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Abstract

Future cyber-physical systems must fulfill strong de-
mands on timeliness and reliability, so that the safety
of their operational environment is never violated. At
the same time, such systems are networked computers
with the typical demand for reconfigurability and soft-
ware modification. The combination of both expec-
tations makes established modeling and analysis tech-
niques difficult to apply, since they cannot scale with the
number of possible operational constellations resulting
from the dynamics. The problem increases when com-
ponents with different non-functional demands are com-
bined to one cyber-physical system and updated inde-
pendent from each other.

We propose a new approach for the design and de-
velopment of composable, dynamic and dependable soft-
ware architectures, with a focus on the area of net-
worked embedded systems. Our key concept is the
specification of software components and their non-
functional composition constraints in the formal lan-
guage TLA+. We discuss how this technique can be
embedded in an overall software design workflow, and
show the practical applicability with a detailed resource
scheduling example.

1. Introduction

Modern cyber-physical systems growingly assist us
in our daily life by solving complex tasks, for example
in driving assistance, manufacturing or scalable sensing.
Faulty execution of those tasks can lead to negative re-
sults such as loss of customers, financial loss, or even
loss of human lives. Therefore, more and more of such
systems are designed with high demands on reliability,
availability and safety.

The behavior of software systems is commonly in-
vestigated by analyzing predefined static system con-
figurations before the system is going into operation.
Ultra-reliable systems, such as airplanes and nuclear
power plants, therefore have a fixed setup with strict

operational borders and predefined configuration sets.
The proven system layout can fulfill all necessary non-
functional requirements and provides guarantees about
its operational behavior.

Can we map this classic dependability thinking onto
the new world of cyber-physical systems?

A crucial aspect in this area is the necessity for dy-
namics during deployment and execution. This results
from the wish for new features, reconfiguration capa-
bilities or bug fixing after the cyber-physical system is
deployed. An obvious example is fixing security bugs,
which is recurrently needed in all networked software
products.

Software update mechanisms today rely on perform-
ing functional composition of modules at loading time
or run-time. This concept is known as late binding.
When these mechanisms are applied in practical cyber-
physical systems, the result is an inherently dynamic
composition of reliable and proven static software mod-
ules. The modeling of such a dynamic reconfigurable
system with the traditional dependability analysis meth-
ods, such as Markov chains or fault trees, leads to a mas-
sive increase of model size and count. The practical re-
sult is an unpleasant trade-off decision to be done, be-
tween analyzability and reconfigurability of the result-
ing system. We argue that the underlying issue creating
this trade-off is the inappropriate (or missing) formula-
tion of system composition dynamics in formal analysis.

2. Approach

Our proposed approach is to expand the well-known
formal reasoning about system behavior to include com-
position and deployment of software modules more ex-
plicitly. The idea relies on the insight that a software
architecture is basically a set of rules, or a contract, that
some module composition procedure has to follow. This
allows to specify the composition rules of the software
architecture in a similar strict (formal) way as it is often
done with the single code module.
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To avoid a vast limitation of the system design space,
it is reasonable to focus on certain non-functional prop-
erties only during the analysis. This can be expressed
by according contracts between different system com-
ponents that are formally analyzed. The fulfillment of
these mutual contracts ultimately guarantees a set of
non-functional properties for the overall system.

The description of software modules, their contracts
and their non-functional demands must be given in a
way that allows a proper formal analysis. This is an
interesting challenge, since formal methods and espe-
cially formal specification languages are normally used
to proof behavioral properties of a single algorithm or
software component. In our approach, we propose to
use the same formal method for specifying all soft-
ware components and their composition. The result-
ing higher development efforts for formal specification
are later amortized by the ability to dynamically up-
date also software components in mixed-criticality sys-
tems, while keeping dependability promises and the pre-
dictable behavior of the system. It also explains why
proposing some modeling technique alone is not enough
– it must be accompanied by a matching requirement
specification and design phase, so that the models natu-
rally evolve from the product development.

The chosen formal technique must consider both low
and high level aspects of software, meaning that it needs
links to both code generation and general architectural
patterns. We decided to use TLA+ in our approach,
since it allows to specify clear interfaces between system
parts, and allows reasoning about non-functional prop-
erties of the composed model.

The remaining parts of the article are organized as
follows: Section 3 discusses the requirements for a de-
velopment workflow that supports formalized system
composition dynamics. Section 4 then explains why
TLA+ is a perfect fit for such an approach. Section 5
takes both the requirements and TLA+ and combines
them to a specific development workflow that can be di-
rectly applied in practice. After a short discussion of
related ideas in Section 6, we show a small example for
TLA-based analysis in Section 7.

3. Requirements on the Development
Workflow

From the initial discussion about the demands on fu-
ture cyber-physical systems, we can derive a number of
general requirements for their design and development
process:

R1 Systems must be able to meet high safety de-
mands;

R2 Systems should support a high degree of dynam-
ics with respect to the system configuration (i.e.,
support of software updates, introduction of new
features at run-time, or high integration of soft-
ware);

R3 The design process must support the design of,
and the reasoning on, non-functional properties;

R4 The design process must be efficient and feasible
from an engineering perspective.

Let us shortly discuss these requirements.
R1 says that the results of the design process are sys-

tems that can be used for safety-critical applications. We
therefore restrict ourselves to the safety problem here,
and leave out other dependability aspects such as relia-
bility or maintainability. We do this narrowing based on
the assumption that a working approach for safety mod-
eling and analysis can be later ported for dealing with
other non-functional aspects.

Safety-critical software (as well as hardware) is
commonly subject to certification by legal entities. For
those systems, the modeling and analysis methods are
predefined in standards and regulations. Such docu-
ments also demand the utilization of formal methods for
analyzing system safety properties. This cannot be done
in late design phases; it must either be applied on the
design of the whole system (contradicts R4), or it has
to be applied for critical components only (again, dur-
ing the whole design cycle) while establishing isolation
from not-so-critical components (contradicts R2 in con-
junction with R3).

R2 is an often observed requirement in the devel-
opment of modern software systems, for example web
applications. Here, the support for dynamics in late de-
velopment phases and at run-time is fulfilled (with re-
spect to the functional properties) by applying concepts
of late binding. This requires the specification of inter-
faces between software components and between soft-
ware components and the operating system. In terms of
non-functional properties (R3) this is difficult since the
impact of such a coupling is hard to define in an appar-
ent way. If in addition R1 requires formal reasoning,
the relation between different non-functional properties
leads to state space explosions with classic approaches,
even for small systems.

As non-functional properties (R3) we regard a.o.
several dependability aspects, timing, security prop-
erties, or resource consumption. Unfortunately, non-
functional properties can rarely be handled in the well-
known divide and conquer approach. In addition, the ef-
fect vectors of non-functional properties are frequently
orthogonal to the functional interfaces, and interaction
of non-functional properties between different compo-
nents happens in a nonlinear matter. This hinders the
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fulfillment of R4, as well as of R1 in conjunction with
R2.

R4 refers to a number of soft factors in relation to the
practical application of an approach. Thus, a new ap-
proach shouldn’t be “too far” away from existing ones,
since developers should be able to exploit gained expe-
riences and skills. E.g., it is a well-known fact that ap-
plicative programming languages are rejected by many
developers due to unaccustomed concepts, even they
could be quite useful in the respective application do-
mains. R4 also requires not to introduce to much over-
head, since that tends to be “bypassed”.

As one can see from this short discussion, the pre-
sented requirements R1—R4 are quite contradicting.

From the discussion of R1 we can conclude that for
future cyber-physical systems the use of formal methods
is a conditio sine qua non. To solve the conflict with R4,
such a method should be usable (also) in a constructive
way, not (only) in an analytical one. This means that the
method must allow to generate software (and possibly
hardware), rather than only to analyze properties of the
system after its design. This thinking is known from the
model driven development (MDD) field, where system
parts are modeled first and the source code is automati-
cally derived out of these models.

We suggest to use the selected formal method not
only to specify a certain system, but also to ensure func-
tional and non-functional properties of that very system.
This needs a holistic approach, where the formal method
is used as a kind of glue within the whole development
process. In style of a construction kit, our approach al-
lows for constructing different architectures with partic-
ular non-functional properties. In that way the required
dynamic (R2) as well as the safety (R1) is supported al-
ready at architectural level, since all new components
and all configurations of a system must meet the archi-
tectural constraints.

A formal method that supports our approach must
allow for different levels of abstractions, allow for the
description of functional as well as non-functional be-
havior, and has to support modularization. For practical
applicability, it should offer tools for construction and
for verification, and must be acceptable with respect to
the classic development process in cyber-physical sys-
tem design (R4).

4. Choosing TLA+

TLA+ is a specification language for describing a
systems behavior as a sequence of states, which are de-
fined as an assignment of values to variables through ac-
tion predicates [1]. Actions describe the transition be-
tween states of the system by changing the values of

variables. The temporal level of the formalism describes
how sequences of states evolve during execution [2].

Since behavior and (non-functional) properties of the
system are both formulated in TLA+, a clear represen-
tation of the enabling conditions can be created [3].
TLA+ allows to reason about system properties with a
model checker (TLC) [4], and supports formal proofs
with TLAPS (R3). It is especially suitable for concur-
rent and reactive systems (R1).

Most engineers in embedded systems are used to the
C programming language or object oriented languages
like Java. This makes TLA+ unfamiliar for program-
mers at first. To overcome this issue, the inventors of
TLA+ defined PlusCal. It is close to the syntax of the
C programming language (R4), but still has a direct link
to the TLA+ formalism, so that formal models can be
directly derived from code [5]. Since there are a lot
of information sources for TLA+ and PlusCal available
in public, we give no further insight in the approaches
themselves here. For further information, the reader is
referred to secondary literature, for example [1].

Composability describes the ability for flexible ex-
change of single software parts, without modifying the
system as a whole and loosing its guaranteed properties.
Similar to Kopetz [6] and Richling [7, 8], we see com-
posability not as a property of a running system, but of
its architecture. The latter is regarded as a set of build-
ing rules that drive the composition. Then, generally
spoken, composability is the ability of that very build-
ing rules to enforce certain statements for properties of
systems that are built following these rules.1

We aim for using TLA+ (a.o.) to design and ver-
ify composable cyber-physical software architectures,
meaning such building rules. If needed, these rules
should enforce safety properties at system level (R1).
Some of that building rules will apply at system design-
time, while others can also be applied at run-time. Espe-
cially the latter may include composition constraints that
can be formulated in TLA+ with indicator variables.

5. Development Workflow with TLA+

Given the stated requirements and the choice for
TLA+, we can now sketch a matching concrete devel-
opment workflow, as shown in Figure 1. The compo-
sition constraints are verified at architecture level and
specify how the non-functional properties of the sys-
tem composition relate to each other. This is done in
a constructive way to overcome the state-space explo-

1There exists a slightly difference between the definitions: while
for [6] the architecture has to ensure that a property is not invalidated
by system integration once that property is established at subsystem
level, [7, 8] distinguish different kinds of composability, for example,
it allows also that a property may be reached at system level.
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Figure 1. Proposed development approach for dynamic composition of safety-critical real-time systems.

sion problem. Therefore, late-binding in the develop-
ment process is possible while keeping non-functional
properties (R2, R3). Both specification sets (software
components and composition constraints) are combined
and evaluated using the TLA+ tools.

During the system development, the software com-
ponents can be first specified as high-level models and
then refined during the development process. The non-
functional properties of the software components can be
defined in the specification. Together with the composi-
tion constraints, the resulting software architecture does
fulfill the specified non-functional properties, for exam-
ple timing and dependability.

5.1. Specification of System Components

The root information about the software components
can be obtained through different possible ways. Soft-
ware components can either be specified directly in
TLA+ respectively PlusCal, or translated from C code
[9] and corresponding descriptors. The latter define the
parameters of the component, for example communica-
tion and resource demands, that are needed as model pa-
rameters. This expectation is not unrealistic, since such
data is also needed in all of the established static model-
ing approaches.

When C-code is translated to TLA+, at first the C
code is normalized using a C intermediate language
front-end (CIL) before obtaining an abstract syntax tree
(AST). At last C2TLA+ generates the TLA+ specifi-
cation and parameter modules according to the trans-
lation rules. The generated specifications can directly
be checked by the TLC model checker. This is espe-
cially good for backwards compatibility to already ex-
isting software components (R4). The necessary input
parameters for the model checker can be obtained from
descriptors of already existing software components.

5.2. Composition Constraints

Composition constraints are established at architec-
ture level and can be verified at an early stage.

Typically, composition constraints ensure cross-
cutting properties (such as timing, security, . . . ) by guar-
anteeing invariants with respect to the generic (i.e. appli-
cation independent) functionalities of the system, such
as CPU-scheduling, communication, or resource con-
sumption. Where standards, quasi standards, or best
practices exist (e.g., protocol descriptions, scheduling
algorithms, . . . ) composition constraints can be derived
respectively from them.

One specific example is CPU resource scheduling.
Depending on the operating system capabilities, dif-
ferent scheduling algorithms may be used in different
configurations. A formal description of the software
modules and their resource utilization, which is com-
monly available in real-time systems, allows the reason-
ing about interdependencies and their relation to the fi-
nal schedule.

In case of communication constraints it may be
needed to not only take network protocol descriptions,
but also information flow diagrams into account. The
results again can be used for the system configuration,
for example for routers. Information flow diagrams and
information about the safety level of the components can
then be used to reason about security properties. By that
it is possible to guarantee that critical information is not
forwarded to non-secure components (R3).

Since all constraints are described by the same for-
mal method, conflicts can be recognized already at ar-
chitecture level, especially early in the design cycle
(R4).

5.3. System Composition

The system is formally composed from the specified
software components, while considering the composi-
tion constraints coming from the non-functional system
properties. Since we focus on real-time systems, the ar-
chitecture has to guarantee at least real-time constraints
such as timeliness and communication deadlines.

The generated composition result may not be opti-
mal in its resource consumption, but it is possible to it-
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eratively define additional constraints. One example are
safety properties. Redundancy mechanisms and other
fault tolerance strategies generate additional constraints
on the deployment in terms of component placement on
nodes in the distributed system. One simple example is a
triple modular redundancy (TMR) setup, which expects
that the triplicated modules are placed on different hard-
ware platforms. This requirement can be formulated as a
restriction on the system composition of execution hosts
and the redundant modules.

Based on the composition results, it is now possible
to configure the operating systems and hardware plat-
forms in the real distributed system. The model param-
eters of the TLA+/PlusCal code can be transferred into
configurations for the run-time environment. The result-
ing software architecture then does fulfill all defined re-
quirements (R1 – R4).

For software changes during run-time, a classic
model checking approach is not enough. However, run-
time evaluation of software updates or new features can
be done using indicator variables. These variables are
responsible for the decision whether a planned system
change can be easily implemented, or if the current soft-
ware deployment has to be changed beforehand. There-
fore, a full system analysis through the model checker
needs only to be done in two cases.

In the development phase, the model checker is used
to state feasibility of the overall system. In case the cur-
rent deployment is not feasible for updates, the overall
system has to be checked to find a new deployment plan.

6. Related Work

TLA+ as specification language is used in a variety
of different operational scenarios. Companies like Ama-
zon [4], Intel [10] and Microsoft [11] use TLA+ in their
projects to identify subtle bugs and, by that, proof how
effective TLA+ can be for big systems. Nevertheless
they use the classic approach for specifying only single
parts of the overall system. We intent to gather the spec-
ifications of multiple software components in the sys-
tem, together with composition constraints to dynami-
cally compose the system (R2). From the given use case
descriptions, it must be concluded that the classic indus-
trial application domain for TLA+ is not safety (R1).

Zhang et al. [3] use TLA+ to specify the functional
properties of a fire-fighting system developed for a PLC.
They identify flaws in the informal system description
taken as a basis for the TLA+ specification. They show
why formal specifications lead to more safety in sys-
tem execution. Although a fire-fighting system is highly
safety-critical, it is not subject to frequent run-time up-

dates. Therefore dynamics was not investigated in this
case study (R2).

In [2] Grov et al. take a high level TLA+ specifica-
tion for reasoning about a scheduling strategy in order
to implement a more efficient one. They use the transi-
tive character of TLA+ properties to show that the more
efficient algorithm preserves the properties of the sim-
pler one. This approach does not reason about safety
demands (R1) and dynamic system configuration (R2).
Instead they specify a single system part only.

TLA+ is used to reason about real-time systems with
different approaches. On the one hand, Faria [12] used
TLA+ to reason about real-time system properties of
scheduling algorithms for resource access without mod-
eling the explicit timing requirements. Kurki-Suonio et
al. [13] as well as Lamport [14] model time explicitly in
TLA+ in terms of counters to reason about timing guar-
antees of the system. These approaches discuss the rea-
soning about timing as non-functional property (R3) but
ignore system composition (R2) and safety (R1).

Following the definition of Kopetz [15], composition
is always done with respect to some property. While
we attempt to use composition with respect to non-
functional properties like safety and timing on the basis
of software architectures, most of the times, composi-
tion is done in terms of model composition. By that it is
meant, that different parts of a system are modeled and
then composed through meta-models in white or black
box approaches [16] or on simulation layer [17]. For
reasoning about system composition and system proper-
ties, Richling [8] evaluates the use of Petri Nets for ana-
lyzing the composition of embedded real-time systems.
His approach does only analyze that the composed sys-
tem does preserve the required non-functional proper-
ties (R3) and safety (R1). We aim to go one step further
and compose the system out of the different model parts
(R2). Therefore, we combine the traditional approach of
model-based development (and by that model composi-
tion) with the idea of Richling.

7. Example: CPU Scheduling

A classic case where functional and non-functional
properties overlap is scheduling. In real-time systems,
timing constraints are a big part of the scheduling ap-
proach. To demonstrate the usage of TLA+ for generat-
ing (rather than only verifying) system parameters, we
choose to demonstrate the generation of a cyclic CPU
schedule, as first suggested by [18] for ADA. Please note
that TLA+ was already used to verify timing behavior
of a given scheduling policy (e.g. [19]), but to our best
knowledge we present here the first approach to gener-
ate a schedule with TLA+.
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7.1. Cyclic Executive Scheduling

Beside EDF and RMS [20] as on-line scheduling al-
gorithms, time-driven scheduling is one of the off-line
scheduling approaches for real-time systems. Cyclic
executive scheduling (also called time-line scheduling,
c.f. [21]) is one possible approach where the order of
the jobs, as periodic instances of the systems tasks, is
computed off-line and stored in a table. One advantage
of this approach is that schedulers can be implemented
with a very small overhead.

The cyclic executive model assumes periodic tasks,
especially tasks that require to be executed on a regular
base, once within a given period of time. Each invoca-
tion of such a task is called a job. Other than [20], we
allow as timing constraints deadlines that may be shorter
than the period (but not longer). In fact, we assume
deadlines to be not longer than the respective periods
for the sake of convenience; it is actually quite simple to
extend the approach to allow for general deadlines. For
the same reason, we don’t include additional resource
constraints into our model.

Even if the schedule will run for an arbitrary long
time, the scheduling table has a limited size. Since af-
ter a certain time interval – called hyperperiod – the
scheduling plan repeats, it is sufficient to schedule all
jobs only for one hyperperiod. These jobs are then ex-
ecuted completely in one hyperperiod H , called major
cycle. 2 The hyperperiod H is divided into frames of
size f as minor cycles. In the schedule table, each row
contains the jobs of a frame. These jobs can be concate-
nated as simple function calls, allowing for a reduction
of the operating system’s overhead. Doing so, timing is
enforced only at frame boundaries where the next table
entries belonging to the next frame are loaded into the
operating system.

While the hyperperiod H is determined as the least
common multiple of all task periods in the system –
H = lcm(Pi), i = 1, 2, ...n – the determination of
the frame size f has three constraints. First of all, the
frame size has to be bigger or equal the maximal execu-
tion time of the tasks (Equation 1). This is because even
the longest task should finish executing within a single
frame. To keep the table size small, f must evenly di-
vide H (see Equation 2) and bigger frame sizes lead to
less overhead by the scheduler activations. At last, there
should be a complete frame between release of a task
and the deadline of the task to be sure to detect missed
deadlines by the time the deadline arrives (Equation 3).

f ≥ max
i

(ei), i = 1, 2, ..n (1)

2In case of general deadlines, the length of the major frame may
differ from the hyperperiod

f | H (2)
Di ≥ 2f − gcd(Pi , f ), i = 1, 2, ..n (3)

Once a proper length of the major cycle and of the
minor cycles are determined, the actual scheduling prob-
lem is to assign each job to a fitting minor cycle. There
exist different approaches to perform that assignment,
for example by mapping the schedule generation to a
network-flow problem (c.f. [22]) and solve this flow
problem by a well-known graph algorithm, for exam-
ple the algorithm of Ford and Fulkerson [23]. We use a
different approach as shown in the following section.

7.2. Specification

In the following, we demonstrate how to formally
specify the scheduling problem for the cyclic executive
approach. We show only key parts of the specification
which are needed to understand our idea. The adminis-
trative parts for obtaining the results (e.g. specification
of preparetable() in Figure 4) are omitted. Optimiza-
tions of the algorithm like dynamic frame size deter-
mination and job slicing are omitted to keep the spec-
ification as short as possible. Therefore we chose a
task model of N independent, non-preemptive, periodic
tasks. For readers, not familiar with TLA+ and PlusCal,
in Appendix A a brief explanation of the used concepts
is given.

The input parameters of the scheduling specification
is a given task set of periodic tasks, where each task i is
described by the following tuple:

Ti = (φi ,Pi , ei ,Di) where (4)
• φi phase (to allow offsets of tasks’ start)
• Pi period
• ei execution time
• Di relative deadline
The different procedures described here are called

from the main part of the PlusCal algorithm. To prevent
a differing behavior await statements at the algorithms
steps are used. These statements can be seen like wait()
expressions in programming languages and state that a
certain step has been taken beforehand.

For cyclic executive scheduling, as described in Sec-
tion 7.1 at first the hyperperiod H has to be obtained
as least common multiple (lcm) over all execution times
(see Figure 2).

After determining the hyperperiod, the frame size f
can be obtained according to the constraints of Equa-
tions (1)—(3), see Figure 3. For determining f the
search is started at the upper bound. Therefore, bigger
frame sizes are tested first. Bigger frame sizes lead to
longer periods between activation of the scheduler and
therefore a smaller system overhead by the scheduler.
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gcd(x , y)
∆
= CHOOSE i ∈ 1 . . x :

∧ x \%i = 0
∧ y \%i = 0
∧ ∀ j ∈ 1 . . x :
∧ x \%j = 0
∧ y \%j = 0
⇒ i ≥ j

lcm(b, c)
∆
= ((b ∗ c)÷ gcd(b, c))

hyperperiod : if ( H = 0 ) {
H := Head(S) ;
S := Tail(S) ;

findlcm : while ( Len(S) ≥ 1 ) {
H := lcm(H , Head(S)) ;
S := Tail(S) ;
} ;

} ;

Figure 2. PlusCal: determining the hyperperiod

Max (X )
∆
= CHOOSE x ∈ 1 . . Len(X ) :

∀ y ∈ 1 . . Len(X ) :
X [x ] ≥ X [y ]

procedure Framesize( )
{

detmaxforf :
max := E [Max (E)] ;

startfsearch : m := H ;
frange :

if ( (m ≥ max )
∧ (m ≤ H )
∧ ((H%m) = 0) )

{
k := Len(P) ;
detf : while ( k > 0 )

{
if ( ((2 ∗m)−

gcd(m, P [k ])) ≤ P [k ] )
{

f := (2 ∗m)− gcd(m, P [k ]) ;
k := k − 1 ;
} else {

goto notf ;
} ;
} ;

} else {
notf : m := m − 1 ;
goto frange ;
} ;

foundf : return ;
}

Figure 3. PlusCal: determining the framesize

Before starting to schedule the task set, the tasks are
expanded to jobs. For that, a sequence of tuples with
the form as in Equation (4) is generated (see Figure 4).
The periods and deadlines are expanded till the deadline
would be after the hyperperiod.

These jobs then have to be assigned to proper frames.
As discussed in Section 7.1 the schedule is frequently
generated using flow algorithms. We use a descriptive

procedure TasktoJob( )
{

startttj :
k := 1 ;
m := 1 ;

Appendjob :
while ( k ≤ Len(E) )
{

if ( ((m − 1) ∗ (P [k ] + Phi [k ])) < H )
{

jobs := Append(jobs,
〈((m − 1) ∗ (P [k ] + Phi [k ])),
E [k ], (m ∗ (D [k ] + Phi [k ]))
〉) ;

m := m + 1 ;
} else {
k := k + 1 ;
m := 1 ;
}

} ;
return ;

}

Figure 4. PlusCal: expanding tasks to jobs

schedule :
await (jobs 6= 〈〉) ;
l := 1 ;
m := 1 ;
call preparetable() ;

schedframes :
while ( l ≤ Len(jobs)
∧ m ≤ (H ÷ f ) )

{
k := jobs[l ] ;
if ( ((f ∗ (m − 1)) ≥ k [1])
∧ ((f ∗m) ≤ k [3])
∧ ((framel [m] + k [2]) ≤ f ) )

{
if ( (st [m] = 〈0, 0, 0〉) )
{

st [m] := 〈k〉 ;
framel [m] := framel [m] + k [2] ;
} else {

st [m] := Append(st [m], k) ;
framel [m] := framel [m] + k [2] ;
} ;

sum frames := sum frames + k [2] ;
l := l + 1 ;
m := 1 ;
} else {

m := m + 1 ;
} ;

} ;

Figure 5. PlusCal: assigning the jobs

approach by requiring for every job a frame following
three constraints:

• the frame start is smaller/equal the jobs’ release
time,

• the frame ends after/at the jobs’ deadline,
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• the frame is not overloaded if the job is scheduled
into it (frame load ≤ f ).

As one can see in Figure 5, at every step of the sched-
ule generation, beside verifying that the frame load is
lower or equal to the framesize, the current scheduled
jobs execution time is added to the frame load.

It can be discussed whether the last constraint is re-
ally a constraint for the specification in the algorithm
or a property to the behavior. We choose to specify the
system by modeling the constraint inside the schedule
generation which is easier to understand.

7.3. Generating the Schedule

TLC needs as input the type invariants about the
model parameters, the specification which should be
proven, and the termination criterion. The type invari-
ants are used to state if the current values of the system
variables are correct ones. In the given specification, the
hyperperiod, as well as the frame size and the maximal
execution time should be natural numbers. The execu-
tion time should be non-empty and the tuples of the exe-
cution times, periods, deadlines, and phase should be of
equal length.

Spec
∆
= ∧ Init ∧ 2[Next ]vars
∧WFvars(Next)

Termination
∆
= 3(pc = “Done”)

TypeInvariant
∆
= ∧H ∈ Nat

∧ f ∈ Nat
∧max ∈ Nat
∧ E 6= 〈〉
∧ Len(E) = Len(P)
∧ Len(E) = Len(D)
∧ Len(E) = Len(Phi)

Term
∆
= 32(sum frames = sum jobs)

Figure 6. TLA+: specification, typeinvariant and

termination

In TLA+ the specification constraint is always com-
posed out of three different parts (see Figure 6). The
init statement specifies which initial values are given to
the system variables. As a conjunction of the different
actions the next statement specifies the possible system
steps. To allow stuttering but keeping the system vari-
ables in the same state, the next statement is always true
or otherwise the variables are kept unchanged. Fairness
information can be applied as third part of the specifica-
tion constraint to reason about liveness properties.

On termination it is necessary to verify that every
job is scheduled which means that the sum of all job
execution times is equal to the load of all frames.

E = 〈11, 10, 5 〉
D = 〈25, 50, 100〉
P = 〈25, 50, 100〉
Phi = 〈0, 0, 0〉
Jobs:
• J1,1 = 〈0, 11, 25〉
• J1,2 = 〈25, 11, 50〉
• J1,3 = 〈50, 11, 75〉
• J1,4 = 〈75, 11, 100〉
• J2,1 = 〈0, 10, 50〉
• J2,2 = 〈50, 10, 100〉
• J3,1 = 〈0, 5, 100〉

Figure 7. Model parameters and job list of the

example task-set

7.4. Generating an Example Schedule

For evaluating the approach for specifying the com-
position constraints for CPU scheduling we use different
task sets. They are given as model parameters with dif-
ferent tuples for the execution times, periods, deadlines
and phase. At the end of the specification run, the results
are printed on the console. Figure 7 shows the model
parameters for a small example of only three tasks as
well as the expanded job list. For this task set the model
checker determines a hyperperiod of 100 and a frame-
size of 25. The resulting scheduling table is shown as a
flowchart in Figure 8.

In case of task sets which are not possible to sched-
ule, the evaluation will fail. This means, that the analysis
will print the first job which is not possible to schedule.
If this happens, the task has to be reviewed and either
jobs have to be sliced or a different deployment scheme
has to be chosen.

7.5. Discussion

We use a formal specification language which al-
lows high-level as well as low-level specifications for
our proposed approach. By that, we support all types of
non-functional demands that can be expressed in formal
statements. On the first view, TLA+ has a high entry
point for new users but with a few basic definitions, the
code itself is readable. Through PlusCal as algorithm
language, it becomes typically very easy to start with.

TLA+ allows to write specifications also for com-
plex data types. Two contrary types of data representa-
tion can be used - either sets or tuples. Following R4
we decided to use tuples instead of sets for data repre-
sentation. Tuples allow to access elements like in C for
arrays. Also the standard modules for manipulating se-
quences and functions can be used with tuples. Utilizing
set theory the specification in Section 7 may be shorter,
but not that easy to understand for novice users.
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t
0 25 50 75 100

f1 f2 f3 f4

· · ·J1,1 J1,2 J1,3 J1,4J2,1 J2,2J3

Figure 8. Flowchart of the example task-set from Figure 7

The approach is an unconventional way for using a
specification language. We turned TLA+ upside down
to generate schedule tables and therefore the needed set-
tings for the operating system scheduler rather than ver-
ifying the algorithm itself. This satisfies R2 and R4 as
it leads to an approach for dynamic system composition
which is similar to commonly used programming lan-
guages.

We did not show a complete use case including the
dynamics for the reason of space. The presented specifi-
cation generates a schedule table for a given task set.
This task set arises out of the software components
which need to be composed in the overall system. For
a complete composition use case, showing also dynam-
ics at run-time not only CPU-scheduling but also other
composition constraints like resources have to be taken
into account. This has to be left for future work and
other publications.

The specification was checked by the TLC model
checker with different task sets to verify whether the
idea of generating correct schedules is working. In our
tests, the model checker showed the correct results in
affordable run-times. The proposed development ap-
proach in its current version should now be used to ver-
ify system properties at development time only. This
means, that in case the task set changes, the model
checker has to run again, to generate a feasible sched-
ule.

We are aware that the TLC model checker is not
applicable for run-time evaluation of the system. In-
stead, for run-time evaluation identified indicator vari-
ables may be used as shown by Richling [8] for EDF
schedules. The idea is to identify certain rules by which
the architecture may break if they are violated. For EDF
this is the case, if the utilization gets higher than 1. The
next step is therefore to identify these indicator variables
for other scheduling algorithms and system parts (e.g.
resource constraints). This enables us to generate speci-
fications which can be analyzed also at run-time.

8. Conclusion and Future Work

In this article, we described an approach to guaran-
tee both, dynamic and safety, for embedded real-time
systems by utilizing TLA+ as formal method through
the whole development process.

In especially, we consider not only to the systems to
construct, but also the “meta” levels: composition and
deployment. In this way, we want to allow for a forth
and back (or more precise: up and down) shifting of
dealing with critical concerns without violating the for-
mal correctness. It is our hope, that our approach helps
to overcome the complexity pitfall of common formal
approaches.

As a first step, we showed the results of writing a
formal specification of composition constraints on CPU
scheduling.

The presented specification along with the temporal
predicates are just a first proof of concept. For appli-
cation to real world scenarios, we have to further de-
velop the specification to handle job slicing and dynamic
frame size determination.

We also plan to expand the specification to con-
sider resource constraints between tasks. In [12] speci-
fications for the priority inheritance protocol are shown
which we will take into account.

Instead of just printing out the results - depending on
the target operating system - modules can be written to
produce the output fitting to the configuration interface
of the operating system scheduler.

Additionally, we are going to develop specifications
for constraints on resource consumption and communi-
cation behavior. While going through the three dimen-
sions of composition constraints, we define the needed
input parameters from the software components. The
composition algorithms together with the parameter set
will enable us to dynamically compose distributed real-
time systems in form of a software architecture which
keeps the required non-functional parameters.

A. Used TLA+ / PlusCal Notations

In Section 7.2 we used TLA+ as well as PlusCal no-
tations for our specifications. Although especially the
syntax of PlusCal is related to the C programming lan-
guage, there are some notations which are uncommon.
Therefore, we give a brief explanation of the used no-
tations only. For a more deep introduction the reader is
referred to [1, 5].

PlusCal itself is a algorithm language which can be
directly translated to TLA+ code. This means, that an
algorithm with macros, procedures and the main algo-
rithm is specified and afterwards translated into TLA+
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code. Since TLA+ has the notation of actions which
specify the systems behavior, TLA+ and PlusCal use la-
bels to specify the different behavior steps. In PlusCal
these labels are needed at any point which may be seen
as a different step, different loop runs for example.

In contrast to the C programming language, in Plus-
Cal while-loops are the only loop concept. On the other
hand, compared to C, goto is regarded useful [5].

Macros (e.g. gcd(x,y) in Figure 2) are like macros
in C, and procedures can be used as functions in C. The
difference to C is in terms of return statements, which
do not have return values. Instead for keeping variable
changes after the procedures end, these variables have to
be global ones since PlusCal uses call-by-value.

TLA+ provides several predefined modules which
may be used in specifications. One of those is the se-
quences module which is also used in our demonstration
of the scheduling algorithm. Sequences are comparable
to lists, which is why the module can also be applied
to tuples. The operators Head, Tail and Len out of the
sequences module are the same a programmer may ex-
pect. Head provides the first element of a sequence and
Len returns the total length. Tail returns the sequence
with the head removed. The Append operator expands
the sequence at the end and adds the provided element.

Await prevents the step to be executed, if the expres-
sion is evaluated to False. A concept which may be con-
fusing at first is the CHOOSE operator which is known
as Hilbert ′s ε. It chooses a value for which the expres-
sion equals true [1].
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