

Cross-Site Scripting (XSS) Detection Integrating Evidences in Multiple Stages

Jingchi Zhang
Information Security Institute

Johns Hopkins University
jzhan161@jhu.edu

Yu-Tsern Jou
Information Security Institute

Johns Hopkins University
yjou2@jhu.edu

Xiangyang Li
Johns Hopkins University

Information Security Institute
xyli@jhu.edu

Abstract

As Cross-Site Scripting (XSS) remains one of the top

web security risks, people keep exploring ways to detect
such attacks efficiently. So far, existing solutions only
focus on the payload in a web request or a response, a
single stage of a web transaction. This work proposes a
new approach that integrates evidences from both a web
request and its response in order to better characterize
XSS attacks and separate them from normal web
transactions. We first collect complete payloads of XSS
and normal web transactions from two databases and
extract features from them using the Word2vec
technique. Next, we train two Gaussian mixture models
(GMM) with these features, one for XSS transaction and
one for normal web transactions. These two models can
generate two probability scores for a new web
transaction, which indicate how similar this web
transaction is to XSS and normal traffics respectively.
Finally, we put together these two GMM models in
classification by combining these two probabilities to
further improve detection accuracy.

1. Introduction

This research aims at a new approach of detecting
Cross-Site Scripting (XSS) web attacks. Using
information from multiple stages instead of one, the
evolution of XSS can be better captured. Moreover, a
dual model is employed that integrates an XSS model
and a normal traffic model, presenting two opposite
perspectives of one web transaction. In practice, this
approach can be supported by a honeypot for evidence
generation and collection.

1.1. Cross Site Scripting (XSS) attack

Cross Site Scripting (XSS) attackers take advantages
of improper input validation to inject malicious code
into web pages. XSS attacks can lead to defacing web

pages and leaking sensitive data [1]. For its seriousness
and prevalence, OWASP has listed the XSS
vulnerability in its Top 10 Most Critical Web
Application Security Risks from 2013 to 2017 [2].

There are three types of XSS attacks, i.e., stored,
reflected, and DOM-based. In the stored XSS attack, it
embeds a piece of malicious code into a vulnerable web
page, which is stored on the web server for later use. As
a result, the attack will be executed when a victim visits
the vulnerable web page. In this case an attacker does
not need to craft special URLs since the malicious
payload is already on the web server. In a reflected XSS
attack, the attacker tricks the victim into clicking on an
ill-formed URL, which sends malicious code to a
vulnerable web application on a server. If not properly
handled, the response from the server is then directed
back to the victim’s browser that executes the XSS
payload to enable the attacker to access the victim’s data.
In the DOM-based XSS, the attacker also tricks the
victim into clicking on a maliciously crafted URL. But
the malicious code will not be sent to the vulnerable
application. Instead, it will be executed at some point
when a web page is loaded onto the victim’s machine.
Our study focuses on reflective and stored XSS attacks.

1.2. Word2vec technique

Traditionally, a malicious script is inserted within a
Hypertext Markup Language (HTML) code piece,
which can be analyzed through natural language
processing (NLP). It includes tag labels like <script>,
 or <body> that can be considered as subjects,
then follows with verb or noun, something like ‘alert()’
or ‘onload=’ in HTML. This mapping can be applied to
all the elements in the HTML code.

 There may be hidden relationships between tags or
elements. Treating words in a piece of text as discrete
atomic symbols in most of NLP systems seems not
appropriate. More precisely, these words are arbitrarily
encoded as integer values using a hash table. However,
such encodings may fail to truly represent the words, as
some important information, i.e., the linkage between

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60153
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7166

tag and elements, is missing in coding. In contrast,
representing such rich, high-dimensional relations as
vectors, called word embeddings, can overcome the
above problem. There is one of the most popular
techniques used in NLP systems, called Word2vec. It is
a predictive model used for learning the word
embeddings from a text corpus, which is a list of words
or tokens [3]. It comes with two model structures, the
Continuous Bag-of-Words model (CBOW) and the
Skip-Gram model. In our work, we utilize the CBOW
model based on the following observations.

1) CBOW model focuses on the existence of a word
in a window of surrounding words, but the Skip-Gram
also values the order of words. However, CBOW model
is good enough in our problem since switching two
words likely does not make a big impact.

2) Compared to Skip-Gram model, CBOW model is
more time-efficient.

 After grouping similar words together in the vector
space and assigning each word its corresponding vector
value, Word2vec can “understand” the meaning of a
piece of text, e.g., a web request or response, by
establishing the association of any word pair. And the
relationship of each word pair is measured by its cosine
similarity in vector space.

1.3. Gaussian mixture model (GMM)

For statistical learning, [15] suggests that using
GMM to fit the dataset and identify any outliers may be
an alternative option if the Gaussian distribution is not
applicable for the data. And as [16] states that GMM can
well define all the possible data points by assigning the
probability rather than a cluster in the k-means
algorithm. Therefore, GMM can also be viewed as an
extension to the k-means method, which is found to be
the most popular statistical learning algorithm that finds
probabilistic cluster assignments.

Last but not least, a mixture model is a probabilistic
model that is used to solve the subpopulation
assignment. For example, given the height data of a
group of people (population) that includes an unknown
number of female or male in the group (subpopulation),
the mixture model assumes that such data act as the sum
of two shifted and scaled normal distributions. It can
learn the subpopulations and predict which
subpopulation an unknown identity, i.e., an observation,
belongs to using a probability score. If the prediction is
achieved without labeling the datasets, similar to
clustering, a mixture model is refereed as unsupervised
learning model. One such a model is a Gaussian mixture
model (GMM), which can have more than two
components or subpopulations.

As illustrated in [4], XSS attacks, as one population,
are multimodal with more than one variant of attack

payloads in terms of words being using in them. In one
subpopulation, the word distribution of attacks may
follow a normal distribution. If using only one
distribution in modeling, the overall population may be
poorly represented. It is important to model a
multimodal distribution using a GMM model of
multiple components.

In this work, we develop an approach that uses
GMMs to analyze XSS and normal web transactions by
examining their payload as evidences. This study aims
to improve detection performance by two enhancements:
(1) correlating evidences from multiple request and
response stages of an attack instance, common in any
client/server transactions, and (2) integrating two
GMMs modeling XSS and normal respectively.

2. Related work

Cross-Site Scripting (XSS) web attacks have been
studied from different perspectives, including browser
filter [11], intrusion detection system [12], [13] or
firewall. Generally, they can be detected through
signature-based, anomaly detection, or a combination of
these two [14, 16]. Anomaly detection can handle zero-
day attacks while signature-based methods may not;
however, anomaly detection may perform poorly with a
non-comprehensive normal profile.

2.1. Multi-stage attack detection

Several studies have employed machine learning

algorithms to detect computer attacks while considering
different attack stages. Katipally et al [5] analyzed
attacker’s behavior by utilizing a hidden Markov model
(HMM). Their analysis considered a continuous
sequence of different activities as one attack. In
particular, they conceptualized five stages in such an
attack model, where each stage represents a different
operation. These stages include scanning through
network mapping, enumeration through DNS requests,
exploitation by access attempt through buffer overflow
and SQL injection, exploitation by denial of service
through flooding the system, and exploitation by
malware through shell code. They generated input to
train the HMM model based on previously learned alerts
and intrusions that is effective in predicting the
attacker’s behavior. However, a typical problem
associated with most machine learning methods is a
tendency of generating false alarms.

Lee et al [6] also used HMM in intrusion detection
using audit data. Their definition of a multi-stage attack
consists of multiple attack activities, where each stage
represents one type of attack. Installing an IDS agent
based on Snort, they collected intrusion traces from each

Page 7167

attack stage and fed the information to the HMM model.
Their system showed efficiency in detection, but with a
relatively high false positive rate.

Sampath et al [7] took one step further in using the
HMM and bag of words model by including the context
in analysis. The contextual information they included
varies from the source and destination IP addresses to
the alert type and category. The intrusion alerts were
first categorized according to K-means clustering. Then
they fed collected sequences of alerts labeled with the
cluster information to an HMM model that can predict
the next probable alerts. The prediction can provide
information about future attack strategies. Similarly,
they considered one complete sequence of a multi-stage
intrusion, which also consists of multiple attack
activities. Their proposed system was sensitive to the
number of clusters chosen in K-means clustering. It can
produce an accuracy of 88% using 5 clusters while the
accuracy drops to 31% using 50 clusters.

Almutairi et al [8] proposed a method to detect
multi-stage attacks based on examining the reputation of
network IP addresses using fuzzy logic. They captured
network traffic in three multi-stage attack scenarios.
They evaluated the reputation of the IP address using
fuzzy rules. The four fuzzy rules were formulated based
on blocked IPs, anonymous proxy IPs, malicious
geographical IPs, and low rated IPs. Their approach was
efficient with a zero false positive rate for IP addresses
classified as malicious. However, relying on
whitelisting, it failed to detect new malicious IPs.

2.2. XSS attack detection

XSS attack detection based on machine learning has

been well studied by researchers in these years. Fang et
al presented a novel signature-based detection system
using Word2vec and Long Short-Term Memory (LSTM)
models [17]. After extracting the features by Word2vec,
a LSTM model can be trained to segregate the XSS from
normal data. And the precision rate is 99.5% in real
dataset.

Liu addressed web attack detection and employed
several machine learning algorithms [9]. The author
utilized Gaussian HMM and a lexical segmentation
technique based on the bag of words technique. Both
training and testing the HMM model used payloads in
web requests, i.e., a URL link, to classify the traffic as
normal or XSS. It claimed to achieve an accuracy of
over 90% in detection.

Wang et al [10] utilized an HMM model combined
with the Bayes theorem. The authors stated that this
method can learn the structure of attack vectors and
minimize flaws of traditional sanitization procedures.
The authors tried to evaluate the performance of such
learning model using mutated XSS attacks in the XSSed

database (http://xssed.com). Such XSS attacks may not
include realistic attack variants. Moreover, design of
this HMM model as well as how data collection was
done lacked specific details.

In contrast to many server-side XSS detection
systems, Pelizzi et al [11] presented a new client-side
XSS filter called XSSFilt. It was claimed to outperform
NoScript, a Firefox plug-in, XSS Auditor on Google
Chrome, and other server-side solutions in detecting
reflected XSS attacks. The key functions of this filter
include use of approximation rather than exact string
match, utilization of their own improved syntactic
confinement policy that are not SQL specific, and
analysis on web responses. However, its approximate
substring matching can lead to overfitting that increases
the false positive rate. It may fail to identify unseen and
varied XSS instances.

In summary, most of studies that employ a machine
learning approach in XSS detection, being either
signature-based or anomaly-based, by use the evidence
in only either the web request or the response.
Consequently, these detection systems may fail to
identify malicious script if such evidences alone are not
discriminating enough. We propose an innovative
approach utilizing dual GMM models to better
characterize the difference between XSS and normal
web transactions to fill this gap.

3. Our approach

We try to correlate evidences in both request and
response payloads of an XSS attack. With richer
information, it is believed that number of false positives
and negatives can be potentially reduced. Practically, we
utilize separate GMM models to characterize XSS and
normal web transactions respectively and integrate
predictions from these models in order to provide better
classification of a new web transaction.

Table 1. Comparison of our approach to
others

 Evidence
 Single

Stage
Multiple
Stages

D
et

ec
tio

n
M

od
el

XSS Others Our
approach

Dual
model Normal Our

approach
Our
approach

Table 1 shows how our work (in shade) is compared

to other existing efforts of XSS modeling and detection.
The payloads of a complete request/response chain are
assembled together to represent an entire web

Page 7168

Page 7169

Page 7170

Page 7171

Page 7172

Page 7173

Page 7174

useful on this front as in [19] and [20]. We can continue
to investigate this approach by studying better data
collection and feature extraction techniques.

6. Conclusion

Most of the existing solutions of detecting XSS

attacks examine the evidence in only one stage. We have
studied an approach that looks at the information in both
request and response stages and employs a dual model
of combining anomaly detection with misuse detection.
This approach utilizes the Word2vec technique and
Gaussian mixture models. Evaluation using real data
coming from two databases of XSS and normal web
transactions has shown its effectiveness.

7. Acknowledgement

This work has received partial support from NSF
through Award No. 1525485. We like to thank Qiqing
Huang, Bayan Al Muhander and Likitha Satish from
Johns Hopkins University Information Security Institute
for their effort in a previous relevant project.

1525485.
8. References

[1] K. Spett, “Cross-site scripting”, SPI Labs, 2005, pp. 1-20.
[2] “Top10-2017 Top 10”, 2017. [Online]. Available:
https://www.owasp.org/index.php/Top_10-2017_Top_10.
[Accessed: 30- Dec- 2017]
[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J.
Dean, “Distributed Representations of Words and Phrases and
their Compositionality”, NIPS, Lake Tahoe, NV, 2013, pp.
3111-3119.
[4] “XSS Filter Evasion Cheat Sheet”. [Online]. Available:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Chea
t_Sheet. [Accessed: 30- Mar- 2018]
[5] R. Katipally, L. Yang, and A. Liu, “Attacker behavior
analysis in multi-stage attack detection system”, Proceedings
of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research (CSIIRW’11), New York,
NY, USA, 2011, No. 63.
[6] D.H. Lee, D.Y. Kim, and J.I. Jung, “Multi-Stage Intrusion
Detection System Using Hidden Markov Model Algorithm”,
ICISS, Seoul, 2008, pp. 72-77.
[7] U.S.K.P.M. Thanthrige, J. Samarabandu, and X. Wang.
“Intrusion Alert Prediction Using a Hidden Markov Model”,

arXiv:1610.07276, 2016.
[8] A. Almutairi, D. Parish and J. Flint, “Predicting multi-stage
attacks based on IP information”, ICITST, London, 2015, pp.
384-390.
[9] L. Yan, “Machine learning for the web security”,
Mechanical Industry Press, 2017.
[10] Y.H. Wang, C.H. Mao, and H.M. Lee, “Structural
Learning of Attack Vectors for Generating Mutated XSS
Attacks”, TAV-WEB, 2010.
[11] R. Pelizzi, and R. Sekar, “Protection, Usability and
Improvements in Reflected XSS Filters”, ASIACCS 2012,
New York, NY, 2012.
[12] T. Pietraszek, C.V. Berghe, “Defending against injection
attacks through context-sensitive string evaluation”, Recent
Advances in Intrusion Detection, Berlin, Heidelberg, 2005, pp.
124–145.
[13] S. Goswami, N. Hoque, D.K. Bhattacharyya, and J.K.
Kalita, “An Unsupervised Method for Detection of XSS
Attack”, I. J. Network Security, 2017, pp. 761-775.
[14] A. L. Buczak and E. Guven, “A survey of data mining
and machine learning methods for cyber security intrusion
detection”, IEEE Communications Surveys & Tutorials, 2016,
pp. 1153–1176.
[15] N. Moustafa, G. Creech, and J. Slay, “Big data analytics
for intrusion detection system: Statistical decision-making
using finite dirichlet mixture models”, Data Analytics and
Decision Support for Cybersecurity, 2017, pp. 127–156.
[16] N. Moustafa, G. Misra and J. Slay, “Generalized Outlier
Gaussian Mixture technique based on Automated Association
Features for Simulating and Detecting Web Application
Attacks”, IEEE Transactions on Sustainable Computing,
2018.
[17] Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross
Site Scripting Detection Based on Deep Learning”,
Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence (ICCAI 2018), New
York, NY, 2018, pp. 47-51.
[18] F.A. Mereani, and J. M. Howe, “Detecting Cross-Site
Scripting Attacks Using Machine Learning”, Advances in
Intelligent Systems and Computing, Cham, 2018, pp. 200-210.
[19] N. Moustafa, and J. Slay, “UNSW-NB15: a
comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set)”, Military
Communications and Information Systems Conference
(MilCIS), 2015.
[20] N. Moustafa, and J. Slay, “The evaluation of Network
Anomaly Detection Systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99
data set”, Information Security Journal: A Global
Perspective, 2016, pp. 1-14.

Page 7175

