlow are used extensively to 

match and process packets to enable necessary packet 

rewriting.  

When rewriting packets using flow tables to deceive 

the adversary, we must consider a few objectives. 

Communications between the compromised hosts and 

the endpoints on the O-Net need to be switched to 

ones the corresponding D-Net hosts without any 

noticeable effect. In addition, communication 

between the compromised host and the C2 server 

outside of the target’s organization needs to continue 

uninterrupted. With the naive “match packet IP 

address, then rewrite its MAC address” (strategy #1), 

you can transfer UDP packets from the O-Net to the 

D-Net, but TCP communication cannot be 

established as the ARP information on the endpoint 

on D-Net does not get updated. Since TCP 

communication fails to establish, strategy #1 is not an 

acceptable strategy.  

With “match packet MAC address and ARP packets, 

then rewrite its MAC information” (strategy #2), this 

enables TCP communication within the O-Net subnet 

and the D-Net subnet where the compromised host 

resides. However, it cannot sustain communications 

between the compromised host and both the C2 

server and the other D-Net subnets at the same time. 

This is because the packets to the C2 server and the 

packets to the other D-Net subnets require them to be 

sent through the different routers respectively.  

To fully achieve our goals, strategy #3, which 

employs both strategy #2 and the new “match packet 

network IP address, then switch port accordingly”, is 

utilized. This allows for TCP communications 

between  the compromised host and the O-Net to be 

transferred to the D-Net without noticeable effects 

and allows for TCP communications between the 

compromised host and the C2 server to continue 

uninterrupted. Table 1 summarizes the three 

strategies. 

 
1.4. Structure of this paper 

 
The remainder of this paper is organized as follows. 

Section 2 provides a brief introduction to SDN and 

OpenFlow. Section 3 describes work related to this 

research. Section 4 describes the architecture and 

implementation of the proposed deception technique. 

Section 5 describes evaluation results of the proposed 

technique. Section 6 concludes the paper and 

provides some avenues for future research. 

 

Table 1 . Packet rewriting strategies 

Strategy Description Comments 

#1 match packet IP 

address, then 

rewrite its MAC 

address 

Naive, works only 

for UDP packets 

#2 match packet 

MAC address 

and ARP 

packets, then 

rewrite its MAC 

information 

Works for TCP 

within the subnets, 

but not for comm. 

with both the C2 

servers and other D-

Net subnets at the 

same time 

#3 strategy #2 + 

match packet 

network IP 

address, then 

switch port 

accordingly 

This solution works 

for all internal and 

external 

communications  

 

2. SDN and OpenFlow 

 
Software Defined Networking (SDN) is an 

architecture that dynamically controls the network 

with software. OpenFlow [5] is one of the SDN 

implementations, and its standardization is advanced 

by the Open Network Foundation (ONF). OpenFlow 

has the following features: 

 

1) Separation of control plane and data plane 

There are two functions for switches: to 

communicate with other switches to determine 

how network traffic should be forwarded; and to 

then actually forward (or drop) packets 

accordingly. The former occurs in the control 

plane, and the latter in the data plane. For legacy 

switches, those two functions happen in the same 

place, namely within the switch. For OpenFlow, 

those two planes are separated with the control 

plane activities being moved to an external 

OpenFlow Controller, which dictates traffic 

forwarding rules to the switch in the form of flow 

table entries. The data plane remains on the 

switch and utilizes the controller-provided flow 

tables to make the necessary forwarding decisions.  

2) Flexible packet processing  

Flow tables enable flexible packet processing. 

The OpenFlow Controller adds, removes, or 

modifies entries in the flow tables of its 

associated switches. These rules can not only 

cause the switch to forward or drop packets, but 

also result in packets that are rewritten on the fly 

or sent to a specific set of output ports. The 

rule(s) applied to a given packet are selected 
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based on matching fields between the rule and 

incoming packet.  

 

In this research, we created an OpenFlow controller 

using the Ryu [6] framework. In addition, we 

implemented a REST API to configure the flow 

tables using Northbound APIs of the OpenFlow 

Controller. (Northbound APIs are APIs to control an 

OpenFlow Controller from an application.) We used 

the Open vSwitch [7] as our OpenFlow switch 

implementation, although the techniques are not 

specific to that particular switch and could be applied 

to a variety of other OpenFlow enabled devices. 

 

3. Related work 

 
There have been several attempts to covertly 

observe cyber attacks before. We describe four major 

approaches and compare them with our approach: 

 
3.1. Sandbox 

 
A sandbox such as Cuckoo [8] is a type of malicious 

software analysis system. It simulates physical 

operating systems in a virtual environment. The 

sandbox executes or opens potentially malicious 

artifacts (ex. codes and documents) in an isolated 

environment and observes the resulting behavior of 

the system. This approach can be effective at 

observing the types of activity applied in the 

exploitation stage of the kill chain, but are less useful 

if one wants to observe advanced post-compromise 

activity such as lateral movement and practically no 

use to understand adversary’s intentions. Sandboxes 

do have limitations, which include anti-sandboxing 

mechanisms in malware itself (e.g., timeouts before 

malicious activity begins, detection of system 

artifacts that are typically found in sandboxes, and 

detection of human behavior or recent activity which 

is often absent in sandboxes) [9]. Our focus is to 

observe how a human adversary performs his/her 

attack after a successful malware infection and has 

established a beachhead.  

 
3.2. Honeypot 

 
A honeypot is a decoy computer system designed to 

look like a legitimate system an adversary will want 

to break into while, unbeknownst to the adversary, 

they are being covertly observed [10]. A honeypot is 

generally deployed on the perimeter of the 

organization’s network such as an Internet facing 

server. They can also be placed throughout an 

organization’s network, but it requires the adversary 

to be lured to the honeypot through the Operational 

Network (O-Net), and it can be a dangerous and 

high-risk process. We transfer the attack to the 

Deception Network (D-Net), which is a type of high-

interaction honeypot within the organization as soon 

as a compromise on one of endpoints is detected. 

This does not require luring the adversary through the 

O-Net and the adversary cannot access the O-Net 

once the attack is contained within the D-Net.  

 
3.3. Moving Target Defense (MTD) 

 
Vincent E. Urias et al. proposed the Moving Target 

Defense (MTD), whose aim is to increase attack 

difficulty [11] by dynamically changing the targeted 

network. This method differs from our purpose of 

observing attacks safely and covertly. Though they 

prepare the Deception Network (D-Net) with the 

same configuration as the Operational Network (O-

Net) to contain the attack, they create the O-Net in a 

fully realized virtual environment. Our architecture 

consists of an O-Net consisting of actual physical 

PCs, servers and network equipment and the D-Net 

built in a virtual environment. Although we usually 

use a D-Net in a virtual environment, the D-Net can 

be physical as well. 

 
3.4. Deception on Operational Networks 

 
Recent cyber deception technologies are interwoven 

directly into the Operational Networks (O-Nets) for 

detection, diversion, resource depletion, uncertainty, 

and intelligence purposes.  

Reconnaissance Deception System (RDS) was 

proposed in [12] to delay or thwart malicious 

network reconnaissance. This is done through 

providing the adversary a different virtual network 

view at the assignment of a new DHCP lease by 

virtually blowing up a single subnet into a multitude 

of virtual subnets with hosts on the original subnet 

scattered randomly among them along with 

honeypots. The network topology can appear 

different for the adversary every time the new virtual 

network view is provided. This is confusing, but not 

stealthy nor fit for our intelligence purpose. From the 

technical perspective, its deception happens within 

the scope of a single subnet and does not involve 

more sophisticated packet rewriting strategies like 

strategy #3 in Table 1. 

Shadow Networks [13, 14] is a solution that 

leverages the advantages of both low- and high-

interaction honeypots. It projects (connects through 

virtual switches) many low-interaction honeypots 

Page 7295



Figure 2. O-Net, D-Net, and Deception 

Management Network 

onto the O-Net. When an attacker probes into one of 

low-interaction honeypots, a high-interaction 

honeypot can be swapped in to take its place. When a 

connection is attempted from the one of the 

honeypots to a physical computer, a host emulator 

can step in to take the place of the physical computer. 

In this system, SDN is used to prevent collisions 

between the duplicated IP addresses. To realize this, 

Shadow Networks changes the destination to another 

one within the O-Net (likely within the same subnet) 

through relatively straight-forward packet 

manipulations and does not involve more 

sophisticated packet rewriting strategies like strategy 

#3 in Table 1. 

 

4. Architecture and Implementation 

 
We propose a Cyber Deception Architecture 

consisting of a network configuration and an attack 

transferring mechanism to transfer network 

communications from the O-Net to the D-Net, using 

the OpenFlow technologies. In this section, we 

describe its architecture, with a focus on how the 

transfer mechanism is implemented by using 

OpenFlow.  

 
4.1. Network Configuration  
 

Figure 2 shows an example network configuration 

we use to illustrate our architecture in this paper. The 

two primary components of our architecture are an 

Operational Network (O-Net) and a Deception 

Network (D-Net) configured to be identical to the O-

Net. For our research, we typically use a physical O-

Net and a virtual D-Net that uses a single physical 

server. However, our proposed technique would be 

extendable to any combination of a 

physical/virtual/hybrid O-Net and a 

physical/virtual/hybrid D-Net. To control the 

operation, there is also a Deception Management 

Network. 

To avoid alerting the adversary that the attack has 

been transferred from the O-Net to the D-Net, each 

endpoint on the D-Net has the same IP address as the 

corresponding endpoint on the O-Net.  

The O-Net has an OpenFlow switch as an access 

switch for each subnet. The O-Net connects to the 

corresponding subnet on the D-Net through the 

OpenFlow switch and the corresponding OpenFlow 

switch on the D-Net. Initially, the flow tables of the 

two OpenFlow switches are set to block any 

communication between the O-Net and the D-net.  

 
4.2. Attack Transfer Mechanism 

 
The deception operation of the attack transfer is 

performed by the Deception Controller on the 

Deception Management Network, by controlling the 

OpenFlow Controller, which, in turn, controls the 

OpenFlow Switches. The Attack Transferring 

Mechanism uses the steps shown in Figure 3 to 

facilitate a safe and covert attack transfer. Each step 

is described in detail in the following section. 

 

0) Detect a Compromise. [This step is out of 

scope of this paper] As an example, the Log 

Search Engine detects a compromise on the O-

Net through an adversary’s access of a decoy file. 

The Log Search Engine then sends a 

compromise alert to the Deception Controller.  

1) Prepare D-Net. Upon receiving the compromise 

alert, the Deception Controller creates and 

executes a script to (Step 2) instruct the 

hypervisor to turn off the shadow (corresponding 

endpoint on the D-Net) of the compromised PC, 

and (Step 3) instruct the OpenFlow Controller 

using the REST API to set the flow tables to the 

OpenFlow Switches to transfer the 

Figure 3. Attack Transfer Mechanism 
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communications of the compromised PC to the 

D-Net.  

2) Shutdown Shadow. When instructed by the 

Deception Controller, the hypervisor turns off 

the shadow of the compromised PC on the D-Net. 

This step is necessary because the compromised 

PC transferred to the D-Net, not its shadow, 

interacts with other endpoints on the D-Net. 

3) Create Flow Tables. When instructed by the 

Deception Controller, the OpenFlow Controller 

sets the flow tables customized for each 

OpenFlow Switch to match, rewrite, and change 

the output ports of, packets.  

4) Manipulate Packets. The OpenFlow Switches 

stores the flow tables provided by the OpenFlow 

Controller and starts matching, rewriting, and 

changing the output ports of, packets 

accordingly.  

 

After the completion of these steps, the OpenFlow 

switches work in coordination to transfer the 

communications between the compromised PC and 

the O-Net to the ones between the compromised PC 

and the D-Net while the session between the 

compromised PC and the C2 server is maintained. 

The following section describes the packet 

manipulation by the flow tables used to achieve this. 

 
4.3. Packet Manipulation by the Flow Tables  

 
We implement our sophisticated and unique packet 

rewriting strategy #3 (Table 1) using the flow tables. 

Figure 4. Packet Manipulation by the Flow Tables 
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As a reminder, strategy #3 is “match packet MAC 

address and ARP packets, then rewrite its MAC 

information” and “match packet network IP address, 

then switch port accordingly” combined. There are 

three separate packet manipulations in the strategy #3.  

  

A) Match ARP packets, then rewrite their MAC 

information and change output ports 

B) Match packets by their MAC addresses, then 

rewrite the packet MAC addresses and change 

output ports 

C) Match packets by their network IP addresses, 

then switch output ports accordingly  

 

As mentioned in the Introduction, manipulation (A) 

is necessary. ARP packets need to be rewritten to 

ensure that TCP communications between the 

compromised PC and the endpoint on the D-Net are 

established. This is essential as ARP is used to 

associate the MAC address with the IP address. 

When an endpoint X on the D-Net attempts to send a 

packet to the IP address of the compromised PC, X 

uses an ARP request packet to determine the MAC 

address for the compromised PC’s IP address. The 

ARP request packet reaches the compromised PC, 

but the ARP response packet will be sent to the 

endpoint on the O-Net corresponding to X. Therefore, 

X will never find the MAC address of the 

compromised PC, failing to communicate to the 

compromised PC. When the ARP packets, including 

the ARP response packets from the compromised PC, 

are rewritten as in (A), X can determine the MAC 

address of the compromised PC.  

With manipulation (B) along with (A), packets 

to/from the compromised PC are sent to/from the 

endpoints on the D-Net, thus the communications of 

the compromised PC are successfully transferred 

from the O-Net to the D-Net.  

However, to ensure that communications of the 

compromised PC beyond the subnet of the O-Net and 

the corresponding D-Net subnet work correctly, 

manipulation (C) is necessary. Without (C), the 

communication between the compromised PC and 

the C2 server, hosted outside the network and the 

communication between the compromised PC and 

other subnets could not be maintained simultaneously. 

This is due to the fact that the router for the 

communication of the compromised PC to/from the 

C2 server and the router for the communications of 

the compromised PC to/from the endpoints on the 

other subnets on the D-Net are different. With (C), 

the packet is sent out from the appropriate port 

depending on the network IP address of the packet.  

Figure 4 shows in detail how the mechanism 

(deception architecture) works in the following 

subsections. At the top of figure 4 are the subnets 

(Network-2 of the O-Net and D-Net), PC-21, PC-22, 

PC-23, and PC-24 on the subnet Network-2 of the O-

Net. Router-1, and PC-11 on the subnet Network-1 of 

the O-Net. PC-22 is the compromised PC. There is a 

C2 server operated by the adversary somewhere on 

the Internet. The OpenFlow Switch-21 is the access 

switch of the subnet Network-2. An endpoint on the 

D-Net has the same name as the corresponding 

endpoint on the O-Net. (We use ’ in this paragraph as 

a substitute for “shadow” to represent the D-Net 

version of an O-Net endpoint.) Therefore, there are 

PC-21’, PC-23’, and PC-24’ on subnet Network-2’ of 

the D-Net. Router-1’, and PC-11’ on the subnet 

Network-1’ of the D-Net. The OpenFlow Switch-22 

bridges the subnet Network-2 and the subnet 

Network-2’. PC-22’, the shadow of the compromised 

PC-22, has already been removed by the Deception 

Controller and the hypervisor before this transfer 

process is initiated. 

 
4.3.1 ARP from the compromised PC 

 
To make the compromised PC-22 logically belong 

to the D-Net, ARP request and ARP reply packets 

from the compromised PC are rewritten. The 

destination MAC address in the Ether header and the 

destination MAC address (Target Hardware Address) 

of the ARP are rewritten from the MAC address of 

the endpoint on the O-Net to the MAC address of its 

shadow (the corresponding endpoint) on the D-Net. 

The output port for the packet is changed to the one 

for the OpenFlow Switch-22. 

 
4.3.2 ARP to the compromised PC 

 
Corresponding to Section 4.3.1, we also need to 

control the ARP packets sent from the D-Net's 

endpoint as if the compromised PC is on the same 

subnet. The source MAC address in the Ether header 

and the source MAC address (Sender Hardware 

Figure 5. Rewriting an ARP Reply from PC-21 

(shadow) to the compromised PC-22 
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Address) of the ARP (see Figure 5) addressed to the 

compromised PC-22 from an endpoint on the D-Net 

are rewritten to the MAC address of the 

corresponding endpoint on the O-Net. The output 

port for the packet is changed to the one for the 

OpenFlow Switch-21. 
 

4.3.3 Packet from the compromised PC 

 
The ARP tables of the endpoints on the O-Net and 

D-Net are bridged coherently through the activity 

described in Section 4.3.1. To send a packet other 

than ARP, the destination MAC address in the Ether 

header of the packet is rewritten to the MAC address 

of the shadow on the D-Net. The output port for the 

packet is changed to the OpenFlow Switch-22. Since 

the priority of the flow tables for this operation is 

lower than the flow tables for rewriting the ARP 

packet, this applies to packets other than ARP. 

Broadcast packets from the compromised PC-22 

must be sent to the endpoints on the D-Net instead of 

those on the O-Net. To achieve this, we use the 

OpenFlow Group function. Broadcast packets from 

PC-22 are sent to the group that combines the 

connection port of PC-22 and the output port of 

OpenFlow Switch-22. With this configuration, 

broadcast packets are sent only to the endpoints on 

the D-Net. 

 
4.3.4 Packet to the compromised PC 

 
As discussed in Section 4.3.3, packets from the 

endpoints on the D-Net PC need to be rewritten so 

that the compromised PC appears to be on the same 

subnet. The source MAC address in the Ether header 

addressed to the compromised PC-22 from the 

endpoint on the D-Net is rewritten to the MAC 

address of the corresponding endpoint on the O-Net. 

The output port for the packet is changed to the one 

for OpenFlow Switch-21. In addition, we need to 

forward broadcast packets from the endpoint on the 

same subnet of the D-Net to the compromised PC-22. 

By sending this packet to the group described in 

Section 4.3.3, these broadcast packets reach only PC-

22 on the O-Net and no other endpoints on the O-Net. 

 
4.3.5 Maintaining the connection with C2 server 

 
To maintain the connection between the 

compromised PC and the C2 server out on the 

Internet, the packets going out to the C2 server (and 

other endpoints outside of the corporate network) 

need to be handled differently from the packets going 

to the other subnets within the corporate network. For 

this purpose, the destination MAC address of the 

packet from the compromised PC-22 addressed to 

another subnet within the corporate network is 

rewritten to the MAC address of the Router-1 

(shadow) on the D-Net and the output port is changed 

to the one for OpenFlow Switch-22. The source 

MAC address of Router-1 (shadow) in the Ether 

header of the packets form another D-Net subnet is 

rewritten to the MAC address of Router-1 of the O-

Net and the output port is changed to the one for 

OpenFlow Switch-21.  

No changes are required for the packets between 

the compromised PC and the C2 server and all 

communication between them continue uninterrupted 

through Router-1.  

 

5. Evaluation 

 
5.1. Strategies #1 and #2 Tests 

 
We confirmed the network behaviors of strategies 

#1 and #2 in Table 1. For strategy #1, we used a 

simple setup of three PCs connected to an OpenFlow 

switch in a virtualized environment. The TCP 

communication attempts between the compromised 

PC and the endpoint on the D-Net were not 

successfully established due to the lack of ARP 

packet rewriting.  

For strategy #2, we used a smaller version of the 

environment as described in Subsection 5.2. 

Communications between the compromised PC and 

the endpoints on the D-Net were observed to be 

working properly. Even though communications 

between the compromised PC and the C2 server out 

on the Internet were maintained, the communications 

to the endpoints on other subnets of the O-Net failed 

to be transferred to the corresponding subnets of the 

D-Net. Instead, the latter communication was sent to 

the subnets of the O-Net. This is not a desirable result 

and introduces additional risk to the O-Net. 

 
5.2. Test Methodology 

 
To test our solution (strategy #3), two servers were 

connected by a switch. One server provides a 

virtualized environment for the O-Net (including 

OpenFlow Switches) and the C2 server on the 

Internet, and another server provides a virtualized 

environment for the D-Net (including OpenFlow 

Switches) and the Deception Management Network. 

Both the O-Net and the D-Net have six subnets and 

31 endpoints as shown in Figure 6. 

For purposes of evaluation, attacks were conducted 

on the compromised PC from the C2 server. We 
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observed from the adversary’s point of view (i.e. 

from the C2 server) to try to identify any differences 

detected before and after the attack transfer from the 

O-Net to the D-Net. In addition, we watched other 

negative triggers (like session termination) during the 

transfer.  

We automated the following post-compromise 

activities selected from common attacks and let the 

sequence run on the compromised PC from the C2 

server's console before and after the transfer. The 

script consists primarily of network-related 

commands. 

 

1) sysinfo: Get system and user information 

2) idletime: Get the time since user’s last operation 

3) getpid: Get the process ID of the current attack 

process 

4) ps: List current processes 

5) post/windows/gather/enum_services: Get names 

and configuration info of services 

6) getproxy: Get information about proxy 

7) post/windows/gather/credentials/enum_cred_sto

re: Get credentials of IE 

8) post/multi/gather/thunderbird_creds: Get 

credentials of Thunderbird 

9) ls -lR C:\\Users\\: List the users 

10) post/windows/gather/enum_ie: Get IE browser 

history 

11) post/windows/gather/dumplinks2: List files 

recently used 

12) post/windows/gather/enum_applications: List 

installed applications 

13) net user / net localgroup: Get information about 

local accounts, groups and administrators 

14) net share: Get shared folder information 

15) show_mount: List currently attached mounts 

16) ifconfig: Get network interface information 

(MAC address, IP address) 

17) arp: Get the ARP table 

18) route: Get the routing table 

19) netstat: Get connection information 

20) net use: Get SMB remote connection 

information 

21) post/windows/recon/computer_browser_discove

ry: List neighbor computers 

 
5.3. Evaluation result 

 
From the adversarial perspective (both on the 

compromised host and on the C2 server) the 

automated attack script in Section 5.2 produced 

identical results before and after the transfer from the 

O-Net to the D-Net. The session between the 

compromised PC and the C2 server remained 

uninterrupted during and after the transfer. In 

addition, no negative triggers were observed. Figure 

7 shows the shortened output of the script. 

 

6. Conclusion 

 

[*] ifconfig 
 
Interface 12 
============ 
Name         : vmxnet3 Ethernet Adapter 
Hardware MAC : 00:50:56:a5:04:e7 
MTU          : 1500 
IPv4 Address : 10.10.22.102 
IPv4 Netmask : 255.255.255.0 
IPv6 Address : fe80::84f4:5832:cee4:1469 
IPv6 Netmask : ffff:ffff:ffff:ffff:: 
 
[*] arp 
 
ARP cache 
========= 
 
    IP address       MAC address        Interface 
    ----------       -----------        --------- 
    10.10.22.1       00:50:56:a5:72:73  12 
    10.10.22.101     00:50:56:a5:61:6c  12 
    10.10.22.103     00:50:56:a5:20:29  12 
    10.10.22.104     00:50:56:a5:2c:a7  12 
    10.10.22.201     00:50:56:a5:0d:69  12 
    10.10.22.255     ff:ff:ff:ff:ff:ff  12 
    224.0.0.22       00:00:00:00:00:00  1 
    224.0.0.22       01:00:5e:00:00:16  12 
    224.0.0.252      01:00:5e:00:00:fc  12 
    239.255.255.250  00:00:00:00:00:00  1 
    239.255.255.250  01:00:5e:7f:ff:fa  12 
    255.255.255.255  ff:ff:ff:ff:ff:ff  12 
 
 ~~~ 
[*] net use 
[+] Net use list 
 
Status  Local  Remote 
------  -----  ------ 
        D:     \\sh201\share 
OK      M:     \\file\share\topsecret 
 
 
[*] post/windows/recon/computer_browser_discovery 
[+] Found 4 systems. 
.... 
[*] Netdiscovery Results 
==================== 
 
  TYPE     IP            COMPUTER NAME  VERSION  COMMENT 
  ----     --            -------------  -------  ------- 
  0x11003  10.10.22.102  KG201          6.1       
  0x11003  10.10.22.104  YM201          6.3       
  0x31003  10.10.22.103  KI201          6.3       
  0x51003  10.10.22.101  UN201          6.1       
 
meterpreter >  

Figure 7. Logs collected by adversary 

Figure 6. Evaluation Environment 
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Our objective is to contain and observe an APT-like 

attack safely and covertly so that we can monitor 

adversarial behavior in real time to understand their 

TTPs, purposes, and intentions. To achieve this 

objective, we propose creating and deploying a 

Deception Network (D-Net) with the same network 

topology and endpoints, using the same IP addresses 

of the corresponding endpoints on the Operational 

Network (O-Net). When we detect a compromise on 

the O-Net, we transfer the communications between 

the compromised PC and the O-Net endpoints to the 

ones between the compromised PC and the D-Net 

while keeping the communications between the 

compromised PC and the C2 server intact. That is 

achieved by using OpenFlow's flow tables for 

matching and rewriting packets. We have confirmed 

that we can contain the compromised PC without the 

adversary observing any difference before and after 

the cyber deception and that the session remained 

intact during and after the transfer. 

The focus of the paper, the attack transferring 

mechanism through SDN is important but is still just 

one piece of the whole Cyber Deception puzzle and it 

needs to be incorporated into the entire cyber 

deception operation. We have combined the 

mechanism with carefully crafted honey tokens on O-

Net and intelligence gathering in D-Net so that as 

soon as the attacker touches a honey token, it triggers 

the attack-transferring mechanism automatically, 

leading to endpoint and network intelligence 

gathering on D-Net. We tested this system in cyber 

war games and it worked seamlessly and successfully 

deceived the red team for many hours until the game 

ended. 

For future research and analysis, we will continue 

our empirical evaluations of the technology and work 

to develop scientific and objective evaluation 

methods, to continue to refine the technology. For 

technology refinement, we plan to implement and 

evaluate our cyber deception architecture for IPv6 

using our already implemented Northbound API for 

matching and rewriting the Neighbor Discovery 

Protocol (NDP) of IPv6, the ARP equivalent of IPv4.  

Potential flaws revealing the deception include 

network latency changes and server content 

continuity before and after the switch from the O-Net 

to the D-Net. In follow-on research, we will test 

network latency changes in various real and 

virtualized configurations. In more and more 

virtualized operational networks, however, network 

latency may not provide significant clues for the 

adversary to determine if he or she is in a deceptive 

environment or not. Server content continuity is an 

important consideration in balancing maintenance 

and other costs, and realism of the deceptive 

environment and would require innovative solutions, 

which is a focus on our follow-on research. 
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