
Splicing Community and Software Architecture Smells
in Agile Teams: An industrial Study

Damian A. Tamburri
TU/e - JADS

d.a.tamburri@tue.nl

Rick Kazman
University of Hawaii / SEI-CMU

kazman@hawaii.edu

Willem-Jan Van den Heuvel
Universiteit van Tilburg - JADS
W.J.A.M.v.d.Heuvel@jads.nl

Abstract

Software engineering nowadays largely relies on
agile methods to carry out software development. In
often highly distributed organizations, agile teams
can develop organisational and socio-technical issues
loosely defined as community smells, which reflect
sub-optimal organisational configurations that bear
additional project cost, a phenomenon called social
debt. In this paper we look into the co-occurrence
of such nasty organisational phenomena—community
smells—with software architecture smells—indicators
that software architectures may exhibit sub-optimal
modularization structures, with consequent additional
cost. We conclude that community smells can serve as
a guide to steer the qualities of software architectures
within agile teams.

1. Introduction

Software development is about people: organised
crowds of developers collaborate (hopefully
in harmony) with designers and managers, to
accommodate communities of stakeholders and
users—this is even more true in agile teams,
whose performance and velocity greatly relies on
the performance and individual engagements of
involved individuals and stakeholders around them
[1, 2]. The impact of this notion was originally
perceived in 1968, when a computer programmer
by the name of Melvin Conway observed that the
structure of a software system reflects the social
structure of the organisation that produced it [3].
On one hand, a social structure, or community, in
such agile teams emerges as a consequence of social
interactions and arrangements between individuals
that share the common agile software practice [4, 5].
On the other hand, distributed and complex agile
organizations often develop sub-optimal patterns of
recurrent organisational behavior [4]—also known as
community smells [6, 5, 7]—that may be complicating

the lives and success of such agile teams.
In this paper we seek to address two research

questions: (1) to what extent do community smells
occur in agile teams? — agile teams have a known
prowess in developing software [8, 9], but nobody
has addressed yet whether the organisational structures
behind agile teams exhibit known community smells
[5] which could be potentially corrected for further
organisational improvement; (2) to what extent do
community smells in agile organisational structures
reflect good software quality outputs? — as a proxy
to software quality we consider software architecture
smells [10, 11] that is, known patterns that may cause
nasty software maintenance and evolution issues [11]
and which may cause technical debt [12, 13].

To address these research questions we conducted
a large-scale longitudinal industrial study over 30
software organisations that recently underwent a switch
to employ agile methods. The software development
teams in question operated in 9 large companies who
work with well-known agile methods and approaches
(e.g., Scrum [14]). We chose to focus on organizations
that claimed to have recently adopted such methods
since agile adoption is reportedly difficult and often
causes heavy organisational strains [15, 16].

We found that community smells occur very
frequently across our sample, with a specific
case for smells that reflect organisational turmoil,
rearrangement, or instability. Furthermore, community
smells correlate considerably (+0,31 with P-value
<<0,05) with architecture smells and are diffused
across over 80% of our dataset, thereby representing a
force to be reckoned with in the scope of agile teamwork
and team governance.

We conclude that community smells can be used
in the scope of: (1) agile retrospectives — to
diagnose potential organisational and socio-technical
issues encountered by agile teams; and (2) iteration-0
architectures — to avoid the nasty phenomena
connected to sub-optimal community and architectural
structures.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60140
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This article makes three novel contributions: (1)
a systematic exploration of community smells in
agile software teams; (2) the quantitative analysis
of co-occurrence between community smells and the
software architecture quality of those teams; (3) a
comprehensive replication package to encourage the
verifiability of our results as well as further replications
of this study in both (closed source) industrial projects
and open-source projects. Practitioners may benefit
from these contributions in avoiding the identified
community smells, or by restructuring their software
architectures to remove smells and better align to the
social structures. At the same time, our contributions
encourage further research into the topics covered by our
results.

Structure of the paper. Section 2 briefly outlines
the background of this study, providing terms and
definitions as well. Section 3 outlines our research
design. Later, Section 4 shows our results while Section
5 discusses our contributions and their threats to validity.
Section 6 outlines related work. Section 7 concludes the
article hinting to future work.

2. Background and Scope of Our Study

2.1. Software Community Structures and
Smells

Since the original publication of Conway’s Law [3],
positing the relationship between the structure of a
system and the structure of the organisation that
designed it, several studies have tried to understand
more about this intriguing relation contained in the
so-called “law”.

On the one hand, the works by Cataldo et
al. and Herbsleb et al. around socio-technical
congruence [17, 18, 19] study software development
as a social-technical activity, in which the technical
and the social components need to be aligned to
succeed. These and similar works introduce valuable
socio-technical factors to be addressed and tracked for
software communities to succeed. The fundamental
component, Herbsleb [20], Damian [21] and others say,
is to achieve an effective coordination among teams,
whose organisational structures are a key dimension
that should be considered as much as project plans,
processes, and coordination mechanisms [19].

On the other hand, community smells reflect
recurring sub-optimal organisational structure
conditions (i.e., patterns) wherefore additional friction
is added to functional software teams connected to
nasty organisational behaviour, e.g., sub-optimal
knowledge sharing, recurrent sharing delays, misguided
collaboration and more. In the past researchers tried

to identify the recurrent conditions around community
smells for the benefit and use of software practitioners
[22, 6, 5].

Table 1 (tailored from [5]) showcases the smells
previously found in industrial practice and also re-used
as objects of study in the scope of this work; the
table reports community smells from literature that
have a direct relation to software artefacts and the
process in which they are produced and maitained.
Columns 1 and 2 give a name for the smell and a
brief description (including frequency of occurrence
in parentheses besides smells’ name, as reported in
previous work [5]).

2.2. Software Architectures and Smells

Software architecture is an abstraction of a software
system: its components, their properties, their
relationships, as well as the choices that led to the
system [23]. In this article we use architecture issues and
smells, reported by practitioners, as a way to understand
and characterise the organisational structures under
study. We designed our study to minimize bias as much
as possible and thus we let our practitioners describe
their projects’ architectures, using reference models
from the Microsoft Application Architecture Guide
(MAAG), freely available on MSDN1 and previously
known to all practitioners involved in our study. In
the scope of this study, we used the architecture
issues or “smells” described in the MAAG, since: (a)
practitioners used them to report which issues were
present in their architectures; (b) we used these to
evaluate organisational structures, characteristics, and
relations found. The list of issues follows below:2

1. Impossible Component Swap: this issue reflects
architecture components which are too tightly
connected to the rest of the architecture which
may lead to substitution problems.

2. Untraceable Business Requirement: this issue
reflects overly fine-grained architectures where
it becomes difficult to trace high-level business
requirements across the entire architecture. This
weighs on the ability to analyze the quality
aspects behind that requirement and consequently
the overall quality of the architecture.

3. Sloppy Modularisation: this issue reflects
carelessly modularised architectures, e.g.,
architectures that randomly decrease cohesion

1https://msdn.microsoft.com/en-us/library/
ff650706.aspx

2Note that the terms used here are our own descriptive names for
the issues reported in the MAAG.

Page 7038



Table 1. Community Smells in industry — an

overview from the state of the art [5].
Smell
(#occurrence)

Description

Time-Warp
(27x)

Change in organizational structure and
process leads people to make wrong
assumptions that communications will
take less time and explicit additional
coordination is not needed.

Cognitive
Distance (24x)

In software engineering, cognitive
distance can be thought as the distance
that developers perceive on the
physical, technical, social and cultural
level with respect to peers with
considerable background differences.

Newbie
Free-riding
(24x)

Newcomers are left to themselves
when it comes to understanding what
to do and for whom, with consequent
free-riding of older employees, i.e., the
economic free-rider problem applied to
software engineering.

Power Distance
(24x)

The distance that less powerful or less
responsible members of a software
development community perceive,
accept and/or expect with
power-holders.

Disengagement
(24x)

Developers think product is “mature
enough” and send it to Ops even
though it may not be ready.

Priggish
Members (13x)

Developers tend to demand of others
(e.g., Ops) pointlessly precise
conformity or exaggerated propriety,
especially in a self-righteous or
irritating manner.

Cookbook
Development
(13x)

Developers are stuck in the ways they
are used to work according to their
cookbook and refuse innovative ideas
or ways of working (e.g., agile
methods or DevOps).

Institutional
Isomorphism
(11x)

Institutional isomorphism is the
similarity of the processes or structure
of one sub-community to those of
another, be it the result of imitation or
independent development under similar
constraints. The danger here is lack of
innovation, stagnance, lack of
communication/collaboration.

Hyper-
Community
(14x)

A hyperconnected community is
sensible of group-think but also
influences other (smaller)
subcommunities in its fold.

DevOps Clash
(29x)

Clashes in the mix between Dev and
Ops from multiple geographical
locations with contractual obligations
to either Dev or Ops lead to slower Dev
and ineffective Ops.

Informality
Excess (10x)

Excessive informality means the
relative absence of information
management and control protocols
leads to information spillover.

Unlearning
(12x)

New technological or organizational
advancements or best practices, e.g., as
part of training courses become
unfeasible when shared with older
members as a consequence of very
high experience diversity. The new
accumulated knowledge or best
practice risks of being gradually lost.

for no good reason. This weighs heavily on
the architecture’s evolvability, its usefulness as
a knowledge conveyor, as well as a means for
division of work.

4. Unscalable Architecting: this issue reflects an
architecture that can barely perform its functions
in the face of rapidly increasing service demands;
the consequent issues on architecture quality are
obvious.

5. Inflexible Architecture / God Classes: this
issue reflects architectures where a small
number of components or modules contain
significant functionality, creating bottlenecks for
maintainability.

6. Unmodifiable Core: this issue reflects
architectures that have gradually grown out
of a core which is more and more becoming
functionally untouchable and incomprehensible.
This is often a consequence of Sloppy
Modularisation.

7. Spike-Centric Architecture: this issue reflects
architectures which emerged directly from
architecture spikes, i.e., “[...] architectural spike
is a test implementation of a small part of the
application’s overall design or architecture”.
Relying heavily on architecture spikes may cause
severe integration and evolution issues.

8. Quality-Implicit Architecture: this issue
reflects architectures for which quality analysis
of one (or more) software architecture properties
(e.g., performance, reliability, safety, etc.) is so
complex that it is never actually done.

9. Architecture Monolith: this issue reflects
architectures whose design has grown into a fully
connected mesh and therefore cannot be evolved
other than by incurring heavy refactoring costs.
Such monoliths may have originated as God
Classes.

10. Insensitive Information Spreading: this issue
reflects architectures in which one or more
components carelessly disseminate the data that
the software architecture is manipulating. This
can cause security vulnerabilities as well as
privacy-policy violations.

Finally, we define the architectural inefficiency of
an organisational structure pattern X as the count
of software architecture structural flaws and issues
(selected from the list above) corresponding to that
pattern, for all subject projects:

Page 7039



Architectural Inefficiency:
χ =

∑
Ai(a1, ...an);

where χ represents the architectural inefficiency of
an organisational structure pattern while Ai represents
reported software architecture issues for projects
a1, ...an. For the purpose of quantifying the relation
between organisational and socio-technical community
smells and software architectures, we are interested
in using the above measurement and evaluating how
this quantifies the relation between community and
architecture smells.

3. Research Design

To obtain evidence for this research we used a
mixed-methods approach featuring 3 phases of
data collection and quality-assessment as well as 2
subsequent analysis phases: (1) survey design and
Delphi study [24]; (2) online survey; (3) confirmatory
interviews; (4) data summary and observer reliability
assessment; (5) content analysis. This section
outlines our research design in detail, starting from
a walkthrough of our theoretical framework, target
population, and sampling strategy.

3.1. Research Problem and Questions

The research problem we address reflects the potentially
sub-optimal conditions that may affect software agile
teams and how those conditions affect the quality of
those teams’ outputs. More specifically, we aim at
(1) studying the occurrence of community smells in
the context of industrial, closed-source agile teams and
(2) correlating that occurrence with some indicator of
software quality (i.e., architectural inefficiency). To
this purpose, we formulate and address four research
questions:

RQ1 to what extent do community smells occur in agile
teams?

Sub-RQ1.1 does the diffuseness vary per agile method
type? With the term diffuseness we refer
to the degree to which community smells
are actually occurring in our dataset; in
the scope of this SRQ, we are interested
to understand whether that quantity varies
meaningfully with the variation of agile
methods type.

Sub-RQ1.2 does diffuseness vary per experience level
in teams? Referring to the above notion
of diffuseness, in the scope of this SRQ
we are interested to understand whether the

experience with agile methods is itself a
mediator.

RQ2 to what extent do community smells in agile
organisational structures reflect variations in
quality of software outputs?

3.2. Target Population and Sampling Strategy

Our study covers more than 4 years of software design
and development organisational activity. Invitation
letters were sent over this time-window to 136
practitioners with 4+ years of experience with software
and its engineering. Following a strategic sampling
strategy [25], the initial set of practitioners were
extracted from our own networks: developers and
architects who had previously worked with one or more
of the authors of this study. Practitioners were initially
contacted with an email asking of their interest in the
study and, if they were interested, they were asked for
contact details of 2 additional colleagues who might
be available for the study as well. The process of
establishing agility was built-in within our invitation
letter—in particular, we employed the practices defined
in previous work [26] to map the practitioners onto agile
practices.

Out of our initial sample, 42 people responded. We
filtered out 12 respondents as inappropriate, leaving a
final sample size of 30. Our filtering criteria were:

• codebase size: split evenly among medium-sized
(200-500 KLOC) projects, 33% large (500-850
KLOC) projects, and 33% very large (> 850
KLOC) projects;

• main programming language - Java, C#, C,
Python. In addition YAML and other scripting
languages are included for projects in our sample;

• team size - our size distribution is evenly split
among three ranges: medium (<10 members),
large (10>20 members) and very-large (>20
members);

• team age - our project team age distribution is
evenly split among three ranges: young (<24
months), established (24>32 months), and mature
(>32 months);

• process maturity - our sample is evenly split
across all maturity levels of the standard CMMI
scale [27] starting from level 2. We excluded
level 1 since this would introduce an element
of uncertainty with respect to organisational
structures (CMMI level 1 is disorganised by
definition);

Page 7040



• architecture type - all our projects were sampled
choosing service-oriented or service based
applications based on concepts and definitions
from literature [28] — this design choice is
connected to the reported proneness of certain
architecture styles with certain architecture issues
[23, 29];

As a result of our sampling, the population for
our study involved 90 practitioners from 9 different
organizations. The market segments represented are:
aerospace, heavy automotive industry, mobile-phone
manufacturing, information systems consulting
(two organizations), healthcare informatics, banking
information systems, food production, and electronics.

3.3. Phases 1 and 2 - Survey Design and
Execution

In this study, we aimed at a defensible and replicable
qualitative-quantitative research design, striving to
minimise our own interpretation of raw data directly
elicited from the involved practitioners. In so doing,
we hard-coded a Delphi-inspired approach [24] to
refine a survey questionnaire which would directly and
reproducibly yield the data we sought. In particular,
a Delphi study relies on a panel of experts to answer
questionnaires in two or more rounds (two rounds, in
our case). In our case, after a first round of survey
(Phases 1 and 2), a facilitator provided an anonymised
summary of the previous two experts’ forecasts. The
third practitioner (Phase 3, see Sec. 3.4) was then
encouraged to confirm, deny, or revise answers in light
of the replies of other members of their panel. In
summary, we used three people from one team, two
of which answered the survey and the third would be
interviewed to provide for a confirmatory connotation.

3.4. Phase 3 - Confirmatory Interviews

To instrument phase 3 of our study, we reached back to
the previously uninvolved practitioners for every project
in our sample. These practitioners were interviewed
with a variation of our complete survey questionnaire
(see Sec. 3.3) intended to confirm all the observations
of their colleagues about their team as well as clarify
any clearly conflicting answers. For this phase, we
adopted an interview guide approach.3 Thus structured,
phase 3 led to a total of 31 interviews amounting to
over 50+ hours of recorded material. While we cannot
disclose the raw data from survey Phases 1 to 3, we have
prepared a spreadsheet containing aggregated data from

3interview guide available here: http://tinyurl.com/
kl97cgq

responses and confirmatory interviews. To encourage
verifiability, this dataset is openly and freely available.4

3.5. Data Analysis

To analyse the results in this paper from a statistical
perspective [30], we prepared descriptive statistical plots
for our data as well as Pearson correlation calculations
across the dimensions we studied, namely, we computed
Pearson correlation coefficients between the occurrence
of reported architecture smells and the occurrence of
prominent organisational community smells[6, 5].

The use of Pearson product-moment correlation
is well-formed since our study design “flattens” the
quantities involved (i.e., the magnitude of organisational
characteristics and of individual architecture smells) to
linear sums which are more appropriately correlated by
means of product-moment analysis.

4. Results

4.1. RQ1 - Community Smells Diffuseness in
Agile Teams

A total of 106 community smells from Table 1 were
reported throughout our sample dataset. fig. 2 plots
an overview of occurrence frequency, with a median
occurrence of 4,5 smells per type of smell, and 3 smells
per all agile teams, regardless of their experience level.
The most frequently occurring smells are clearly 3: (1)
Time-warp (occurring 12 times); (2) Cognitive Distance
(occurring 17 times); (3) DevOps Clash (occurring in
every team). To give a representative view of how
diffused the community smells are across our sample,
Fig. 1 offers an overview of smells diffuseness across
the sample using a radial diagram.

Furthermore, we registered (after data sample
normalisation) almost no difference between agile
method types, with respect to the frequency of
community smells, with an occurrence of 579
community smells for Scrum and 557 community smells
for other agile methods and approaches, achieving a
standard deviation of 12,22 counts.

Finally, with respect to team experience, we
registered a strong correlation of +0,315 (P-value
<<0,05) between community experience and the
proliferation of more community smells.

Summary for RQ1. Our data indicates a
strong occurrence and diffuseness of community
smells in agile software development teams, with
a prominent presence of smells connected to

4anonymized - will be added in the accepted submission

Page 7041



organisational disruption (e.g., Time-Warp and
DevOps clash). Furthermore, experience plays a
role not in reducing the amounts of smells but,
surprisingly (as our data indicates) the number
of smells increases linearly with the number of
months that the teams work with agile methods.

We conclude that the role of community smells is
prominent in agile teams governance—further research
is needed to fully elaborate and quantify the dimensions
and implications of the above finding.

0
10
20
30
40
50
60
70
80

1
2

3
4

5

6

7

8

9

10

11
12

13
14151617

18
19

20

21

22

23

24

25

26
27

28
29

Figure 1. Community smells diffuseness across our

sample - a radial diagram; datapoints appear as

numbers around the outmost circle while occurrence

scale appears at 12 o’clock on the plot.

4.2. RQ2 - to what extent do community
smells reflect good quality?

To understand the degree to which community smells in
agile teams reflect higher (or lower) quality of outputs,
we used the architecture inefficiency measurement
previously introduced in Sec. 2 and correlated that
inefficiency with the occurrence of community smells,
normalising both quantities per frequency.

First, we discovered a strong linear correlation of
+0,34 (P-value <<0,05) between the two quantities
involved.

Second, we discovered that 84% of our dataset
shows evidence of overlap between community and
architecture smells. That is, not only are the two
quantities correlated but also their correlation persists
in a subsantial portion of our dataset. This condition

is represented by the radial overlap diagram in Fig. 3.
The diagram shows the overlap in diffuseness across

our entire sample both of community smells (continuous
line) and of architecture smells (dotted line)—an almost
total overlap is evident.

Summary for RQ2. Our data indicates a strong
correlation between software community smells
and software architecture smells; furthermore, the
correlation is present all across our sample.

We conclude that community smells are emergent
phenomena to be reckoned with and addressed jointly
with the quality of software artefacts being produced
and maintained by software teams—even those working
with agile methods. Perhaps this is to be expected,
since agile teams typically do not have personnel and
expertise specifically dedicated to software architecture
nor the detection and resolution of architecture smells.

5. Discussions

This section outlines the observations and lessons
learned with respect to the scope of our study, as well
as detailing the practical and research impacts of the
contributions offered in this paper. Finally, this section
recaps threats to validity for the scope of this study.

5.1. Observations

In the scope of this study, we made two major
observations.

First, when it comes to sub-optimal organisational
patterns as well as social debt, agile methods differ
little with respect to classical organisational structures
for software engineering. Indeed, the smells we
report in the context of this study are more or
less identical, and occur almost as frequently as
the community and organisational structure smells
reported in prior research [6, 22, 5]. This could
indicate a lack of maturity around measuring and
managing social debt all across software engineering
practices and methods. To this end, further research
should be invested in understanding and measuring
the phenomenon to encourage its management via
quantitative and operationalized tooling.

Second, software architectures, even though often
not explicitly addressed in the scope of most agile
methods, are proxies for community smells and could
be therefore used as ways to understand social debt
and community smells as well as offering ways to
mitigate the associated debt. For example, imagine
re-modularising a software architecture to address

Page 7042



0

5

10

15

20

25

30

35

Tim
e W

arp

Cogn
itiv

eD
ista

nce

Sh
ari

ng V
i lla

iny

Pow
erD

ist
an

ce

Dise
ng

age
men

t

So
lutio

n D
efi

an
ce

Prig
gis

h M
ember

Insti
tut

ional I
somorphis

m

Hype
r-C

om
mun

ity

DevO
ps C

lash

Unlea
rni

ng

Infor
malit

y E
xce

ss

Figure 2. Occurrence of community smells across our sample.

teams’ organisational differences; this circumstance
is quite typical although little understood and even
less used in the scope of agile teams. Further
understanding and practical experimentation of the
relationships between software architectures and the
context of agile team governance could reveal vital
insights into this relatively unexplored research area.

Third, our data suggests that the use of agile
methods may in fact lead teams to develop a
counterbalance between software architecture smells
and community smells. For example, across our
sample, a maximum of 76 months was reported for
the use of agile methods — in the scope of those
teams, practitioners equally diverged towards reportedly
formally- and informally-structured ways of working
which correspond to conflicting amounts of community
smells. This reflection indicates that further study
should be devoted to: (a) understanding the role of
community smells in the context of agile methods; (b)
understand and rank the influence and costs around
community smells in that context; (c) anticipate and
classify the organizational changes. These insights may
prove valuable in steerint young agile teams towards
organizational stability [4].

5.2. Usage of Findings and Practical Impact

The practical impact of the findings in this paper is
threefold.

First, practitioners can use the reported occurrence
of community smells as an analysis lens, e.g., in
the scope of their agile retrospective meetings, to
understand whether certain smelly conditions are
manifesting themselves, or whether the preconditions
and causes of those sub-optimal patterns may indeed be
emerging.

Second, a smell is not a bad thing per se, but
could cause distress in the organization that may need
further attention. In this respect, product owners
may use the reported community smells and their
overlap with architecture issues to try and diagnose any
reported sub-optimal quality in the emerging software
architecture of software products. Similarly, scrum
masters may be able to harness the knowledge around
community smells and their relations with architecture
smells to possibly govern and help fight the occurrence
of undesired community smells as counterparts to
product owner using the smells the other way around,
that is, anticipating the emergence of architecture smells
by witnessing and governing on the occurrence of
software community smells.

Page 7043



0
1
2
3
4
5
6
7
8

1
2

3
4

5

6

7

8

9

10

11
12

13
14151617

18
19

20

21

22

23

24

25

26
27

28
29

Figure 3. Community smells diffuseness vs. software

architecture issues across our sample - a radial overlap

diagram; scales and outline are identical to Fig. 1.

Finally, agile team members can use the correlations
and analyses we found in the scope of this study to drive
their iteration-0 software architecture bootstrap. This
phase is a delicate inception activity where the team
decides what to do (in terms of structuring the system),
how to do it, and by whom. Knowing the organisational
consequences and relations around software architecture
smells may aid team members troubleshooting their
iteration-0 software architecture design activities.

5.3. Impacts on Further Research

From a research perspective, the findings and
contributions of this paper are twofold.

On one hand, our focus on community smells in the
scope of agile teams provides even more evidence of
the presence and impact of community smells such that
future researchers may understand, better characterise,
and quantify the phenomena.

On the other hand, researchers actively pursuing
an understanding of software architecture smells and
technical debt can use our findings to highlight where
those smells are coming from, and to what extent they
weigh on the organisational structures as well. This
insight is critical to provide metrics and automated tools
for the simultaneous management of both social and
technical debt.

Furthermore, our sampling criteria were reduced
to a controllable minimum for a study of this scope.
However, further study should be devoted to explore
any interconnections between, e.g., codebase-size,

team-size, team-age, process maturity and other team-
and organizational-structure related factors. The
previous factors might provide further lens for analysis
with respect to the results reported in this manuscript.

5.4. Threats to Validity

Like any study of comparable magnitude and scale, this
study is affected by several threats to validity [31]. In
what follows we outline the major ones in our study
design and execution.

5.4.1. Internal and Sampling Validity Internal
validity refers to the internal consistency and structural
integrity of the empirical research design. More
specifically it refers to how many confounding factors
may have been overlooked. For example, the patterns
we report cover 24 out of 30 datapoints, with 6
outliers that were ultimately discarded. This issue may
negatively affect the generalisability of our results since
those datapoints may reflect unknown community types
or characteristics and quantities that emerge with a
more fine-grained analysis lens (e.g., focusing on single
software artefacts and the communication/collaboration
around them). We attempted to address this threat
with a sampling strategy where we controlled as many
variables as possible to: (a) ensure a meaningful variety
of our sample; (b) ensure that important variables for
the objects of our study, namely organisational structure
and architecture, were controlled. For example, we
controlled for organisational maturity influences over
organisational structures by selecting agile teams that
had recently successfully adopted agile methods. Also,
we controlled for process maturity, by selecting a
heterogeneous sample according to a standard CMMI
scale. This notwithstanding, there are up to 90
factors from the state of the art in organisations
research [4] that may still be affecting our findings
and results, also, the quantities and effect size of the
factors themselves were not addressed in this study
at all. Stemming from this major limitation, we are
planning further study of our target subjects in follow-up
quantitative research that may lead to confirming the
validity of this work. Furthermore, the statistical
validity of the results reported in this manuscript relies
heavily on multiple comparisons among possibly related
quantities, which leads to a statistical analysis issue
known as the “Multiple Comparisons Problem” [32]
— this condition is typically addressed by increasing
sample size and correcting with the well-known
(but overly-conservative) Bonferroni correction [33].
Because our study was exploratory, we did not perform

Page 7044



oversampling or apply the afore-mentioned correction
so our findings remain potentially affected by this issue.
In the future we plan to replicate this work in an attempt
to further generalise the findings and increase their
validity. In this new version of the study we are planning
to design the analyses for hypothesis testing, factoring in
the possible control operations entailed by tests such as
the Bonferroni correction.

5.4.2. Construct and External Validity As
previously discussed, our decision to strengthen internal
and sampling validity by focusing on agile teams alone
inherently introduced a flaw in our construct validity.
Also, although our measurements, observations, and
findings are based on valid content (i.e., reported by
practitioners who were directly involved with and
witnesses to the reported subjects) and valid criteria, the
external validity connected to the above-mentioned flaw
may be compromised as well. For example, we used
simple non-weighted and aggregate sums to evaluate
the quantities involved in this study so we have no way
of knowing whether the entity and -arity of the involved
quantities may yield different results. We are planning
further studies using a more quantitative approach
including rigorous statistical modelling and testing.

5.4.3. Conclusion Validity Conclusion validity
represents the degree to which conclusions about the
relationship among variables are reasonable. In the
scope of the discussions of our results we made sure
to minimise possible interpretations, designing the
study with reference to known hypotheses. Also, our
conclusions were drawn from statistical analysis of our
dataset. This not withstanding, the conclusions drawn
from our study also reflect assumptions which, although
sound and reflecting the need to avoid research design
mishaps, may compromise the conclusion validity. For
example, we chose to focus on the most basic roles
for software practitioners in our sample, not reaching
out explicitly, for example, to software architects.
This decision may have compromised our ability to go
beyond the simple numbers and capture speculative
interpretations of architects who work on multiple
projects, possibly within different organizations. Thus,
our study remains subject to this threat.

6. Related Work

To the best of our knowledge, little or no work is
available in the way of finding community smells
in the scope of agile software engineering teams
as well as correlating that occurrence with software

architecture quality. However, several works address the
sub-optimal organisational conditions that may emerge
as connected to agile practice. For example, Meyer
[34] explores systematically the role of agile practices
as connected to software development and offers a
birds-eye view over their organisational and technical
effects. Furthermore, other research is available around
sub-optimal organisational practices emerging during
migration to agile methods. For example, Noordeloos
et al. [35] study the effects of software migration
processes from the Rational Unified Process (RUP)
to the Scrum agile methodology and highlight the
connected sub-optimal organisational circumstances.
Similarly, Subhajit et al. [36] study the evolution
of collaboration patterns in the scope of a large,
globally-distributed agile project.

In summary, the literature that we found on subjects
close to our own either deals with aspects loosely related
to community smells or does not analyse such aspects
in relation to the quality of software outputs in the
study subjects. We sought to shed light in that exact
condition, trying to highlight the possible consequences
and patterns thereof.

7. Conclusions and Future Work

This paper offers an empirical, large-scale, longitudinal
study over the relations between (1) community smells,
that is, nasty sub-optimal patterns of organisational and
socio-technical behaviour during software engineering
and (2) software architecture smells, that is, nasty
sub-optimal patterns of architecture elements and
structures. We operationalized our study in the scope
and context of agile teams, where software architectures
are often not explicitly designed, documented, or
maintained and where the organisational structure is
emergent.

We found that community smells are indeed a force
to be reckoned with in the target context: smells are
diffused, and they impact heavily on the quality of
involved software artefacts.

We conclude that: (1) community smells should
be better studied to understand their birth, growth,
measurement, and mitigations; (2) agile practitioners
can use them, e.g., in the scope of their retrospectives
or their iteration-0 planning as rules to be avoided, i.e.,
“what not-to-do”.

In the future we are planning several replications of
this study to address the scope and threats to validity we
highlighted in the previous sections. For example, we
hope to provide operationalisations for the community
smells we revealed such that a quantitative approach can
be taken.

Page 7045



Acknowledgements

Some of the authors’ work is partially supported by the
European Commission grant no. 0421 (Interreg ICT),
Werkinzicht and the European Commission grant no.
787061 (H2020), ANITA.

Replication Package

The data and all materials used in the scope of preparing
this paper are available online to encourage verifyability
of the findings as well as replication of our study. Link:
anonymized.

References

[1] M. P. Boerman, Z. Lubsen, D. A. Tamburri, and
J. Visser, “Measuring and monitoring agile development
status.,” in WETSoM@ICSE (R. Tonelli, E. D. Tempero,
S. Counsell, and C. A. Visaggio, eds.), pp. 54–62, IEEE
Copmuter Society, 2015.

[2] P. Diegmann, “Measuring the effect of team diversity
and collective intelligence in agile teams on software
development efficiency.,” in AMCIS, Association for
Information Systems, 2017.

[3] M. E. Conway, “How do committees invent,”
Datamation, vol. 14, no. 4, pp. 28–31, 1968.

[4] D. A. Tamburri, P. Lago, and H. van Vliet,
“Organizational social structures for software
engineering.,” ACM Comput. Surv., vol. 46, no. 1,
p. 3, 2013.

[5] D. A. Tamburri, R. Kazman, and H. Fahimi, “The
architect’s role in community shepherding.,” IEEE
Software, vol. 33, no. 6, pp. 70–79, 2016.

[6] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet,
“Social debt in software engineering: insights from
industry.,” J. Internet Services and Applications, vol. 6,
no. 1, pp. 10:1–10:17, 2015.

[7] D. Tamburri, P. Kruchten, P. Lago, and H. van
Vliet, “What is social debt in software engineering?,”
in Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop
on, pp. 93–96, May 2013.

[8] C. de O. Melo, D. S. Cruzes, F. Kon, and R. Conradi,
“Agile team perceptions of productivity factors.,” in
AGILE, pp. 57–66, IEEE Computer Society, 2011.

[9] C. Zannier, H. Erdogmus, and L. Lindstrom,
eds., Extreme Programming and Agile Methods -
XP/Agile Universe 2004, 4th Conference on Extreme
Programming and Agile Methods, Calgary, Canada,
August 15-18, 2004, Proceedings, vol. 3134 of Lecture
Notes in Computer Science, Springer, 2004.

[10] T. Sharma and D. Spinellis, “A survey on software
smells.,” Journal of Systems and Software, vol. 138,
pp. 158–173, 2018.

[11] G. Samarthyam, G. Suryanarayana, and T. Sharma,
“Refactoring for software architecture smells.,” in
IWoR@ASE (A. Ouni, M. Kessentini, and M. . Cinnide,
eds.), pp. 1–4, ACM, 2016.

[12] A. Elgebeely and A. Kamel, “Architecture and
technical debt agile planning methodology for
software production,” Computer Science & Information
Technology (CS & IT), vol. 7, pp. 15 – 21, Dec. 2017.

[13] A. MacCormack and D. J. Sturtevant, “Technical debt
and system architecture: The impact of coupling
on defect-related activity.,” Journal of Systems and
Software, vol. 120, pp. 170–182, 2016.

[14] K. Schwaber and M. Beedle, Agile Software
Development with Scrum. Upper Saddle River, NJ:
Prentice Hall, 2002.

[15] C. Baham, “The impact of organizational culture
and structure on the routinization of agile software
development methodologies.,” in AMCIS, Association
for Information Systems, 2016.

[16] J. Iivari and N. Iivari, “Organizational culture and
the deployment of agile methods: The competing
values model view.,” in Agile Software Development
(T. Dingsyr, T. Dyb, and N. B. Moe, eds.), pp. 203–222,
Springer, 2010.

[17] M. Cataldo, J. D. Herbsleb, and K. M. Carley,
“Socio-technical congruence: a framework for assessing
the impact of technical and work dependencies on
software development productivity.,” in ESEM (H. D.
Rombach, S. G. Elbaum, and J. Mnch, eds.), pp. 2–11,
ACM, 2008.

[18] J. D. Herbsleb, M. Cataldo, D. Damian, P. T. Devanbu,
S. M. Easterbrook, and A. Mockus, “Socio-technical
congruence (stc 2008).,” in ICSE Companion (W. Schfer,
M. B. Dwyer, and V. Gruhn, eds.), pp. 1027–1028, ACM,
2008. 978-1-60558-079-1.

[19] J. D. Herbsleb, A. Mockus, T. A. Finholt, and
R. E. Grinter, “An empirical study of global software
development: distance and speed,” in ICSE ’01:
Proceedings of the 23rd International Conference
on Software Engineering, (Washington, DC, USA),
pp. 81–90, IEEE Computer Society, 2001.

[20] J. Herbsleb and R. Grinter, “Architectures, coordination,
and distance: Conway’s law and beyond,” Software,
IEEE, vol. 16, pp. 63 –70, sep/oct 1999.

[21] I. Kwan, A. Schrter, and D. Damian, “Does
socio-technical congruence have an effect on software
build success? a study of coordination in a software
project.,” IEEE Trans. Software Eng., vol. 37, no. 3,
pp. 307–324, 2011.

[22] D. A. Tamburri, P. Lago, and H. van Vliet, “Uncovering
latent social communities in software development,”
IEEE Software, vol. 30, pp. 29 –36, jan.-feb. 2013.

[23] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice. SEI series in software
engineering, Addison-Wesley, 2012.

[24] T. Gnatzy, Delphi studies and scenario planning:
methodological advancements and cases. PhD thesis,
2011.

[25] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, and
B. Regnell, Experimentation in Software Engineering.
Springer, 2012.

[26] B. Meyer, Agile! Cham: Springer, 2014.
[27] CMMI Product Team, CMMI for Development.

Software Engineerung Institute, Carnegie Mellon
University, 1.3 ed., 2010.

[28] T. O. Group, “Soa source book,”
http://www.opengroup.org/projects/soa-book/.

Page 7046



[29] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev,
V. Fedak, and A. Shapochka, “A case study in locating
the architectural roots of technical debt,” in Proceedings
of the International Conference on Software Engineering
2015, 2015.

[30] B. Ratner, “The correlation coefficient: Its values range
between +1/1, or do they?,” Journal of Targeting,
Measurement and Analysis for Marketing, vol. 17,
pp. 139–142, Jun 2009.

[31] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in software
engineering: an introduction. Norwell, MA, USA:
Kluwer Academic Publishers, 2000.

[32] A. Gelman and E. Loken, “The garden of forking paths:
Why multiple comparisons can be a problem, even when

there is no ?fishing expedition? or ?p-hacking? and the
research hypothesis was posited ahead of time,” 2013.

[33] A. Terada and J. Sese, “Bonferroni correction hides
significant motif combinations.,” in BIBE, pp. 1–4, IEEE
Computer Society, 2013.

[34] B. Meyer, Agile! Cham: Springer, 2014.

[35] R. Noordeloos, C. Manteli, and H. van Vliet, “From rup
to scrum in global software development: A case study.,”
in ICGSE, pp. 31–40, IEEE Computer Society, 2012.

[36] S. Datta, R. Sindhgatta, and B. Sengupta, “Evolution of
developer collaboration on the jazz platform: a study of a
large scale agile project,” in Proceedings of the 4th India
Software Engineering Conference, ISEC ’11, (New York,

NY, USA), pp. 21–30, ACM, 2011.

Page 7047


