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Abstract

Cyber-physical systems build the backbone of
today’s information systems and implement, for
example, complex control applications that strictly rely
on sensor data. Thus, it is inherently important for
cyber-physical systems to provide a reliable data path
throughout the entire system: from the sensor nodes
to the data post-processing infrastructure in networked
environments (e.g., edge and cloud infrastructure).

This paper analyzes system-level aspects of the data
path of cyber-physical systems (i.e., storage components
and file systems) and reveals limitations of current
technologies. To improve the current state of the art,
we present the implementation of an embedded file
system with low jitter which improves predictability
characteristics of cyber-physical systems.

1. Introduction

Cyber-physical systems (CPS) build the backbone
of today’s information systems [1, 2]. The systems
are employed to support and implement a wide variety
of different applications [3] which, as of today, use
countless Internet-of-Things (IoT) devices [4] that
sense, collect, and pre-process data. The data of
CPSs propagate to large-scale, distributed workloads
that are handled by cloud-computing infrastructures [5,
6]. In such complex systems, it is crucial to actively
protect the weakest system components to support the
overall system. The base infrastructure consists of
smallest-sized battery-powered IoT devices (e.g., [7])
that have modest compute and storage resources and
communicate over wireless communication links.

The heterogeneity of individual components (i.e.,
network links, storage devices) makes it a challenge
to design and build cyber-physical information
systems (CPIS) under consideration of non-functional
properties at system- and component-level. Such
non-functional properties include, for example, timing
characteristics and power demand. In particular,

micro-sized systems [8] that are no larger than the
tip of a grain of rice are operated at technological
limits. Therefore, the systems’ software must be closely
adapted to individual hardware characteristics. For
example, software-design considerations must include
timing properties and power demand of operations at
system level. Cross-layer approaches [9] that allow
root-cause analyses of complex systems are necessary
to achieve a holistic design for CPIS.

In CPIS, measured data often can only be sensed
once, as environmental properties (e.g., atmospheric
pressure, warm-up of a workpiece) that are captured by
sensors, change rapidly. Thus, data that is sensed and
(pre-)processed by the base infrastructure is extremely
valuable to the overall system. Obtained data must be
handled with due care and precautions to proactively
avoid data losses and to reduce the number of costly
recalculations and retransmissions. In addition, CPISs
are fragile and sensitive to errors as to the large number
of transmissions that occur across system boundaries
and use unreliable links (e.g., wireless networks).

Recent research has explored different ways to
establish protective schemes for the data path, for
example, by reliable network protocols [10] and
corresponding operating-system level support [11]. So
far, however, it has not been considered that storage
infrastructures in general and file systems in particular
play a decisive role to protect the data path of CPISs.
Our findings, that we present in this work, show
that file systems which are used within CPISs have
disadvantageous characteristics (i.e., high jitter) due to
unpredictable runtime behavior that causes high jitter
for file system operations. This is a serious threat to
the operation of CPISs as sensor nodes at the base
infrastructure suffer from low performance and high
energy demand. This leads to low energy-efficiency
and may result in runtime errors (deviation from target
or actual) and can even entail failures (breakdown).
To improve the current status quo, we present MPFS,
a file system which is tailored to the requirements of
CPISs (i.e., low jitter).
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The contributions of this work are threefold.
First, we present an in-depth analysis for file system
operations with regard to their non-functional properties
(e.g., latencies). Second, we present MPFS, a file
system designed to improve the current state of the art
by providing predictable, low-latency operations at file
system level. Third, we evaluate MPFS and compare
the results with an industry standard (i.e., EXT4). We
further discuss the impact of MPFS for the system
design and improved energy-efficiency (i.e., low-power
operations). In sum, the paper improves the data path of
CPISs at storage level and makes file system operations
significantly more predictable (i.e., low jitter) compared
to the current status quo.

The paper is structured as follows. Section 2 presents
the system model for cyber-physical information
systems that are subject to the discussion. The
challenges outlined in Section 3 are addressed by our
proposed file system MPFS. Section 4 presents the
design and implementation of MPFS and we evaluate the
file system with benchmarks and compare it against an
industry standard (i.e., EXT4) in Section 5. Section 6
presents related work and Section 7 concludes.

2. System Model

For the work presented in this paper we consider the
following system model of a cyber-physical information
system. Our system model assumes concurrent activities
that are spread across several networked system
components (i.e., IoT devices, edge servers, and cloud
infrastructure). The individual components concurrently
execute threads which communicate with each other
and interact in a reactive manner with the physical
world. For this interaction, a system-wide feedback and
control loop is deployed to the overall cyber-physical
system. Figure 1 shows an overview of the system
model. Our system model assumes an indirect coupling
of IoT devices with a cloud infrastructure by means of
an edge server.

2.1. System Properties

The system properties of the targeted systems are
grouped into three aspects. First, we assume that
concurrent activities in the system jointly implement
the necessary functionality of the overall CPIS in a
cooperative manner. Second, the interactions of the
system components use unreliable network links that
may slow down or break during operation. Third, we
assume that sensors and actuators implement feedback
loops and control applications at different scopes of
the system. On the one hand, we consider fast-path
operations that operate on a local scope (i.e., component

Edge serverIoT device Cloud

Figure 1: Abstract system architecture of a
cyber-physical system that connects networked sensor
nodes (i.e., IoT devices) to the cloud via an edge server.

scope) and slow-path operations that have to operate
across component borders on a global scope (i.e., overall
CPIS scope), and thus, must utilize communication links
that are susceptible to transmission failures.

Concurrency The system model assumes
concurrency at thread- and component-level of the
system nodes (i.e., IoT devices, edge server, cloud
infrastructure) that operate within the CPS. As different
system components must cooperatively implement
higher level application logics, it is assumed that
individual nodes do not operate on shared memory and
cache coherency is not given. Instead, the individual
system nodes use message passing for coordination
purposes (i.e., control flow) that implement the
application logic, on the one hand. On the other hand,
the system model expects that data delivery (i.e., data
flow) uses a network infrastructure that may be prone to
data transmission delays and failures.

Interaction The cooperative work of the CPS leads to
interactions that impose interferences in different areas
of the CPS. For example, concurrent threads execute
different subtasks and operate on finite system resources
of the CPS (i.e., limited CPU resources and I/O
bandwidth). Thus, the operations influence each other
and cause non-deterministic delays when resources
exhaust or are temporarily unavailable. On network
links, as another example, interference between system
components lead to congestion and retransmissions.
Such events entail an increased resource demand (i.e.,
time and energy demand). CPS interactions inherently
depend on physical aspects of the environment and often
lead to unforeseeable and unpredictable situations that
must be handled gracefully.

Feedback and Control The degree of concurrency
and interferences of the overall system impact the
quality of the feedback and control loop of the CPS.
Thus, our system model assumes that the control quality
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directly depends on the predictability of individual
system components. For example, when the resource
demand of specific CPS operations (i.e., transmission
of datagrams, storage of data blocks) is predictable, the
system can adapt to such system properties to improve
non-functional characteristics (i.e., performance,
latencies, energy demand) of the overall CPS.

For our system model we identify and discuss
distinct cyber-physical information systems (CPIS) in
the following section.

2.2. Cyber-Physical Information Systems

We consider a cyber-physical information system
(CPIS) to consist of one or more networked IoT devices
that implement sensors and actuators of a cyber-physical
system (CPS) and implement the base functionality of a
information system (IS) that operates across edge and
cloud infrastructure at a higher abstraction level. Both
of CPISs presented in this section share the same system
model as discussed in the previous section. We discuss
two different types of CPISs and focus on open research
questions, in particular, regarding the data path.

Predictive Maintenance Systems With the support
of CPSs, it is feasible to build predictive maintenance
systems that implement CPISs which uses sensor
values to detect the imminent breakdown or failure
of specific system components. As to the proactive
characteristics of predictive maintenance systems, it
is possible to minimize down times as maintenance
can be applied ahead of failure of the affected system
component(s). Anomalies of system components are
detected in such systems, for example, to recognize a
failing solar cell in a batch of identically constructed
cells in a neighboring environment [12]. Sensed data
in predictive maintenance systems includes operating
values or their average (instead of detailed time series
data). To guarantee a reliable storage of the sensed
data, predictive maintenance systems must ensure that
sensed data is reliably stored and aggregated even in
case of network failures. Besides storing capabilities
this also entails a certain amount of compute power
that is necessary for the individual IoT devices that are
equipped with the sensors.

Dynamic Distributed Wireless Systems Dynamic
distributed wireless systems build the base infrastructure
for CPISs that have a variable number of subsystems.
For example, during the operation of the dynamic
distributed wireless system, individual system
nodes (i.e., IoT devices) join or leave the overall
system. The application logic at a high level of

abstraction, however, is designed to handle the dynamic
system structure. Interdisciplinary research, for
example, relies on such dynamic distributed wireless
system to monitor the behavior of wild animals (e.g.,
bats [11]). Although the higher-level application logic is
prepared to tolerate the sporadic vanishing of individual
nodes, such situation increase the importance of reliable
data sensing and storage at the level of the IoT devices:
when network connections are lost or become available,
the system must reconfigure and adapt to the new
environmental conditions. Data must be pre-processed
and reliably stored. In particular, the storage access
must be predictable with regard to time and energy
demand in order to respect battery capacities of the
sensor nodes within the CPIS.

For both of the discussed CPISs it is important
to stress the dynamic operation in dependence of the
availability of network links. In cases when network
links are congested or unavailable, it is necessary
to dynamically switch to an operation mode during
which data is (i) pre-processed and (ii) stored at
system components that have only mediocre amounts of
resources (i.e., IoT devices). From the discussed CPISs
we extract distinct challenges in the next section.

3. Challenges

Aligned to the system model and the concrete CPISs
discussed in the previous section, we extract challenges
that arise when CPS are integrated into IS.

Real-time Requirements Within CPSs, strict
timeliness is required to ensure stability of controllers.
If a computation is delayed too long, control decisions
are potentially invalidated by concurrent events in the
physical system. The result is an instability of the
controlled system, which can lead to system errors and,
in the worst case, a breakdown of the system.

Similarly, the IS that accumulates and processes
data on a higher logical level has to meet timing
requirements, because otherwise, decisions made by
the system can be outdated and consequently invalid.
Therefore, the information processing chain has to
consider data age during operation.

Cost and Size CPSs often employ smallest-size
embedded computing systems [13, 8] in very large
numbers [14]. It is therefore mandatory that the
hardware comes at low cost. In consequence, these
systems are severely restricted in terms of computing
power and energy supply. Therefore, using the available
resources efficiently is vital for CPISs. However, these
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systems still have to work reliably, even under rough
environmental influences [15].

Energy Awareness CPSs and embedded systems [16]
typically operate under energy and power constraints.
Data processing and data storage contribute significantly
to the whole-system energy demand [17]. Therefore,
energy efficiency in the average-case and in the
worst-case [18] are important aspects.

Data Management To integrate a CPS into an IS, the
data management has to be considered carefully. The
CPS can process data locally, transmit it via network,
or save it locally on persistent storage. The optimal
trade-off depends on the network parameters, local
storage properties, and timing and energy requirements.

4. Design and Implementation

Persistent storage is a critical core element for
CPIS. However, modern file systems are designed to
balance a trade-off between a variety of functional and
non-functional requirement of numerous use-cases. For
instance, they focus on high throughput rather than
worst-case scenarios. Therefore, current state-of-the-art
file systems do not satisfy the challenges presented
in Section 3. This section presents the embedded
predictable file system (MPFS), a file system prototype
tailored for CPIS.

4.1. Objectives

Goal of the MPFS file system is to provide typical
file operations for CPISs, such as read, write, append,
create, and delete, with ACID properties (atomicity,
consistency, isolation, and durability) in a predictable
and energy-efficient manner. We assume that CPISs
use flash storage for cost, size and robustness reasons.
The key source of unpredictability, and also a major
energy consumer, are block-layer operations on the flash
device [17]. Therefore, the main design goal of MPFS
is to keep the number of block-layer operations small
and analyzable, even in the worst case. To achieve this,
MPFS dispenses with common file-system features that
are not necessary in embedded systems. In particular,
MPFS purposefully does not implement file system
features such as transparent compression or sparse files.

4.2. Design

Tailoring a file system specifically to the needs
of CPISs requires the separation between necessary
features and unnecessary features of file systems.
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Figure 2: Latency of EXT4 for opening random files
depending on directory-nesting depth

Therefore, MPFS intentionally lacks common but
unnecessary file system features that interfere with
predictability properties and energy efficiency.

Flat File-System Structure The key to predictable
execution time and energy demand is the minimization
of complexity. As a motivating example, we have
evaluated 10,000 fopen operations on an EXT4 file
system on a Raspberry Pi [19]. In this experiment, we
place these files into directories with different levels
of nesting depth. The cumulative latency distributions
are shown in Figure 2. Thereby, the bottom end of
each line shows the best-case latency, and the top end
shows the worst-case latency. The results demonstrate
that, with increasing nesting depth, both latency and
variance grow. The reason for this effect is that the path
resolution algorithm has to access more storage blocks
when nesting directories. In summary, this experiment
shows that directory nesting causes unpredictability in
file systems. We therefore opt for an unconventional
approach in MPFS: it supports no directories except
for the file system root and therefore provides a flat
file-system structure, only.

Instead of a hierarchical directory structure, MPFS
stores all file-system entries in a hash table of
configurable size. Thus, it enables path resolution with
a constant and small number of block operations. The
designer of a CPIS is responsible to configure the hash
table size appropriately. This is a typical approach
in CPS: system configuration is decided statically at
design-time in order to reduce complexity at run-time.

Memory Management To allow block allocation and
deallocation with a constant number of block-layer
operations, MPFS manages information about available
storage space in a linked list (i.e. list free blocks). On

Page 7265



the one hand, this data structure increases predictability
because allocation and deallocation have a constant cost
in terms of block-layer operations. On the other hand, it
does not implement wear leveling, as this is commonly
implemented in hardware, below the block-layer level.
This memory-management strategy of MPFS improves
the worst-case behavior with respect to latency and
energy demand.

Block-Layer File Structure Allocated data that is
managed within files at logical level are stored in
individual blocks of the flash storage device. Used
blocks are managed on a per-file basis and in linked
lists. This data structure allows simple and deterministic
append operations to the file contents.

Consistency and Durability We assume that
unexpected power losses during complex operations
(i.e., operations that span across several block-layer
operations) may lead to corruptions and errors. We use
appropriate counter measures to avoid a propagation
of errors. Instead of transaction-based operations,
MPFS solely relies on atomic block-updates to ensure
consistency. The basic idea is that every block update
maintains a logically consistent state. Besides, the order
of block operations is enforced using barriers and sync
operations. Since block operations in modern flash
storage are atomic, the file system always remains in a
consistent state.

Compared to transaction-oriented approaches (e.g.
journaling), the MPFS approach to data consistency has
better worst-case behavior, since it has less overhead.
Furthermore, all data is written immediately to the
disk, rather than caches. This results in performance
degradation for the average-case, but it ensures that
all written data is immediately in persistent storage.
Furthermore, it has lower run-time interference than
asynchronous cache write-back operations.

Consistency in MPFS is, however, not a
contradiction to transaction-based consistency.
Instead, a CPIS can implement transactions on a
higher logical level, for instance, using a database
system (i.e., SQLite [20]). This combined approach
enables complex transactions that are not atomic in the
current implementation of MPFS.

4.3. Implementation

We have implemented MPFS as a module for
the Linux kernel, based on the Linux virtual file
system (VFS). This kernel subsystem offers necessary
abstractions which increase portability with relatively
low overhead.

5. Experimental Evaluation

We evaluate MPFS on a Raspberry Pi 3 Model
B [19] with a 16 GiB SD card, using Raspbian
9 (Linux Kernel v4.9). The system features a
quad-core processor running at 1.2 GHz and 1 GiB
of main memory. In the evaluation we compare
MPFS against the industry-standard general-purpose file
system EXT4 [21].

5.1. Evaluation

For each experiment, we first drain all file
system caches, and then execute 10,000 repetitions.
We measure the latency using the function
clock gettime, store measured latency values
in the volatile RAM during the experiment, and make
the results persistent by writing them onto the SD card
after the experiments’ completion. This minimizes
interference on the file system and caches during the
experiment.

For each experiment, we prepare the file system
specifically so that, for instance, all necessary files
exist. Figure 3 summarizes the evaluation results for the
following four benchmark scenarios:

Scenario / Description

append Append a block of 4096 bytes to an
existing file.

read Read a block of 4096 bytes from an
existing, non-empty file.

open-new Open a non-existing file, which
implicitly creates the file.

unlink-empty Delete an empty file.

We evaluate all scenarios with the MPFS and EXT4
file systems, both in a nosync variant that uses volatile
caches, and a sync variant that enforces data persistence.

5.2. Analysis

Our evaluation of the four benchmark scenarios
shows the results visualized by Figure 3. In the
following we discuss the results which show several
different trends.

• EXT4-nosync performs best but does not
guarantee data persistence, because data
is written to volatile caches, only. Thus,
EXT4-nosync avoids the latency and the jitter
of operations to the persistent flash storage.
However, this approach is not useful for CPISs,
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(a) 4096 bytes append latency
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(b) 4096 bytes read latency
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(c) Open new file latency
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Figure 3: Cumulative latency distributions of file-system operations

because data that was sensed shortly before a
system failure is likely to be very important and
may not be recovered otherwise.

• EXT4-sync has the highest latency of all
evaluated file system variants, because the
EXT4 implementation of Linux assumes that
fast caches in volatile memory are available.
Therefore, the implementation is not tailored
to the system model of CPIS. Since EXT4
is a general-purpose file system, it targets a
pareto-optimal balance between functional (i.e.,
features) and non-functional (i.e., performance,
energy) system requirements. In consequence,
the file system is more complex, resulting in
higher worst-case latency and jitter compared to
the persistent MPFS variant.

• MPFS-nosync is slower than EXT4-nosync
because the current prototype does not use
memory caches as efficiently as EXT4. However,
MPFS is not designed to be efficient in this
non-persistent operation mode.

• MPFS-sync is faster than EXT4-sync because it

is specifically tailored to achieve persistence with
a predictably small number of flash operations.
In particular, the worst-case behavior latency is
lower. This result show that MPFS achieves better
predictability than EXT4.

• When reading data, MPFS is slower than EXT4
because the latter can use buffers in volatile
memory more efficiently.

• For all persistent variants, the worst-case latency
is significantly higher than the average-case
because the required flash operations introduce
latency and jitter.

In summary, our MPFS prototype offers persistent
and consistent data storage with better predictability
than EXT4. However, EXT4 uses caches more
efficiently. In summary, EXT4 is well-suited for various
use cases, but MPFS provides better predictability which
is the most important factor for the reliable operation of
CPISs.
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6. Related Work

Molano et al. propose a real-time file system [22] for
the RT-Mach kernel. It uses hard disk drives as storage
back-end and bandwidth reservation to provide latency
guarantees. However, storage technology has evolved
over the years and, today, hard disks contain complex
controllers that do not guarantee operation latencies.
Besides, hard disk drives are large-sized and sensitive to
physical stress, which makes them unsuitable for CPSs
that operate under rough environmental conditions.
Therefore, MPFS uses flash devices for storage.

Over the last years, multiple file systems have
been developed specifically for flash storage [23,
24, 25, 26]. These file systems consider problems
specific to this storage technology, such as wear
leveling. However, their performance focus remains
on average-case performance rather than predictable
latencies. For instance, flash file systems typically
apply garbage-collection, which increase throughput
when inactive, but it sporadically causes large jitter
when active. One reason is that popular file system
benchmarks, such as bonnie++ [27], evaluate the file
system throughput.

The paradigm shift from throughput to predictable
latencies has reached various fields of research
related to cyber-physical information systems. For
instance, latency outliers in data centers can harm the
whole-system performance significantly [28, 29, 30],
demanding jitter reduction and mitigation strategies
at large scale. Similarly, operating systems aim at
predictably low operation latency [31]. They thus
provide a reliable and predictable infrastructure for CPS
and CPIS.

Predictable operating systems form the basis for
IoT devices, as well as the fog and edge computing
paradigms [14, 32]. CPISs can therefore utilize
system components tailored for predictable operating
systems. However, the information management
remains a challenge specifically for CPISs that demands
for application-specific [13] approaches.

7. Conclusion

Modern information systems are connected to the
real-world and use cyber-physical systems (CPSs) that
sense and control the real world. The CPSs provide
necessary data for further information processing, and
enable novel use-cases that observe, evaluate, and
predict the behavior of physical systems at fine detail
and, simultaneously, at large scale.

When integrating CPSs into large-scale
cyber-physical information systems (CPISs), efficient

data management is the key challenge. Data can be
(pre-) processed locally, it can be transmitted via
different network links, and it can also be stored
locally, while considering timing, energy, cost and
further constraints. The optimal trade-off depends
on the individual use case, network parameters, the
properties of the local storage, and on functional and
non-functional (i.e., timing and energy) constraints.

Local information processing in CPSs has been a
research area for years, in terms of embedded and
real-time systems. Similarly, research on real-time
networks and cyber-physical networks integrates CPSs
into networks. However, there is a distinct lack in
research on file systems with predictable latency.

This paper has discussed shortcomings of existing
file systems in the context of CPISs. The consequence
is that, for CPISs, dedicated file systems are required.
Therefore, this paper proposes MPFS, a file system
specifically tailored to the needs of CPISs. The
evaluation of the MPFS prototype shows a significant
improvement in terms of latency and jitter, compared to
the industry-grade EXT4 file system running on a Linux
system.
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