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Abstract 
 
As Cross-Site Scripting (XSS) remains one of the top 

web security risks, people keep exploring ways to detect 
such attacks efficiently. So far, existing solutions only 
focus on the payload in a web request or a response, a 
single stage of a web transaction. This work proposes a 
new approach that integrates evidences from both a web 
request and its response in order to better characterize 
XSS attacks and separate them from normal web 
transactions. We first collect complete payloads of XSS 
and normal web transactions from two databases and 
extract features from them using the Word2vec 
technique. Next, we train two Gaussian mixture models 
(GMM) with these features, one for XSS transaction and 
one for normal web transactions. These two models can 
generate two probability scores for a new web 
transaction, which indicate how similar this web 
transaction is to XSS and normal traffics respectively. 
Finally, we put together these two GMM models in 
classification by combining these two probabilities to 
further improve detection accuracy. 
 
 
1. Introduction  
 

This research aims at a new approach of detecting 
Cross-Site Scripting (XSS) web attacks. Using 
information from multiple stages instead of one, the 
evolution of XSS can be better captured. Moreover, a 
dual model is employed that integrates an XSS model 
and a normal traffic model, presenting two opposite 
perspectives of one web transaction. In practice, this 
approach can be supported by a honeypot for evidence 
generation and collection. 
 
1.1. Cross Site Scripting (XSS) attack 
 

Cross Site Scripting (XSS) attackers take advantages 
of improper input validation to inject malicious code 
into web pages. XSS attacks can lead to defacing web 

pages and leaking sensitive data [1]. For its seriousness 
and prevalence, OWASP has listed the XSS 
vulnerability in its Top 10 Most Critical Web 
Application Security Risks from 2013 to 2017 [2].  

There are three types of XSS attacks, i.e., stored, 
reflected, and DOM-based. In the stored XSS attack, it 
embeds a piece of malicious code into a vulnerable web 
page, which is stored on the web server for later use. As 
a result, the attack will be executed when a victim visits 
the vulnerable web page. In this case an attacker does 
not need to craft special URLs since the malicious 
payload is already on the web server. In a reflected XSS 
attack, the attacker tricks the victim into clicking on an 
ill-formed URL, which sends malicious code to a 
vulnerable web application on a server. If not properly 
handled, the response from the server is then directed 
back to the victim’s browser that executes the XSS 
payload to enable the attacker to access the victim’s data. 
In the DOM-based XSS, the attacker also tricks the 
victim into clicking on a maliciously crafted URL. But 
the malicious code will not be sent to the vulnerable 
application. Instead, it will be executed at some point 
when a web page is loaded onto the victim’s machine. 
Our study focuses on reflective and stored XSS attacks. 
 
1.2. Word2vec technique 
 

Traditionally, a malicious script is inserted within a 
Hypertext Markup Language (HTML) code piece, 
which can be analyzed through natural language 
processing (NLP). It includes tag labels like <script>, 
<img> or <body> that can be considered as subjects, 
then follows with verb or noun, something like ‘alert()’ 
or ‘onload=’ in HTML. This mapping can be applied to 
all the elements in the HTML code.  

 There may be hidden relationships between tags or 
elements. Treating words in a piece of text as discrete 
atomic symbols in most of NLP systems seems not 
appropriate. More precisely, these words are arbitrarily 
encoded as integer values using a hash table. However, 
such encodings may fail to truly represent the words, as 
some important information, i.e., the linkage between 
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tag and elements, is missing in coding. In contrast, 
representing such rich, high-dimensional relations as 
vectors, called word embeddings, can overcome the 
above problem. There is one of the most popular 
techniques used in NLP systems, called Word2vec. It is 
a predictive model used for learning the word 
embeddings from a text corpus, which is a list of words 
or tokens [3]. It comes with two model structures, the 
Continuous Bag-of-Words model (CBOW) and the 
Skip-Gram model. In our work, we utilize the CBOW 
model based on the following observations. 

1) CBOW model focuses on the existence of a word 
in a window of surrounding words, but the Skip-Gram 
also values the order of words. However, CBOW model 
is good enough in our problem since switching two 
words likely does not make a big impact. 

2) Compared to Skip-Gram model, CBOW model is 
more time-efficient. 

 After grouping similar words together in the vector 
space and assigning each word its corresponding vector 
value, Word2vec can “understand” the meaning of a 
piece of text, e.g., a web request or response, by 
establishing the association of any word pair. And the 
relationship of each word pair is measured by its cosine 
similarity in vector space. 
 
1.3. Gaussian mixture model (GMM) 
 

For statistical learning, [15] suggests that using 
GMM to fit the dataset and identify any outliers may be 
an alternative option if the Gaussian distribution is not 
applicable for the data. And as [16] states that GMM can 
well define all the possible data points by assigning the 
probability rather than a cluster in the k-means 
algorithm. Therefore, GMM can also be viewed as an 
extension to the k-means method, which is found to be 
the most popular statistical learning algorithm that finds 
probabilistic cluster assignments. 

Last but not least, a mixture model is a probabilistic 
model that is used to solve the subpopulation 
assignment. For example, given the height data of a 
group of people (population) that includes an unknown 
number of female or male in the group (subpopulation), 
the mixture model assumes that such data act as the sum 
of two shifted and scaled normal distributions. It can 
learn the subpopulations and predict which 
subpopulation an unknown identity, i.e., an observation, 
belongs to using a probability score. If the prediction is 
achieved without labeling the datasets, similar to 
clustering, a mixture model is refereed as unsupervised 
learning model. One such a model is a Gaussian mixture 
model (GMM), which can have more than two 
components or subpopulations.  

As illustrated in [4], XSS attacks, as one population, 
are multimodal with more than one variant of attack 

payloads in terms of words being using in them.  In one 
subpopulation, the word distribution of attacks may 
follow a normal distribution. If using only one 
distribution in modeling, the overall population may be 
poorly represented. It is important to model a 
multimodal distribution using a GMM model of 
multiple components.  

In this work, we develop an approach that uses 
GMMs to analyze XSS and normal web transactions by 
examining their payload as evidences. This study aims 
to improve detection performance by two enhancements: 
(1) correlating evidences from multiple request and 
response stages of an attack instance, common in any 
client/server transactions, and (2) integrating two 
GMMs modeling XSS and normal respectively.  
 
2. Related work  
 

Cross-Site Scripting (XSS) web attacks have been 
studied from different perspectives, including browser 
filter [11], intrusion detection system [12], [13] or 
firewall. Generally, they can be detected through 
signature-based, anomaly detection, or a combination of 
these two [14, 16]. Anomaly detection can handle zero-
day attacks while signature-based methods may not; 
however, anomaly detection may perform poorly with a 
non-comprehensive normal profile.  

 
2.1. Multi-stage attack detection 

 
Several studies have employed machine learning 

algorithms to detect computer attacks while considering 
different attack stages. Katipally et al [5] analyzed 
attacker’s behavior by utilizing a hidden Markov model 
(HMM). Their analysis considered a continuous 
sequence of different activities as one attack. In 
particular, they conceptualized five stages in such an 
attack model, where each stage represents a different 
operation. These stages include scanning through 
network mapping, enumeration through DNS requests, 
exploitation by access attempt through buffer overflow 
and SQL injection, exploitation by denial of service 
through flooding the system, and exploitation by 
malware through shell code. They generated input to 
train the HMM model based on previously learned alerts 
and intrusions that is effective in predicting the 
attacker’s behavior. However, a typical problem 
associated with most machine learning methods is a 
tendency of generating false alarms.  

Lee et al [6] also used HMM in intrusion detection 
using audit data. Their definition of a multi-stage attack 
consists of multiple attack activities, where each stage 
represents one type of attack. Installing an IDS agent 
based on Snort, they collected intrusion traces from each 
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attack stage and fed the information to the HMM model. 
Their system showed efficiency in detection, but with a 
relatively high false positive rate.  

Sampath et al [7] took one step further in using the 
HMM and bag of words model by including the context 
in analysis. The contextual information they included 
varies from the source and destination IP addresses to 
the alert type and category. The intrusion alerts were 
first categorized according to K-means clustering. Then 
they fed collected sequences of alerts labeled with the 
cluster information to an HMM model that can predict 
the next probable alerts. The prediction can provide 
information about future attack strategies. Similarly, 
they considered one complete sequence of a multi-stage 
intrusion, which also consists of multiple attack 
activities. Their proposed system was sensitive to the 
number of clusters chosen in K-means clustering. It can 
produce an accuracy of 88% using 5 clusters while the 
accuracy drops to 31% using 50 clusters.  

Almutairi et al [8] proposed a method to detect 
multi-stage attacks based on examining the reputation of 
network IP addresses using fuzzy logic. They captured 
network traffic in three multi-stage attack scenarios. 
They evaluated the reputation of the IP address using 
fuzzy rules. The four fuzzy rules were formulated based 
on blocked IPs, anonymous proxy IPs, malicious 
geographical IPs, and low rated IPs. Their approach was 
efficient with a zero false positive rate for IP addresses 
classified as malicious. However, relying on 
whitelisting, it failed to detect new malicious IPs. 

 
2.2. XSS attack detection 

 
XSS attack detection based on machine learning has 

been well studied by researchers in these years. Fang et 
al presented a novel signature-based detection system 
using Word2vec and Long Short-Term Memory (LSTM) 
models [17]. After extracting the features by Word2vec, 
a LSTM model can be trained to segregate the XSS from 
normal data. And the precision rate is 99.5% in real 
dataset. 

Liu addressed web attack detection and employed 
several machine learning algorithms [9]. The author 
utilized Gaussian HMM and a lexical segmentation 
technique based on the bag of words technique. Both 
training and testing the HMM model used payloads in 
web requests, i.e., a URL link, to classify the traffic as 
normal or XSS. It claimed to achieve an accuracy of 
over 90% in detection. 

Wang et al [10] utilized an HMM model combined 
with the Bayes theorem. The authors stated that this 
method can learn the structure of attack vectors and 
minimize flaws of traditional sanitization procedures. 
The authors tried to evaluate the performance of such 
learning model using mutated XSS attacks in the XSSed 

database (http://xssed.com). Such XSS attacks may not 
include realistic attack variants. Moreover, design of 
this HMM model as well as how data collection was 
done lacked specific details. 

In contrast to many server-side XSS detection 
systems, Pelizzi et al [11] presented a new client-side 
XSS filter called XSSFilt. It was claimed to outperform 
NoScript, a Firefox plug-in, XSS Auditor on Google 
Chrome, and other server-side solutions in detecting 
reflected XSS attacks. The key functions of this filter 
include use of approximation rather than exact string 
match, utilization of their own improved syntactic 
confinement policy that are not SQL specific, and 
analysis on web responses. However, its approximate 
substring matching can lead to overfitting that increases 
the false positive rate. It may fail to identify unseen and 
varied XSS instances.  

In summary, most of studies that employ a machine 
learning approach in XSS detection, being either 
signature-based or anomaly-based, by use the evidence 
in only either the web request or the response. 
Consequently, these detection systems may fail to 
identify malicious script if such evidences alone are not 
discriminating enough. We propose an innovative 
approach utilizing dual GMM models to better 
characterize the difference between XSS and normal 
web transactions to fill this gap. 
 
3. Our approach  
 

We try to correlate evidences in both request and 
response payloads of an XSS attack. With richer 
information, it is believed that number of false positives 
and negatives can be potentially reduced. Practically, we 
utilize separate GMM models to characterize XSS and 
normal web transactions respectively and integrate 
predictions from these models in order to provide better 
classification of a new web transaction. 
 

Table 1. Comparison of our approach to 
others 

  Evidence  
  Single 

Stage 
Multiple 
Stages 

 

D
et

ec
tio

n 
M

od
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XSS Others Our 
approach 

 
Dual 
model Normal Our 

approach 
Our 
approach 

 
Table 1 shows how our work (in shade) is compared 

to other existing efforts of XSS modeling and detection. 
The payloads of a complete request/response chain are 
assembled together to represent an entire web 
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useful on this front as in [19] and [20]. We can continue 
to investigate this approach by studying better data 
collection and feature extraction techniques. 
 
6. Conclusion  

 
Most of the existing solutions of detecting XSS 

attacks examine the evidence in only one stage. We have 
studied an approach that looks at the information in both 
request and response stages and employs a dual model 
of combining anomaly detection with misuse detection. 
This approach utilizes the Word2vec technique and 
Gaussian mixture models. Evaluation using real data 
coming from two databases of XSS and normal web 
transactions has shown its effectiveness.  
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