
 

Design of a forgetting blockchain:  

A possible way to accomplish GDPR compatibility 

 
Simon Farshid 

Frankfurt School of Finance & 

Management 

 s.farshid@fs.de   

Andreas Reitz 

Frankfurt School of Finance & 

Management 

 a.reitz@fs.de  

Peter Roßbach 

Frankfurt School of Finance & 

Management 

 p.rossbach@fs.de  

 

 

Abstract 

 
Practitioners as well as academics expect that 

blockchain technology is a game changer for a variety 

of use cases [1], [2]. This is due to transaction 

immutability enabled by keeping a history of all 

transactions. Nevertheless, this strength can become its 

biggest weakness. There already exists a lively 

discussion on scenarios where it is necessary to delete 

submitted data from the chain after it is no longer 

needed. This becomes even more crucial with the 

introduction of the European General Data Protection 

Regulation (GDPR). In this paper, we make use of a 

design science research (DSR) approach to design an 

IT artifact in the form of a prototype that maintains 

most of the key features of blockchain technology but 

deletes old data. We evaluate the prototype with the 

help from experts to investigate what to expect from 

blockchains that delete data and derive principles on 

how to design them. 

 

1. Introduction  

 
When we speak of Blockchain, we generally mean 

the technology instead of a specific implementation. 

One key property of this technology is its ability to 

secure old data against modification. This makes 

blockchain an append-only structure, where new data 

can be added but never removed. While this is one its 

biggest strengths, it can also become its most crucial 

weakness. 

For example, when information about users needs 

to be put on a blockchain, strict privacy laws such as 

European General Data Protection Regulation
1
 

(GDPR) and the right of European consumers to 

demand that their data is “forgotten” or deleted, pose a 

challenge for this technology. 

Even when personal information is not directly put 

on the blockchain, historical data can be analyzed to 

                                                 
1 See https://www.eugdpr.org/ for details on GDPR 

reveal identities of pseudonyms. For example, modern 

analysis of Bitcoin transactions has shown that wallets 

can be linked together, compromising the owner’s 

identity [3].  

Consequently, it needs to be recognized that 

anonymization techniques may not stand the test of 

time. To mitigate such risks, the unnecessary 

information needs to be deleted from blockchains as a 

preventive measure. 

While doing this, it is still useful to store 

information such as current account balances and 

recent transactions to prevent double spending attacks. 

However, there is no evidence storing transactions 

ranging multiple years back is a prerequisite for a 

secure blockchain. 

Existing solutions that allow removing transactions 

on a blockchain (like the one provided by Accenture 

[4]) involve giving a trusted party permission to 

arbitrarily edit the blockchain. Such trusted parties are 

only available in specific situations. Since blockchain 

is a general technology, a more general, trust-free 

solution appears to be needed. We therefore state our 

research question:  

 

How can we design a decentralized blockchain that 

forgets, and what implications arise from it? 

 

To answer this question, we follow a design science 

research (DSR) approach [5]. We develop an IT 

artifact in the form of a prototype and evaluate it to 

figure out how to design trust-free deleting 

blockchains.  

This paper starts with a short overview of related 

works and theoretical background of blockchain 

technology, followed by a brief introduction to the 

used DSR approach. We then describe the developed 

artifact and evaluate it. Finally, we discuss its 

implications, give an outlook and investigate 

limitations of our work.  

 

 

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60145
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7087

mailto:s.farshid@fs.de
mailto:a.reitz@fs.de
mailto:p.rossbach@fs.de
https://www.eugdpr.org/


 

 

2. Related Works  

 
Attempts to protect users’ privacy on blockchain 

are as old as Bitcoin itself, since the Bitcoin network 

employs a few techniques to enable anonymous 

transactions. We identified three types of approaches to 

solve the problem: anonymization techniques, altering 

techniques, and decentralized deletion techniques. 

Anonymization techniques store the identifying 

information of a user outside the blockchain. Bitcoin 

for example, uses anonymous addresses to handle 

transactions, and users are free to create and use as 

many addresses as they want [6].  

Nevertheless, studies have shown that it is possible 

to link multiple Bitcoin addresses of the same person 

together by analyzing their transaction behavior, with 

the success rate increasing as more transactions are 

made [7]. 

To combat this, some anonymization techniques 

not only conceal the identity, but also the actions of 

each user. As an example, Monero [8] was built to 

support untraceable transactions.  

It should be noted that the methods mentioned so 

far store the anonymized information indefinitely on 

the blockchain and are subject to scrutiny for an 

indefinite time [9]. As research progresses and 

computing power increases, systems currently believed 

to be secure may be found vulnerable in the future. As 

an example, the earlier versions of the aforementioned 

Monero algorithm were cracked, retroactively leaking 

identities of old transactions [10]. 

Blockchain altering techniques give access to a 

trusted party to alter or delete transactions. One such 

approach was presented by Accenture in 2016 [4]. 

Using a special mathematical function, it becomes 

possible to retroactively replace the content of old 

blocks. This solution and other methods we inspected 

give access to a trusted party to alter or delete 

transactions. In a situation where such trusted parties 

can be found, this technique can fix privacy issues by 

combining many transactions into one summary 

transaction which lacks historical information. 

Lastly, we look at decentralized deletion 

techniques. Research in this area has focused on the 

scaling issues that blockchains face. Pruning data that 

is no longer required is advantageous when each new 

transaction increases the size of the blockchain. The 

amount of research considering its privacy benefits is 

sparse. As the algorithms share a main goal, namely to 

increase efficiency, they do not always delete 

information in a timely manner. 

Once again, the Bitcoin paper [6] provides one of 

the earliest methods of pruning, with a variation being 

implemented in the software in mid-2015 [11]. 

Unfortunately, Bitcoin’s pruning algorithm keeps 

information about the last transaction of each coin.  

Another Blockchain technology, Ethereum, seems 

more hopeful in this regard. 

In an article, the creator of Ethereum, Vitalik 

Buterin, has described pruning strategies viable for 

Ethereum and suggests a method that removes all old 

blocks [12]. As costs of storing transactions are low, no 

Ethereum-based software has so far implemented the 

suggested algorithm. 

The method described in Buterin’s article is 

particularly relevant for our research question, as it 

leaves no historical information on the disk. Only 

account balances and other necessary information is 

retained in the long term. 

A final point to make is that the pruning algorithms 

presented are meant to be run by a few nodes in the 

network. Little is known about the side effects of 

running networks where every single node prunes 

information, therefore globally deleting it. 

 

3. Theoretical Background  

 
A blockchain is, as its name points out, a 

concatenation of blocks. Its consistency is ensured by 

cryptographic protocols. How this is done in detail is 

up to the specific implementation.  

While the contents of blocks can be set arbitrarily, 

most implementations store transfers of an asset from 

participants (inputs) to other participants (outputs) in a 

transaction. The transaction is only valid if it is signed 

using the private key of the owner of the input. 

Therefore, anyone possessing the public key can verify 

the transaction, but not modify it. A set of those is then 

bundled together in a block. Next to these transactions, 

the block includes a checksum of the previous block, 

creating a chain structure. Now, if the content of the 

previous block is modified, subsequent blocks become 

invalid. Every participant holds a complete copy of all 

the blocks. By iterating through all transactions, it is 

therefore possible to decide if a transaction is allowed 

or not.  

If new transactions are to be added, they are 

grouped together into a new block, for which a 

consensus needs to be found. Most approaches do this 

using the proof of work algorithm. A checksum for the 

new block needs to be calculated. This checksum needs 

to fulfill certain predefined requirements (e.g. starting 

with 5 zeros). To accomplish this, a nonce is added to 

the block. The nodes now compete to find a nonce that 

in combination with the transactions and other block 

data, yields a checksum that fulfills those requirements. 

The winning node (e.g. the first) is granted some 

Page 7088



 

 

reward, mostly in the monetary form of tokens. This 

process is called ‘mining’. 

These blocks are distributed to every participant in 

the network and therefore everyone has the same 

information.  

 

Smart Contracts and the State 

 

Some state-of-the-art blockchains (e.g. Ethereum or 

Hyperledger fabric) provide a powerful additional 

feature: the ability to execute code [13]. This extends 

the blockchain from simply being a distributed 

database to a distributed computer.  

Ethereum, for example, can be defined as a Turing-

complete multi-purpose shared computer named the 

Ethereum Virtual Machine (EVM). The machine is a 

singleton, so there exists only one global instance. 

Using blockchain technology, the state of this machine 

(also referred to as the “state”) is agreed upon. The 

state acts as a persistent storage medium to store all 

account balances, smart contract code (or “EVM code”) 

and internal storage.  

Each smart contract is given its own internal 

storage on the state to store arbitrary information. 

Unlike a traditional computer, the EVM limits what 

parts of the state may be altered. Participants cannot 

spend tokens of an account unless they possess the 

associated private key; once deployed, smart contract 

code can never be updated, and code only has write-

access to its own storage space. 

The state is modified with transactions, which can 

send tokens, upload code or call a smart contract 

function. The result of a transaction execution is an 

updated state. In addition to this updated state, a 

transaction receipt is created. These receipts contain 

log messages and errors during the execution. The state 

itself does not store any historical information [14]. 

Ethereum follows a “state-centric model” [15], 

meaning that the EVM only requires current state data 

to process a transaction. Transaction history is not 

available inside the virtual machine.  

 

 
Figure 1: State transition in Ethereum 

 

Hashes of transactions, receipts, and the state are 

included in block headers which make up the 

blockchain (see Figure 1). The Ethereum blockchain 

uses a proof of work algorithm to generate consensus 

on the order of transactions. Ethereum nodes need, just 

like their Bitcoin pendants, to download the full 

blockchain and verify all transactions. Ethereum nodes 

download and verify all transactions that were 

executed on the Ethereum computer. 
Support for smart contracts in Ethereum has opened 

the door to a wide variety of use cases [16]. These 

provide new opportunities for companies to work 

together and share data. Using blockchain offers data 

integrity, security, fail-safety, and can be a cost-

effective, decentralized alternative to using a service 

provider.  

 

4. Research Methodology 

 
In this paper, we make use of a design science 

research approach (DSR) [5]. In DSR the goal is 

utility, which means that instead of studying an already 

existing IT artifact, it involves the identification of an 

highly relevant problem [17] — the research cycles for 

the creation of a solution and the evaluation of it [18]. 

This artifact can be of various nature, for example a 

construct, model, method, or instantiation [19]. 

As there existed no solution that fulfilled all our 

requirements, we chose a DSR approach.  

We followed the DSR methodology by executing 

the following steps: (1) identify the relevant problem; 

(2) define solution objectives; (3) design and develop 

an innovative IT artifact, (4) demonstrate it; and 

finally, (5) evaluate it. 

 

4.1 Problem identification 

 
We were made aware of the problem that 

immutability of the blockchain technology, and 

therefore the restriction that nothing can be deleted, 

poses an issue for companies that must follow the 

GDPR rules during a conference in 2017. Two 

researchers of the group talked to a practitioner from 

the financial service industry, who explained that the 

fact that companies cannot delete selected or all 

information from blocks, rules out using blockchain for 

a variety of relevant use cases. 

Since the team already experimented with 

Ethereum and discussed possibilities to manipulate 

data in a blockchain, there already existed an initial 

idea to implement that feature. The team therefore 

proposed to create a proof-of-concept prototype of an 

Ethereum-based blockchain. 

 

Page 7089



 

 

4.2 Definition of objectives 

 
The primary objective is to build a working 

prototype to demonstrate that it is possible to delete 

transactions from a blockchain while maintaining 

functionality. Since this involves tinkering with some 

of the fundamental concepts, we define requirements 

that the prototype needs to fulfill: (1) it needs to be 

tamper-resistant; and (2) all information needs to be 

distributed to all nodes in the network. (3) It should be 

possible for new nodes to join the network afterwards; 

(4) all nodes can add transactions. In addition, the 

prototype (5) must be decentralized and may not rely 

on trustees and finally (6) we delete every transaction 

after a predefined amount of time. 

 

4.3 Design and development 

 
To resolve the privacy issues mentioned, we first 

develop a new pruning algorithm that locally deletes as 

much information as it can without breaking the 

software. We then build a private Blockchain network 

where every node runs our created pruning algorithm 

to conduct tests and our evaluations. 

We build the prototype based on the Ethereum 

blockchain using the Parity client. Ethereum is one of 

the most common and mature protocols that provides 

smart contracts. Parity was chosen because the source 

code is well-documented, and the members of the team 

were already familiar with it. 

 

Designing a pruning algorithm 

 

To develop our pruning algorithm, we first identify 

which information stored by clients is not relevant for 

the operation of the blockchain. By doing so, we can 

assess which information we can safely remove 

without impairing the blockchain functionality. 

We analyze which features of Ethereum require 

access to historical data and validate our conclusions 

by looking into the behavior of two Ethereum 

implementations: pyethereum [15] and Parity [20].  

 
 Current 

block 

Recent 

blocks 

All 

blocks 

First sync X X X 

Staying in sync X X  

Sending transactions X   

Mining X   

Transaction history X X X 

Table 1. Summary of the dependencies of 
each action 

 

As smart contracts only have access to the state, 

their functionality cannot be impaired if we delete old 

blocks. Similarly, mining only requires the current 

block. 

Sending transactions (and simulating their effects 

locally to see the consequences) only requires the 

current block (and its state) as well. During mining, 

multiple solutions can be found for a block’s successor, 

creating two or more branches in the blockchain (see 

Figure 2). This means that a branch of blocks in the 

chain may be exchanged for a longer branch found. 

Therefore, clients need access to recent blocks to be 

able to stay in sync over extended periods. 

 

 

 
Figure 2: Not every block makes it into the 

final chain. Rollbacks are sometimes 
necessary. 

 

At this point we can make storing a list of all 

blocks optional by making two specific assumptions: 

no new nodes are added to the network, and we don’t 

need a transaction history. Special solutions for these 

cases are discussed in the Limitations section. 

With these restrictions in place, we implement a 

feature that deletes blocks after a brief period. This 

follows GDRP's principle to store data for the shortest 

amount necessary. 

Through inspection of the Parity code, we identify 

databases storing portions of each block, such as 

transaction data, receipt data, and state. Each is stored 

separately. Multiple indexes are also created to speed 

up database lookups. 

To delete state data, we make use of an already 

implemented feature in Parity called state pruning. It 

was implemented to allow increased scalability of a 

blockchain, as each new transaction increases the size 

of the blockchain.  

Unlike state pruning, deleting other data is not 

automatically done by the official Parity 

implementation. We add a function that deletes all data 

stored about a block across nine different databases 

(source code available in our GitHub repository2). 

The finished software can connect to Ethereum 

networks and process new transactions while 

                                                 
2 Available at: https://github.com/Yonom/parity-demo 

Page 7090

https://github.com/Yonom/parity-demo


 

 

automatically deleting old ones locally. We now 

proceed to the second development stage. 

 

Building a network that forgets 

 

So far, our software had no effect on a network 

because it was the only participant to delete 

information. For a network to forget, every participant 

must run our pruning algorithm. 

We test this scenario using 5 hosts. running our 

modified Parity software; and another containing 

Etherchain Light [21], an open-source blockchain 

explorer.  

For testing purposes, we have set the block deletion 

duration to 10 blocks (30 seconds). We deployed our 

Parity client over five hosts and additionally connected 

a block explorer to the first client (see Figure 3). 

 

 
Figure 3: Our network constellation 

. 

 

Each host has a Parity user interface (see Figure 4) 

that allows interaction with the blockchain on behalf of 

that host. 
 

 
Figure 4: Parity client 

 

Additionally, we provide a block explorer showing 

the user a live view of how transactions vanish after a 

specific time is passed. 

4.4 Demonstration 

 
We demonstrated the built prototype to experts 

from the financial service industry. These experts were 

one blockchain engineer and two senior consultants. 

Since all our experts had a background in finance, our 

use case for the prototype were financial transactions. 

For every participant, we conducted a separate session 

to introduce the setup, the prototype, and finally, to get 

their feedback. 

We first introduced the experts to the five hosts that 

built the foundation of our blockchain. We then gave a 

quick introduction to the user interfaces, the block 

explorer and an overview of the basic features (transfer 

ether; upload, execute, and delete smart contracts). We 

then asked the experts to transfer a few Ether across 

accounts. The experts could follow the effect using the 

block explorer, especially the format of the transaction 

and the resulting changes to the state.  

After 30 seconds, the expert witnessed live using 

the block explorer how the “pruning” functionality, 

(which deletes old blocks,) caused the transactions to 

disappear from the block explorer (see Figure 5, for a 

screenshot of the situation before and after). The 

account, however, kept its balance but lost information 

about the token’s origin. Since the experts saw that the 

transaction was verified before accepting it and before 

it got deleted, they were assured that it is legitimate. 

 

 

 
Figure 5: An account with Ether balance and 

deleted transactions 
 

Page 7091



 

 

We then proceed to the second part of evaluation, 

where we provide the experts with a simple contract 

that they can deploy to the blockchain. 

 

 
Figure 6: Creation of a contract 

 

Figure 6 shows the transaction that creates the 

contract. Figure 7 shows how the transaction is deleted 

but the contract code remains in the state.  

 

 
Figure 7: Contract code still exists, but the 

creation transaction no longer does 
 

A function in the contract allows the user to set the 

text of a variable to their liking (see Figure 8). The 

change of this string is sent in the form of a 

transaction. Like every other transaction, our experts 

observe that it is deleted after 30 seconds, meaning that 

only the most updated text is available.  

 

 
Figure 8: Available smart contract methods 

 
Finally, after some experimentation, the expert calls 

the smart contract’s “destroy” function (see Figure 8). 

This function internally executes an Ethereum feature 

called “self-destruct”, which will remove the contract 

code from the state. 30 seconds after this method is 

called, no trace of the smart contract ever existing, 

including the code itself, remains on the blockchain. 

As a last demonstration, we deactivate two random 

nodes. One of the nodes is restarted before 30 seconds 

elapse and another is restarted after a minute. The node 

that was restarted earlier can synchronize to the 

network without issue. The other node fails to 

synchronize and remains detached from the network. 

Nevertheless, the blockchain continues to function 

regardless of which nodes are deactivated. It 

continuously mines new blocks and deletes old blocks 

without issue.  

 

4.5 Evaluation 
 

Based on the feedback we received from the 

experts and the issues identified, we assessed the 

accomplishment of our original objectives in Section 

4.2. 

 We created a prototype blockchain that can remove 

historical data. Our demonstration shows that mining, 

transactions, and smart contracts still work despite the 

changes made to the software.  

Additionally, since we did not alter the transaction 

verification protocol, we still possess a tamper-proof 

blockchain where only the owners of accounts can 

spend their tokens and the code of smart contracts 

cannot be altered or deactivated by third parties.  

We remain decentralized, and no part of the 

network relies on a specific node. All nodes are 

configured the same way and we can turn off hosts at 

will. 

Unfortunately, we hit a few limitations to our 

approach, such as the fact that adding new clients to 

the network is no longer straightforward.  

We also compare our new method to other 

available approaches for implementing privacy on the 

blockchain based on two criteria: being decentralized 

and being immune to retroactive attacks (see Table 2). 

We considered a solution decentralized if there were 

no central actors with special powers. Therefore, both 

anonymization and block deletion techniques are 

decentralized. We could not find any decentralized 

chain editing techniques. 

Immunity to retroactive attacks prevents old 

identities being revealed if today’s algorithms are 

cracked tomorrow. When sensitive information is kept 

indefinitely, as is usually the case with anonymization 

techniques, this property is not given. Both chain 

Page 7092



 

 

editing and block deletion can permanently remove old 

information from blocks therefore, they are immune to 

retroactive attacks. 

 

 Decentralized Immune to 

retroactive attacks 

Anonymization X  

Chain editing  X 

Block deletion X X 

Table 2: Solutions to Blockchain privacy 
problems 

 
We conducted evaluation sessions with experts 

from the financial service industry. None of the 

participants, who were all familiar with blockchain, 

expected a working result that could at least partially 

solve the problem. At the end of the session, all experts 

agreed individually that a GDPR-compliant financial 

transaction is possible with the prototype. 

 However, we received several questions which we 

included here. 

‘How can the blockchain be secure if we cannot 

verify history?’.  

The blockchain is secure because we verify every 

change to the state. This verification cannot be 

repeated after we delete the transactions, but we can 

assume that our client verified older transactions.  

‘If the blocks are distributed to every participant, 

how can I prevent anyone from taking backups?’.  

Although we delete the blocks from the chain by 

default, the technique does not allow us to prevent 

participants from taking backups. Still, this is an 

advantage as the standard behavior is to delete and not 

to keep data. Another note was that not all data is 

meant to be deleted:  

‘What if I want to store data longer than a few 

seconds?’.  

Data in transactions is not available to smart contracts 

and transactions only stay around for a few days. 

Transactions are therefore not a suitable place to store 

information. We recommend storing the data in the 

state using smart contract logic. 

‘In case someone new joins the chain, who should 

they trust, if there are multiple nodes, as there is no 

history?’ 

Since we delete all history, the first block (called the 

“genesis” block) does not exist anymore and therefore 

cannot be used as an initial syncing point. A node 

therefore must ask multiple other nodes for a block in 

the middle of the chain and check if they all recognize 

this block.  

 

5. Limitations  

 
During our evaluation, we were able to identify 

several limitations. First, it seems impractical to run 

our network in a public setting. Our approach cannot 

enforce a network-wide deletion of old data, since it 

cannot control that participants keep backups. Having 

some participants make backups defeats the purpose of 

our blockchain and thus we believe that for now, it can 

only be used inside restricted environments where 

additional financial and legal incentives are established 

to prevent archiving (e.g. through auditing). 

Nevertheless, we recognize a need for future research 

in this area. 

Second, one loses the built-in history of all actions 

performed on smart contracts, as old blocks and their 

transactions are removed from history. Smart contract 

code is still unalterable in our prototype and one could 

log all important information to the state, which is 

persistent. The logging is no longer mandatory and 

must be explicitly implemented in smart contracts that 

require history.  

The third shortcoming lies in the process of adding 

new nodes. Since the information required to derive the 

current state from old transactions is no longer 

available on the network, the original “genesis” block 

cannot be used as an initial syncing point. Some other 

recent block must instead be taken as the starting point. 

This process is currently technical and tedious, and we 

believe it should be improved through software 

updates.  

The choice of the correct initial block is subjective 

and requires trust. Previous work [22] on “weak 

subjectivity” shows that this process is less secure than 

using a well-known genesis block, and one must take 

great caution and ask multiple sources when looking 

for an initial block to trust. Thankfully, the process 

must only be executed once during the initial setup of 

the node.  

Lastly, a node which is turned off for an extended 

period will fail to sync to the network as the blocks 

lying between its last block and current newest block 

may already be deleted. In this case, one must execute 

the tedious setup process again. For this reason, we 

recommend setting the deletion time to a reasonably 

long amount to account for possible system downtimes 

(e.g. seven days). 

 

6. Discussion and conclusion 

 
In this paper, we gave insights through the design 

science research approach that we used to develop and 

evaluate a novel IT artifact for the financial services 

industry. We accomplished this by first identifying a 

Page 7093



 

 

highly relevant problem. After evaluating the existing 

approaches and literature, we proposed a possible 

solution and defined the objectives that we wanted to 

reach with the prototype and the evaluation criteria. 

We provided an IT artifact in the form of a working 

proof-of-concept prototype of a blockchain that deletes 

predefined data after a predefined amount of time. The 

prototype was developed in an iterative manner and 

was evaluated with the help of domain experts. Finally, 

we derived helpful principles for designing data-

protection compliant blockchains.  

Our prototype uses a combination of an already 

implemented technique (state pruning) and a custom 

function to delete logs and other traces, as well as to 

enable the logging of predefined transactions in the 

state of the EVM.  

This approach can be categorized as exaptation, as 

it is extending an at least partially known solution to a 

new problem, which should yield research opportunity 

and knowledge contribution [18]. The evaluation 

points out that our prototype solves the posed problem 

but introduces a set of limitations. 

The limitations we face show us that there is 

potential for future research. We see a need for new 

smart contract best practices when it comes to 

blockchains that forget. Our team plans to investigate 

how smart contracts can be monitored and audited 

when historical information is not available. 

The implications that arose from our results are 

twofold. For practitioners, we managed to identify a 

way that could allow blockchain technology to be used 

in an additional variety of scenarios that couldn’t be 

done before. Additionally, while we have focused on 

the benefits of block deletion for permissioned 

blockchains, the techniques discussed here could be 

used to solve scaling issues on public blockchains, as 

the amount of data grows too big to be feasible to store 

forever. 

Finally, there is a lack of understanding on the 

possibilities that smart contracts offer. Especially when 

it comes to use cases, there is almost no reference 

material on the potential abilities of smart contracts 

and the possible benefits that an extended use could 

bring. 

We hope that advancements in the capabilities of 

technology, like the one presented in this paper, make 

the use of blockchain more practical and speed up 

progress in this field.  

 

7. References  
 

 

[1] F. Hawlitschek, B. Notheisen, and T. Teubner, “The 

limits of trust-free systems: A literature review on 

blockchain technology and trust in the sharing 

economy,” Electron. Commer. Res. Appl., vol. 29, 

pp. 50–63, 2018. 

[2] R. Beck, C. Müller-Bloch, and J. L. King, 

“Governance in the Blockchain Economy: A 

Framework and Research Agenda,” J. Assoc. Inf. 

Syst., 2018. 

[3] F. Reid and M. Harrigan, “An analysis of anonymity 

in the bitcoin system,” in Security and privacy in 

social networks, Springer, 2013, pp. 197–223. 

[4] R. Lumb, D. Treat, and O. Jelf, “Why distributed 

ledger technology must adapt to an imperfect 

world,” 2016. [Online]. Available: 

https://www.accenture.com/t20160927T033514Z__

w__/ae-en/_acnmedia/PDF-33/Accenture-Editing-

Uneditable-Blockchain.pdf. [Accessed: 23-Nov-

2017]. 

[5] K. Peffers, T. Tuunanen, M. A. Rothenberger, and 

S. Chatterjee, “A design science research 

methodology for information systems research,” J. 

Manag. Inf. Syst., vol. 24, no. 3, pp. 45–77, 2007. 

[6] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic 

Cash System,” 2008. [Online]. Available: 

Www.Bitcoin.Org. [Accessed: 05-Mar-2017]. 

[7] P. Koshy, D. Koshy, and P. McDaniel, “An analysis 

of anonymity in bitcoin using p2p network traffic,” 

in International Conference on Financial 

Cryptography and Data Security, 2014, pp. 469–

485. 

[8] N. Van Saberhagen, “CryptoNote v 2.0,” 2013. 

[Online]. Available: 

https://cryptonote.org/%0Awhitepaper.pdf. 

[Accessed: 19-Nov-2017]. 

[9] P. Roßbach, “Security in Blockchain Applications,” 

2018-03-13. [Online]. Available: 

https://blog.frankfurt-school.de/security-in-

blockchain-applications/?lang=de. [Accessed: 01-

May-2018]. 

[10] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, 

S. Srivastava, K. Hogan, J. Hennessey, A. Miller, 

and A. Narayanan, “An Empirical Analysis of 

Traceability in the Monero Blockchain,” Proc. Priv. 

Enhancing Technol., vol. 2018, no. 3, pp. 143–163, 

2018. 

[11] “Bitcoin Core version 0.11.0,” 2015. [Online]. 

Available: https://bitcoin.org/en/release/v0.11.0. 

[Accessed: 07-Feb-2018]. 

[12] Vitalik Buterin, “State Tree Pruning - Ethereum 

Blog,” 2015. [Online]. Available: 

https://blog.ethereum.org/2015/06/26/state-tree-

pruning/. [Accessed: 24-Nov-2017]. 

[13] F. Tschorsch and B. Scheuermann, “Bitcoin and 

Beyond: A Technical Survey on Decentralized 

Digital Currencies,” IEEE Commun. Surv. Tutorials, 

vol. 18, no. 3, pp. 2084–2123, 2016. 

[14] Buterin Vitalik, “Design Rationale,” 2014-12-05, 

2014. [Online]. Available: 

https://github.com/ethereum/wiki/wiki/Design-

Rationale#accounts-and-not-utxos. [Accessed: 15-

Oct-2017]. 

[15] V. Buterin, “GitHub repository: pyethereum,” 2014-

12-05. [Online]. Available: 

Page 7094



 

 

https://github.com/ethereum/pyethereum. 

[Accessed: 02-Jan-2018]. 

[16] K. Nærland, C. Müller-Bloch, R. Beck, and S. 

Palmund, “Blockchain to Rule the Waves-Nascent 

Design Principles for Reducing Risk and 

Uncertainty in Decentralized Environments,” in 

ICIS, 2017. 

[17] H. A. Simon, The sciences of the artificial. MIT 

press, 1996. 

[18] S. Gregor and A. R. Hevner, “Positioning and 

presenting design science research for maximum 

impact.,” MIS Q., vol. 37, no. 2, pp. 337–355, 2013. 

[19] S. T. March and G. F. Smith, “Design and natural 

science research on information technology,” Decis. 

Support Syst., vol. 15, no. 4, pp. 251–266, 1995. 

[20] - Parity Authors, “Github repository: Parity.” . 

[21] - Etherchain light Authors, “GitHub repository: 

Etherchain light,” 2018. . 

[22] V. Buterin, “Proof of Stake: How I Learned to Love 

Weak Subjectivity - Ethereum Blog,” 2014. 

[Online]. Available: 

https://blog.ethereum.org/2014/11/25/proof-stake-

learned-love-weak-subjectivity/. [Accessed: 01-

Mar-2018]. 

 

 

Page 7095


