
Comparison of Supervised and Unsupervised Learning for Detecting
Anomalies in Network Traffic

Robert McAndrew
Colorado State University

rmcand@colostate.edu

Stephen Hayne
Colorado State University

stephen.hayne@colostate.edu

Haonan Wang
Colorado State University

wanghn@stat.colostate.edu

Abstract

Adversaries are always probing for vulnerable spots
on the Internet so they can attack their target. By
examining traffic at the firewall, we can look for
anomalies that may represent these probes. To help
select the right techniques we conduct comparisons
of supervised and unsupervised machine learning on
network flows to find sets of outliers flagged as potential
threats. We apply Functional PCA and K-Means
together versus Multilayer Perceptron on a real-world
dataset of traffic prior to an NTP DDoS attack in
January 2014; scanning activity was heightened during
this pre-attack period. We partition data to evaluate
detection powers of each technique and show that
FPCA+Kmeans outperforms MLP. We also present
a new variation of the circle plot for visualization
of resulting outliers which we suggest excels at
displaying multidimensional attributes of an individual
IP’s behavior over time. In small multiples, circle plots
show a gestalt overview of traffic.

1. Introduction

With the abundance of network security “events”, it
is becoming more and more important to be able to gain
insight into network traffic. Our adversaries want not
only to steal data for use or sale, but also to disrupt the
operations of their victims and impact their reputation.
A significant challenge for the security community is
to develop network intrusion detection systems that can
automatically detect abnormal network access patterns.
One of the most common forms of network intrusion
is the “scanning” of networks (for a survey, see [1,
2, 3]). Prior to attacking, our adversaries scan to map
the configuration of the network, identify the active
hosts, the services running on those hosts, and whether
these services are currently vulnerable. Scanning can be
conducted by any number of tools (many of which are
bundled into the Kali suite, for example); we do not
attempt to distinguish which tool might have been used,
only the fact that scanning may be occurring. Scanning

is often a prelude to a damaging attack [4].
Several approaches to find scanners use

heuristic-based methods [2, 5], Machine Learning
[6], and Statistical-based filtering [7]. Each of these
methods have demonstrated deficiencies as shown by
[8], who presented a blended approach of Functional
Principal Component Analysis (FPCA) and K-means
clustering. In this paper we expand this blended
approach by comparing it to a supervised machine
learning method to detect scanners. We use data from
actual NTP traffic flows during the months prior to a
reflective DDoS attack [5] - note we are not analyzing
the attack. We also contribute a new technique for
visualization of scanners, in a way that allows discovery
and understanding of differences between flows for
individual IPs.

2. Related Work

Anomaly detection in networks is a frequently
studied topic with a wide variety of applications
(for review see [9, 10]). While there are general
methodologies, accounting for knowledge of the type
of anomaly sought can improve our potential for
identification. Here, we focus on scanning as the
network anomaly, and use their known and expected
attributes to guide our approach.

Current techniques to detect scanners fall into one
of two groups: (1) signature-based, which employs
knowledge of previous anomalies to classify new
observations, while (2) profile-based constructs
data-driven, representative “usual” behaviors and
searches for deviations from this to identify anomalies.
An established signature-based approach is used by
[2], which looks at the success of a remote host’s
attempts at connecting to a local host. If the ratio of
unsuccessful connection attempts to the successful
exceeds two, the remote host is flagged as a scanner.
A similar rule was employed by [5]. We refer to this
as the “static fanout ratio”; [8] has demonstrated that
this rule performs poorly if the data does not meet
the exact threshold, e.g., many stealthy scanners are

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60150
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7136



missed. Further, signature-based techniques cannot
detect new scanning techniques, simply because they
cannot recognize those which do not match their lists
of signatures [11]. Profile-based approaches can be
split into supervised or unsupervised and both have
been applied to cyber-security anomaly detection [12].
Supervised approaches require labeled data, which is
very problematic (similar to signature-based), in that
behaviors not previously seen cannot be detected [ibid.].
Unsupervised methods prescribe their own labels based
on the model. Clustering is a common method, but
when applied to both attack and non-attack traffic, many
false positives are co-mingled within the “malicious”
cluster(s) ([13, 14, 15, 16, 17]). Combinations of
clustering and other learning techniques have been
suggested, and a few show promise ([8, 16, 11]). In this
paper, we will compare the blended approach of [8] with
a supervised technique based on the static-fanout ratio,
in order to demonstrate the benefits of an unsupervised
approach over a supervised approach trained with an
accepted labeling mechanism.

To mitigate the inherent difficulty in detecting,
filtering, classifying, and believing the patterns found
within big data, Kryzwinski et al. [18], created the
“circle plot”, which can (i) adapt to the data’s density
and dynamic range, (ii) retain the data’s complexity
and detail, and (iii) scale without sacrificing clarity and
specificity. Circle plots have deeply impacted the fields
of comparative and cancer genomics; referenced in over
3000 papers in top outlets such as Nature and PLoS
One, and applied to other domains, e.g., car purchase
or dating trends, and chemical reactivity [ibid.]. We
suggest that circle plots can change the way scanner
data is regarded and explored, much the same way that
treemaps changed the understanding of the distribution
of disk usage on a file system [19]. The circle plot has
a high data-to-ink ratio, favorable scaling characteristics
[20] and when organized into “small multiples”, allows
for sophisticated quantitative reasoning by “visually
enforcing comparisons of changes highlighting the
differences among objects” [21].

3. System Design and Dataset Description

Figure 1 shows the design of a Department of
Homeland Security funded project called “NetBrane”
[22], where leading edge technologies are combined
to build a shield while leaving data and sensitive
services on the premises. The key novelty of the
project lies in the confluence of: (a) SDN enabled
small distributed footprint with 100G capture/filter
capability for neutralizing DDoS (left side of figure),
(b) elastic data analytics using near real-time flows
and cloud capabilities (inside the red box), (c)

Figure 1. System architecture diagram

situational awareness, in terms of the global Internet
information, and (d) proactive reconnaissance, by
intelligent synthesis of information from multiple
sources. In this paper, we report the results of comparing
anomaly detection analytics on pre-attack network
flows. At our large Mountain West University, we have
installed optical taps to capture network flows at line
rate (10gbps or more), and push those flows into hadoop
(HDFS). We read these flows in small time intervals
and analyze them applying both multi-core (parallel R
packages) and multi-node (Spark and scala) platforms.

We will focus on an approximately one-month
period (late October to early December, 2013) that led
to a reflective DDoS on the NTP-port and service in
January 2014. The data is a collection of time series of
bi-directional packet flows to and from our university.
For each source IP (SIP) and destination IP (DIP) pair,
we have two series of non-negative counts, aggregated
hourly: packets sent from SIP to DIP, and packets sent
from DIP to SIP. A distinct data point is a SIP-DIP pair,
along with both time series. The full dataset covers 772
hours (32 days) with 9248 distinct SIP-DIP pairs (1602
SIPs contacting 4795 DIPs) sending a total of about 3
million packets. As this is a real-world dataset, we do
not have “ground truth” knowledge of which SIPs are
true scanners, but as the time period is just prior to an
attack, it is highly likely to include scanning activity.

Our methodological evaluations require both a
training and testing dataset. We construct these by
splitting our full dataset in half by time. That is, the
first 386 hours form the training data and the second 386
form the testing data. In the training, this captures 3602
distinct SIP-DIP pairs (990 SIPs, 2189 DIPs) sending
a total of 1.6 million packets. In the testing data, 6401
distinct SIP-DIP pairs (1028 SIPs, 3652 DIPs) send a
total of about 1.4 million packets. Even though these are
split evenly by time, they have slightly different packet
counts due to variability in the traffic flows. Note that
some IP addresses (both SIPs and DIPs) appear in both
the training and testing datasets. This is acceptable; an
IP address can be active on the network at many different

Page 7137



times. We find that both the training and testing sets are
representative of usual traffic.

4. Methodology
The analyses and comparisons of this paper are

carried out in two phases: the ‘training’ and the ‘testing’.
Training phase: We view determining scanner behavior
as a classification problem - each SIP is to be labeled
as, most generally, a scanner or non-scanner. This is
carried out with two approaches: one supervised and
one unsupervised. For the unsupervised technique, we
use a two-step procedure based on FPCA and K-Means
clustering [8]. The inclusion of FPCA as a first step
before clustering is intended to remove the K-means
concerns shown in [13]. The supervised technique we
employ is the well-known Multilayer Perceptron (MLP),
a non-linear version of a neural net that relies on
backpropagation [23]. As labeled data is needed for
MLP, we create labels for both the training and testing
sets in two ways: a binary classification and clustering
classification. The first uses the static fanout ratio of [5],
thus labeling each SIP as a “scanner” or “non-scanner”
(binary classification). In the clustering case, SIPs in the
testing dataset are labeled as “non-outlier”, “low cluster
outlier”, “mid cluster outlier”, and “high cluster outlier”
according to FPCA+Kmeans. For both, MLP is trained
on the labeled training data set. As FPCA+Kmeans is
unsupervised, training is not needed in any scenario.
Testing phase: We investigate the results of three
different analyses: FPCA+Kmeans on the testing data,
FPCA+Kmeans compared to MLP on the testing
data with binary classifications, and FPCA+Kmeans
compared to MLP on the testing data with cluster
classifications (four labels). The first demonstrates use
of the FPCA+Kmeans technique for scanner/outlier
detection. The comparison in the case of binary labels
demonstrates the differences between the supervised
and unsupervised approaches when “ground truth”
is approximated using an independent rule. The
comparison in the cluster case illustrates the difference
between the unsupervised approach and the supervised,
but trained on an improved labeling mechanism [8].

4.1. FPCA + K-means
The procedure begins with application of FPCA

in order to first classify “outliers” in the data. We
construct an n × T matrix whose (i, t) entry is the
count of distinct DIPs contacted by the ith SIP during
the tth hour. FPCA models this as a mean series
plus a linear combination of eigenfunctions, which
are orthogonal curves representing the descending
dimensions of variance in the data; that is, the first
eigenfunction can be thought of as the direction of
highest variability, eigenfunction two the second most

variable, and so on. We employ the Principal Analysis
by Conditional Expectation (PACE) algorithm of [24].
In order to select the number of eigenfunctions in our
model, we apply the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) [25].
For the data presented here, these agree on parameter
selection; but we acknowledge this may not always
be the case. Context-specific factors should be taken
into account when deciding which criterion is more
appropriate [26].

To classify SIPs, we calculate each observed series’
FPCA scores, which are projections of the data onto
the eigenfunctions. Each SIP has one score for every
eigenfunction, and that SIP is flagged as an “outlier”
if at least one of its scores exceeds a three standard
deviation threshold from the mean (well-known due to
its standard application based on Chebyshev’s inequality
[27]). For example, from the n scores on the first
eigenfunction, we can calculate the bounds x̄ ± 3s; x̄
is the mean score and s is the standard deviation. Any
SIP whose first eigenfunction score lies beyond these
bounds is flagged as an outlier. We use the term “outlier”
because we do not think all SIPs flagged by FPCA are
scanners - these are SIPs that contacted the network
in an unusual way, which can clearly include activity
other than scanning. Because of this, we carry out the
second step of clustering these abnormal SIPs based on
their rate of successful connections, where a “success”
is characterized as the DIPs sending at least one packet
back to the SIP. With this, we can investigate the cluster
that exhibits behavior expected of a scanner, as our
abnormal SIPs are now separated by their connectivity
with the network.

In order to perform this clustering, we employ the
K-means algorithm of [28]. The number of clusters
in the application of K-means is chosen with the
“elbow method”, which seeks the cluster amount such
that adding one additional cluster would not have a
significant impact on the fraction of variance explained
(FVE) in the entire dataset [29]. K-means is run multiple
times using randomly generated centers in order to
assess sensitivity with respect to their centers, and we
find that our data does not exhibit sensitivity to center
selection. For our analysis, the elbow method selects
three clusters, and we label the clusters based on relative
order of their centers: “low”, “mid”, and “high”.

4.2. Circle Plots

Given a set of classified SIPs, we desire a way to
view the different clusters and behaviors within them.
For most effective results, the graphical representation
must: (1) display functional/temporal characteristics of
the data, (2) demonstrate behavior of the SIP with

Page 7138



Figure 2. Circle plot’s outer track

respect to the whole network, and (3) demonstrate
behavior of the SIP with respect to the individual DIPs
it contacts. With such a plot, one should be able to
identify and understand the results of any anomaly
detection technique. We have chosen to use the “circle
plot” [18], but do not merely adapt an existing circle
plot technique. Rather, we take the individual aspects
and features of examples discussed in the literature and
adapt them to construct a new representation specific
to network traffic. Each circle plot depicted herein
represents a single SIP’s activity (indicated by the title
of the plot) over a fixed length of time, and consists of
two components, called the “outer track” and the “inner
ribbons”. The outer track (Figure 2) consists of multiple
segments. The segment just clockwise from the vertical
radial of the circle formed by this outer track is always
highlighted yellow to indicate that it corresponds to the
SIP. The remaining segments going clockwise represent
unique DIPs contacted by that source. Inside each of
these segments, we plot the time series of non-zero
packet flows with time increasing clockwise in each.
The yellow-highlighted segment displays the series of
packets sent by the SIP, while all other segments display
the series of packets sent back to the SIP by the
individual DIPs. The length of time represented in these
segments is specified by the time-series of observations
(i.e., hours) in the dataset. Note that each segment
displays the same length of time, and that this is not
related to the size of the individual segments - the
annular width of each is determined by how many must
be drawn, and thus how many DIPs were contacted by
the SIP. In cases where a large number of DIPs are
contacted (more than 80), the outer track can become
densely packed with segments making each very narrow,

Figure 3. A complete circle plot

and thus the series may not be visible (see top plots of
figure 4).

Ribbons are drawn in the interior of the circle
(Figure 3), and connect the SIP segment to the distinct
DIPs in order to represent an attempted connection.
Ribbons originate in the SIP segment at the time
the packets were sent, and terminate at the segment
representing the DIP by which they were received. A
teal ribbon denotes that the DIP sent packets back to the
SIP, while an amber ribbon denotes that it did not.

A circle plot allows for visualization of a SIP’s
activity in a window of time, specifically the frequency
and severity of contacts made. Many segments in
the outer track indicates a large number of DIPs
contacted. The points within segments visualize the
relative volume of packets sent and received by the
SIP. The location and amount of ribbons show when
and how often these contacts were made. The color
of the ribbons gives an immediate notion of the
proportion of successful contacts. To illustrate these
benefits, consider the circle plot in Figure 3, where
SIP 169.229.70.49 (last octet anonymized) contacted 11
unique DIPs (11 non-highlighted segments around the
circle), sporadically (some gaps between points in the
highlighted SIP segment) and with intermittent success
(both teal and amber ribbons). The SIP sent relatively
more packets in the beginning of the period than the end,
as points in the SIP segment closer to the vertical radial
are closer to the outer edge than those at the other end of
the SIP segment.

Comparing behaviors between SIPs can be done by
organizing circle plots for many SIPs in a grid. As shown
in Figure 4, we propose it is easy to get a gestalt of
the types of outliers, which can give insight and build

Page 7139



confidence in any subsequent clustering that might be
performed. Note that the grids we present here are sorted
by the number of DIP segments.

While the description above is tailored towards the
goal of scanner detection, our variant of circle plots are
extremely flexible in terms of what they can display. If
packet counts are not as interesting a feature in some
analyses, the series plotted in the outer track could show
byte counts instead. Or, one could construct these plots
from the opposite perspective, focusing on one DIP
and displaying how it was contacted by different SIPs.
Note that the format of a circle plot can be changed;
in particular, more tracks can be added to display
additional features, should they be relevant. Krzywinski
et al. [18] demonstrate the many forms circle plots use
for visualizing different aspects of genomics research; a
path that we hope circle plots will follow in the field of
network traffic classification.

Construction of circle plots was completed with the
most current version of R (v. 3.5.0) using the ‘circlize’
package [30]. The computational cost of a single circle
plot is small; many of the examples displayed here
were completed in less than two seconds using a basic
CPU. The circle plots which take the longest are those
representing a SIP that contacts a large number of DIPs,
due to the number of ribbons that must be drawn, e.g.,
the top-left circle plot of Figure 4 which took about
five seconds. In practice, we create the SIPs’ circle
plots using multiple cores (parallel computing in R,
assigning a core to each plot) and then arrange the
resulting individual plots into grids (small multiples),
significantly reducing wait time for a user.

5. Results and Comparisons
We first apply the unsupervised approach of

FPCA+Kmeans to the full dataset, to act as an example
of the method and how circle plots are used to better
understand results and guide further analyses. We will
discuss SIPs and their circle plots using the terms
“blatant scanner”, “listkeeper”, “stealthy scanner”, and
“active peer”. These names are given based on the type
of behavior the SIP displays, and facilitate discussion
of results. We are not stating that all scanner/outlier
behaviors fall into one of these categories, rather that
these are behaviors apparent in this dataset. Next, we
compare the unsupervised approach to the supervised
Multilayer Perceptron (MLP) in two ways: binary
classification and clustering classification. In the binary
case, the SIPs in the testing dataset are labeled as
“scanner” and “non-scanner” according to the static
fanout ratio. We show FPCA+Kmeans outperforms
MLP on data with independently created labels. The
clustering classification case labels the SIPs in the

testing dataset as “non-outlier”, “low cluster outlier”,
“mid cluster outlier”, and “high cluster outlier” based
on FPCA+Kmeans. We show that FPCA+Kmeans still
outperforms MLP trained with labels from a more
accurate mechanism.

Note we are not classifying SIPs with our terms
for scanner behaviors, but rather the cluster to
which they belong. The “blatant scanner”, “listkeeper”,
“stealthy scanner”, and “active peer” terms are used
in the clustering classification comparison to facilitate
discussion of results from each method, but these are
independent of FPCA+Kmeans and MLP classification.

5.1. FPCA+Kmeans on Full Data

When applying our two-step procedure to the entire
dataset, 89 out of the 1602 distinct SIPs are flagged
as outliers. When applying K-means, we observe three
clusters. Recall that outlier clustering is based on
proportion of successful contacts, so cluster centers
are values between 0 and 1. In particular, we observe
low (Figure 4), mid (Figure 5), and high (Figure 6)
clusters, with centers .209, .664, and .993, respectively.
The circle plots clearly display similarities within each
cluster; notice how the plots represent distinct types
of behaviors due to the density and coloring of the
ribbons. This permits us to understand multiple SIPs’
behaviors without inspecting the original data for each
individually. In addition, it allows for strange activity to
be pinpointed quickly. For example, in the low cluster
(Figure 4), there are a handful of SIPs that contact many
DIPs but have very little success. These are the first four
of the figure, with these features being indicated by the
nearly solid amber center of the circle plot. We refer
to these as “blatant scanners”, because they act as we
expect of scanners but are relatively easy to detect with
a heuristic. Following these are outliers still contacting
many destinations, albeit more successfully. In the lower
half of Figure 4, these plots represent SIPs that only
contact a small amount of DIPs, indicated by the fewer
segments on the outer track. Also note that these SIPs
reach out to DIPs at only one point in the time series,
shown by the ribbons originating at the same place in the
yellow segment. We suggest this behavior is very much
like a “stealthy scanner” [3].

Examining the mid cluster in Figure 5, we see a
different behavior: SIPs that contact a few DIPs quite
consistently, frequently, and with varying success. We
refer to these as “listkeepers”, because they behave
similarly to scanners but it is as if they are updating
information on previously detected vulnerabilities.

The high cluster in Figure 6 shows the most
similarity among circle plots. These SIPs are those
that were flagged as outliers but had a high rate of

Page 7140



134.147.203.7 106.37.190.206 38.229.1.61 58.17.52.247 17.171.4.165 17.151.16.2

17.171.4.149 17.151.16.3 17.151.16.27 17.151.16.1 17.171.4.166 17.171.4.167

17.151.16.0 17.171.4.147 17.171.4.148 17.171.4.150 17.151.16.5 17.171.4.90

17.151.16.4 17.151.16.6 17.171.4.92 17.151.16.7 17.171.4.117 17.171.4.93

17.151.16.56 17.171.4.91 17.171.4.116 17.151.16.22 17.171.4.94

Figure 4. Full dataset - low cluster

17.151.16.33 17.151.16.24 17.171.4.146 91.189.94.84 169.229.70.173 66.187.233.33

173.255.193.57 128.113.28.77 204.2.134.151 204.109.63.20 169.229.70.126 208.87.104.143

204.2.134.150 169.229.70.197 91.189.89.19 204.235.61.67 76.17.222.143 173.230.158.74

198.58.100.23 209.114.111.135 174.36.71.10 96.44.142.8 149.20.68.120 50.23.135.74

199.7.177.124 67.18.187.246 142.54.181.92 72.8.140.108 72.8.140.119 198.199.111.44

17.171.4.118

Figure 5. Full dataset - mid cluster

129.6.15.26 17.151.16.20 129.19.63.23 24.8.181.75 128.210.205.204 67.41.223.85

129.19.6.194 192.11.69.85 129.19.1.12 165.127.125.148 74.7.177.209 184.159.52.73

50.198.214.18 192.11.130.49 129.19.6.178 50.198.214.21 129.7.48.200 76.76.71.53

50.134.249.69 129.19.63.127 84.50.17.110 75.71.192.164 129.19.1.74 70.56.53.118

24.54.161.188 129.19.63.92 216.17.139.120 50.134.253.111 67.40.137.217

Figure 6. Full dataset - high cluster

successful contacts. As previously stated, we do not
believe that all SIPs flagged as outliers are scanners, and
the step of clustering provides better separation among
the set. In fact, a majority of SIPs in the high cluster
are engaging in potentially trusted NTP behavior: one
SIP contacting one DIP in a uniform way and always
receiving a response. As such, we refer to these as the
“active peers”, which we believe have a lower priority
to be investigated as scanners than the other clusters, but
can be looked at in greater detail to determine if they are
trusted. For high resolution plots of exemplars for these
four labels, see “Supporting File 1”.

It is apparent that some types of circle plots appear
in more than one cluster. For example, there are SIPs
that contact three or four DIPs with one burst of packets
in each cluster (bottom right of Figure 7, bottom left
of Figure 5, top left of Figure 6). This behavior could
certainly be thought of as indicating a scanner and
should not be ignored because it appears in the high
cluster. With so few DIPs contacted, the proportion of
success for these SIPs can vary drastically. Thus, seeing
these plots across clusters indicates that this behavior
appeared with a varying degree of success, and perhaps
that these in the high cluster should be studied more
closely.

5.2. Comparison to Multilayer Perceptron

Multilayer perceptron (MLP) is a supervised
technique that requires a training dataset with labeled
responses (i.e., labeled SIPs) and corresponding
covariates on which to learn. When labeling the training
set, the covariates used are features of the data which
the mechanism that generated the labels relies on. For
the static fanout ratio (binary) scenario, this is the
count of instances in which the SIP exceeds the static
threshold. In the FPCA+Kmeans (clustering) scenario,
the covariates are the number of DIPs contacted by the
SIP and the proportion of success.

After MLP is trained and applied to the testing
dataset, the output is a numerical value for each
SIP in the test set. In the binary classification case,
these values exist between 0 and 1, with 0 indicating
“non-scanner” and 1 indicating “scanner”. In the
clustering classification case, these values exist between
0 and 3, with 0 representing “non-outliers”, 1 indicating
“low cluster”, 2 the “mid cluster”, and 3 the “high
cluster”. The output values may not necessarily be
integers, so rounding rules are implemented to assign
fractional values to a label. For example, if MLP
produces a value of 1.75 for a SIP, it is classified as part
of the mid cluster.

The first case we consider uses results of the static
fanout ratio as an approximation of “ground truth”. This

Page 7141



134.147.203.7 106.37.190.206 38.229.1.61 17.171.4.146 17.171.4.165 17.171.4.149 17.151.16.2

17.151.16.33 17.151.16.3 17.171.4.166 17.171.4.148 17.151.16.24 17.151.16.27 17.171.4.147

17.151.16.0 17.171.4.167 17.171.4.150 17.151.16.1 174.36.87.204 188.93.60.124 195.211.240.248

80.93.56.46 17.151.16.5 17.151.16.176 17.171.4.73 176.57.216.124 176.57.216.24 17.151.16.4

17.151.16.6 17.171.4.75 17.171.4.102 17.171.4.96 17.151.16.161 17.171.4.90 17.171.4.92

17.151.16.162 17.151.16.179 17.171.4.103 17.151.16.163 89.184.81.166 17.151.16.7 17.171.4.117

17.171.4.93 17.171.4.99 17.151.16.56 17.171.4.91 17.171.4.116 17.171.4.74 17.151.16.160

17.171.4.97 208.43.63.123 144.76.219.120 46.4.116.147 17.151.16.22 128.113.28.77 17.171.4.94

Figure 7. FPCA+Kmeans testing data low cluster

identifies 19 SIPs in the training data and 57 SIPs in
the testing data as scanners. Note that this case involves
no clustering, and remaining SIPs in each dataset are
labeled as “non-scanners”. To compare results, we only
apply the first step of FPCA which gives a binary
classification. As FPCA is unsupervised, we can apply it
directly to the testing set without training. Applying the
trained binary MLP to the testing set, none of the SIP

169.229.70.197 173.230.158.74 91.189.94.84 208.87.104.143 149.20.68.120 169.229.70.173

142.54.181.92 173.230.149.147 138.236.128.49 198.58.100.23 50.23.135.74 204.2.134.151

204.235.61.67 199.7.177.124 174.36.71.10 216.66.0.198 94.79.10.218 198.55.111.45

198.98.51.20 204.2.134.150 66.187.233.33 209.114.111.135 67.18.187.246 18.85.44.31

198.199.111.44 204.109.63.20 76.17.222.143 96.44.142.8 199.30.140.195 66.228.59.9

64.246.132.191 209.118.204.227 15.185.186.118 66.175.209.79 69.65.40.184 17.171.4.118

129.6.15.26 205.233.73.126 65.49.70.124 91.189.89.19 108.61.73.71 68.11.14.92

Figure 9. FPCA+Kmeans testing data mid cluster

173.230.149.147 138.236.128.49 198.58.100.23 199.7.177.124

174.36.71.10 209.114.111.135 64.246.132.191 76.17.222.143

4.53.160.112 50.97.210.25 75.166.130.12 24.9.83.170

75.71.187.4

Figure 8. MLP testing data low cluster

addresses in the ground truth are flagged as scanners; in
fact, the supervised technique detects no scanners at all,
demonstrating that MLP does not learn well from the
static fanout ratio (a fixed rule). When FPCA is applied
to the testing data, 174 SIPs are flagged as outliers. 56 of
these are scanners according to the static fanout ratio, so
FPCA captures 98.25% of the “ground truth” (it misses
one). While FPCA also identifies many SIPs that are
not scanners, we believe these are more favorable results
than those of MLP (supervised), which states there are
no anomalies in the data. Recall that an important part of
our methodology is that not all outliers found by FPCA
are scanners, which still holds here.

In the clustering classification case, we classify all
SIPs in the training data as “non-outlier”, “low cluster
outlier”, “mid cluster outlier”, or “high cluster outlier”
with FPCA+Kmeans (93 outliers are collected in the
training dataset), and then use these labels to train
MLP. The trained model will then be used to classify
the testing data into the four groups, and results are
compared to those of FPCA+Kmeans applied to the
testing dataset. The addresses flagged by FPCA in this
comparison form the same collection of 174 SIPs from
the binary case, but now clustered with K-means.

While we have satisfied the need for labeled data,
this does not include “ground truth”. In place of this,
we investigate the clusters of SIPs from both approaches
through circle plots. Figures 7 and 8 show the low
clusters from the FPCA+Kmeans and MLP techniques,
respectively. MLP detects a non-zero amount of SIPs
(unlike in the binary classification case when learning

Page 7142



from the static fanout ratio). While MLP has found
behavior similar to what we expect of scanners, it
appears to have clustered them inappropriately.

The mid (Figures 9 & 10) and high (Figures 11 & 12)
cluster comparisons show the same phenomenon, with
certain behaviors appearing in the ‘incorrect’ cluster.
For example, in the mid cluster of MLP in Figure 10,
the last three circle plots display behaviors we suggest
should place them in the high cluster, as their contacts
are always successful. The disparities between the two
high clusters are by far the greatest, as easily seen in
Figures 11 and 12. The high cluster for MLP seems to
have all three of our outlier types, with a few blatant
scanners and listkeepers at the top and the active peers
at the bottom.

To further compare the techniques, we look at the
SIP addresses flagged by one method but not the other.
We carry this out on the overall level; that is, we look
at the differences between sets of outliers not clustered.
This is due to the improper clustering discussed, which
results in many of the SIPs common to both methods
appearing in different clusters, e.g., the three “blatant
scanners” in Figure 7 are the same SIPs as in Figure 12.
Viewing these circle plots will allow us to investigate if
one method detected behaviors the other did not.

FPCA flags 174 SIPs in the testing data as outliers,
72 of which are not identified by MLP. Circle plots
for these are shown in Figure 13. On the other hand,
MLP flags 103 SIPs, of which only one is not in
the set detected by FPCA (Figure 14). This lone SIP
exhibits behavior that we previously thought of as
being an “active user”. Note that similar behavior is
flagged by FPCA as well (last row of Figure 13). This

204.235.61.67 204.2.134.150 66.187.233.33

67.18.187.246 174.16.125.31 71.218.170.52

174.29.204.145

Figure 10. MLP testing data mid cluster

138.236.128.123 198.55.111.13 4.53.160.112 17.151.16.20 15.126.193.74 50.97.210.25 50.28.8.168 129.19.63.23 24.8.181.75

67.41.223.85 129.19.6.194 129.19.1.12 165.127.125.148 74.7.177.209 184.159.52.73 50.198.214.18 192.11.130.49 129.19.6.178

50.198.214.21 129.7.48.200 76.76.71.53 50.134.249.69 129.19.63.127 84.50.17.110 75.71.192.164 128.210.205.204 129.19.1.74

24.54.161.188 129.19.63.92 216.17.139.120 50.134.253.111 67.40.137.217 71.208.22.131 76.120.33.12 71.208.17.35 75.166.200.239

192.11.69.85 24.9.91.86 24.9.52.98 24.8.176.64 97.122.172.130 67.190.26.234 158.142.32.237 75.70.65.145 71.218.180.9

24.9.125.11 75.71.83.6 66.79.136.205 67.217.8.6 71.196.161.134 98.245.152.211 67.217.8.205 50.134.248.23 75.166.130.12

98.245.153.151 174.51.240.8 75.166.141.222 173.73.86.15 208.73.249.106 75.71.82.54 50.134.252.15 98.245.169.71 71.211.175.76

174.16.125.31 70.183.101.21 75.71.187.4 24.9.81.155 71.218.170.52 98.245.98.31 50.28.8.22 71.218.182.182 71.211.156.1

88.196.186.189 67.176.39.245 174.29.72.48 174.29.204.145

Figure 11. FPCA+Kmeans testing data high cluster

134.147.203.7 106.37.190.206 38.229.1.61 17.171.4.146 17.171.4.165 17.171.4.149 17.151.16.2 17.151.16.33 17.151.16.3

17.171.4.166 17.171.4.148 17.151.16.24 17.151.16.27 17.171.4.147 17.151.16.0 17.171.4.167 17.171.4.150 17.151.16.1

169.229.70.197 173.230.158.74 91.189.94.84 208.87.104.143 149.20.68.120 169.229.70.173 142.54.181.92 50.23.135.74 204.2.134.151

138.236.128.123 129.6.15.26 129.19.63.23 24.8.181.75 68.11.14.92 67.41.223.85 129.19.6.194 67.217.8.6 192.11.69.85

129.19.1.12 165.127.125.148 74.7.177.209 50.134.248.23 184.159.52.73 50.198.214.18 192.11.130.49 129.19.6.178 50.198.214.21

129.7.48.200 76.76.71.53 50.134.249.69 129.19.63.127 84.50.17.110 75.71.192.164 128.210.205.204 129.19.1.74 24.54.161.188

129.19.63.92 216.17.139.120 50.134.252.15 50.134.253.111 71.196.161.134 75.70.65.145 67.40.137.217 98.245.153.151 71.218.180.9

24.9.125.11 24.9.91.86 208.73.249.106 75.71.82.54 98.245.152.211 97.122.172.130 75.71.83.6 174.51.240.8 70.183.101.21

24.9.52.98 24.9.81.155 24.8.176.64 67.190.26.234 67.217.8.205 158.142.32.237 174.29.72.48 71.208.22.131 76.120.33.12

71.208.17.35 75.166.200.239

Figure 12. MLP testing data high cluster

shows that our method may not be missing any unusual
activity that MLP can detect. Other circle plots of Figure
13 represent the “stealthy scanner” and “listkeeper”
behavior. We would certainly want to find this activity
while searching for scanners and MLP does not detect
them.

6. Discussion
The cases and comparisons here demonstrate the

superiority of FPCA+Kmeans over a commonly used
supervised machine learning technique, even when MLP
is trained with the superior method. We have shown how
circle plots can be used to visualize results of anomaly

Page 7143



174.36.87.204 188.93.60.124 195.211.240.248 80.93.56.46 17.151.16.5 17.151.16.176 17.171.4.73 176.57.216.124

176.57.216.24 17.151.16.4 17.151.16.6 17.171.4.75 17.171.4.102 17.171.4.96 17.151.16.161 216.66.0.198

94.79.10.218 198.55.111.45 198.98.51.20 17.171.4.90 17.171.4.92 17.151.16.162 17.151.16.179 17.171.4.103

17.151.16.163 198.55.111.13 89.184.81.166 17.151.16.7 17.171.4.117 17.171.4.93 17.171.4.99 18.85.44.31

198.199.111.44 204.109.63.20 96.44.142.8 17.151.16.56 17.171.4.91 17.171.4.116 17.171.4.74 17.151.16.160

17.171.4.97 208.43.63.123 199.30.140.195 66.228.59.9 144.76.219.120 209.118.204.227 15.185.186.118 66.175.209.79

46.4.116.147 69.65.40.184 17.151.16.22 17.171.4.118 205.233.73.126 65.49.70.124 128.113.28.77 91.189.89.19

17.171.4.94 17.151.16.20 15.126.193.74 50.28.8.168 108.61.73.71 66.79.136.205 75.166.141.222 173.73.86.15

98.245.169.71 71.211.175.76 98.245.98.31 50.28.8.22 71.218.182.182 71.211.156.1 88.196.186.189 67.176.39.245

Figure 13. IPs detected by FPCA but not MLP

detection methods, and facilitate their understanding.
In the second case of labeling (which used results of

FPCA+Kmeans on the training dataset), we found that
MLP was able to learn what was “unusual” in the data
to some extent, but it could not stratify these outliers in a
meaningful way. Certainly, SIPs could be clustered with
a different mechanism after being detected by MLP, but
this increases computation time and reduces MLP back
to a binary classification; these are unnecessary in the
face of our method, which accomplishes the detection
and clustering as is. Further, the greater number of SIPs
detected by FPCA provides a better net for which to
catch malicious behavior, both known and new. For
example, if another bot engages in scanning behavior, it
will merely be added to the existing cluster and no new
investigation need occur. However, if a 0-day attack is
launched, it may be put in an existing cluster or a new
one, and the circle plot is likely to stand out.

The need for labeled data in order to run a supervised
approach is a hurdle that is difficult to overcome. In the
case of network security, ground truth labels seem to be
impossible to get and may not even exist, i.e., new 0-day
attacks. Any approximation of the true labels that is used
must be chosen with care, as our binary classification
comparison showed that MLP could not learn well from
a simple heuristic. In fact, while training a model on an
approximation of ground truth allows for the production
of results, these should not hold much weight in practice
because it has been shown that training on misclassified
data can have detrimental effects [31].

Another benefit of our unsupervised approach is that

24.9.83.170

Figure 14. IPs detected by MLP but not FPCA

it is dynamic; it searches for data that is “unusual”
with respect to the entire set, so when an adversary
introduces a new type of anomaly or scanning behavior,
the unsupervised approach has the potential to discover
it. A supervised approach will likely never identify this
new data because it is searching for features learned
from old behavior, and must re-train to face new types.
Unsupervised techniques (FPCA+Kmeans) do not face
this issue and learn solely from the data, making them
better candidates for the task of anomaly detection in
network traffic.

7. Conclusions
We have demonstrated that an unsupervised

technique such as FPCA+Kmeans significantly
outperforms the supervised approach of MLP when
applied to a real-world network traffic dataset for the
task of anomaly classification. Cyber-security needs
mechanisms that can adapt dynamically and learn from
any incoming data. FPCA+Kmeans appears to be a
very promising approach toward this end. We suggest
that small multiples of circle plots lend themselves well
to the visual detection of smaller groupings within a
cluster, thereby allowing an operator to decide which
SIPs should be further investigated. For future work,
we intend to explore clustering the results of K-means
according to a different characteristic, in order to further
separate the behaviors in each.

Acknowledgments
This material is based on research sponsored by the Department

of Homeland Security (DHS) Science and Technology Directorate,
Homeland Security Advanced Research Projects Agency (HSARPA),
Cyber Security Division (DHS S&T/HSARPA CSD) BAA
HSHQDC-14-R-B0005, and the Government of United Kingdom of

Page 7144



Great Britain and Northern Ireland via contract number D15PC00205.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the Department of Homeland Security, the U.S. Government, or
the Government of United Kingdom of Great Britain and Northern
Ireland.

The research of Haonan Wang was partially supported by NSF
grants DMS-1521746 and DMS-1737795.

References
[1] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo, “A

review of port scanning techniques,” ACM SIGCOMM
Comp. Comm. Review, vol. 29, no. 2, pp. 41–48, 1999.

[2] M. Allman, V. Paxson, and J. Terrell, “A brief history of
scanning,” in Proceedings of the 7th ACM SIGCOMM
Conf. on Internet Measurement, IMC ’07, (New York,
NY, USA), pp. 77–82, ACM, 2007.

[3] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning:
a comprehensive survey,” IEEE Comm. Surveys &
Tutorials, vol. 16, no. 3, pp. 1496–1519, 2014.

[4] M. Network, “Merit,” 2016. https://www.merit.edu/.
[5] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos,

M. Bailey, and M. Karir, “Taming the 800 pound gorilla:
The rise and decline of ntp ddos attacks,” in Proceedings
of the 2014 Internet Measurement Conf., IMC ’14, (New
York, NY, USA), pp. 435–448, ACM, 2014.

[6] G. Fernandes, L. F. Carvalho, J. J. Rodrigues, and
M. L. Proença, “Network anomaly detection using
ip flows with principal component analysis and ant
colony optimization,” Journal of Network and Computer
Applications, vol. 64, pp. 1–11, 2016.

[7] M. Zareapoor, P. Shamsolmoali, and M. A. Alam,
“Advance ddos detection and mitigation technique for
securing cloud,” Intnl. Jrnl. of Computational Science
and Engineering, vol. 16, no. 3, pp. 303–310, 2018.

[8] R. McAndrew, M. Gharaibeh, H. Wang, S. Hayne,
and C. Papadopoulos, “A functional approach to
scanner detection,” in Proceedings of the Asian Internet
Engineering Conference, pp. 38–45, ACM, 2017.

[9] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of
network anomaly detection techniques,” Jrnl. of Network
and Computer Applications, vol. 60, pp. 19–31, 2016.

[10] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J.
Kim, “A survey of deep learning-based network anomaly
detection,” Cluster Computing, pp. 1–13, 2017.

[11] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised
network intrusion detection systems: Detecting
the unknown without knowledge,” Computer
Communications, vol. 35, no. 7, pp. 772–783, 2012.

[12] A. L. Buczak and E. Guven, “A survey of data
mining and machine learning methods for cyber security
intrusion detection,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[13] B. Hammi, M. C. Rahal, and R. Khatoun, “Clustering
methods comparison: Application to source based
detection of botclouds,” in Security of Smart Cities,
Industrial Control System and Communications, 2016
Intntl. Conf. on, pp. 1–7, IEEE, 2016.

[14] M. F. Lima, L. D. Sampaio, B. B. Zarpelao,
J. J. Rodrigues, T. Abrao, and M. L. Proença Jr,
“Networking anomaly detection using dsns and particle
swarm optimization with re-clustering,” in Global
Telecommunications Conference (GLOBECOM 2010),
2010 IEEE, pp. 1–6, IEEE, 2010.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:
Clustering analysis of network traffic for protocol-and
structure-independent botnet detection,” 2008.

[16] Y. Yasami and S. P. Mozaffari, “A novel unsupervised
classification approach for network anomaly detection
by k-means clustering and id3 decision tree learning
methods,” The Journal of Supercomputing, vol. 53, no. 1,
pp. 231–245, 2010.

[17] M. Panda and M. R. Patra, “A novel classification
via clustering method for anomaly based network
intrusion detection system,” International Journal of
Recent Trends in Engineering, vol. 2, no. 1, p. 1, 2009.

[18] M. Krzywinski, J. Schein, I. Birol, J. Connors,
R. Gascoyne, D. Horsman, S. J. Jones, and M. A. Marra,
“Circos: an information aesthetic for comparative
genomics,” Genome research, vol. 19, no. 9,
pp. 1639–1645, 2009.

[19] B. Johnson and B. Shneiderman, “Tree-maps: A
space-filling approach to the visualization of hierarchical
information structures,” in Proc. of the 2nd conf. on
Visualization, pp. 284–291, IEEE Computer Society
Press, 1991.

[20] E. Tufte and P. Graves-Morris, “The visual display of
quantitative information.; 1983,” 2014.

[21] E. R. Tufte, Envisioning information. Graphics Press,
1990.

[22] “Netbrane, funded project, department of homeland
security award d15pc00205,” 2015-2019.

[23] B. Lang, “Monotonic multi-layer perceptron networks
as universal approximators,” in Intnl. Conf. on Artificial
Neural Networks, pp. 31–37, Springer, 2005.

[24] F. Yao, H.-G. Müller, and J.-L. Wang, “Functional
data analysis for sparse longitudinal data,” Jrnl. of the
American Statistical Association, vol. 100, no. 470,
pp. 577–590, 2005.

[25] S. I. Vrieze, “Model selection and psychological theory:
a discussion of the differences between the aic and the
bic.,” Psych. methods, vol. 17, no. 2, p. 228, 2012.

[26] Y. Li, N. Wang, and R. J. Carroll, “Selecting the number
of principal components in functional data,” Jrnl. of
the American Statistical Association, vol. 108, no. 504,
pp. 1284–1294, 2013.

[27] S. Seo, A review and comparison of methods for
detecting outliers in univariate data sets. PhD thesis,
University of Pittsburgh, 2006.

[28] J. A. Hartigan and M. A. Wong, “Algorithm as 136:
A k-means clustering algorithm,” Jrnl. of the Royal
Statistical Society, C, vol. 28, no. 1, pp. 100–108, 1979.

[29] D. J. Ketchen and C. L. Shook, “The application of
cluster analysis in strategic management research: an
analysis and critique,” Strategic management journal,
vol. 17, no. 6, pp. 441–458, 1996.

[30] Z. Gu, “Circlize: Circular layout in r,” Comprehensive R
Archive Network (CRAN), 2013.

[31] M. Soysal and E. G. Schmidt, “Machine learning
algorithms for accurate flow-based network traffic
classification: Evaluation and comparison,” Performance
Evaluation, vol. 67, no. 6, pp. 451–467, 2010.

Page 7145


