
 Dependency Management in Large-Scale Agile:
A Case Study of DevOps Teams

Viktoria Stray

University of Oslo, SINTEF
 stray@ifi.uio.no

Nils Brede Moe
SINTEF

 nils.b.moe@sintef.no

Andreas Aasheim
University of Oslo

aasheim.andreas@gmail.com

Abstract

Managing dependencies between teams and within

teams is critical when running large-scale agile
projects. In large-scale software development, work is
carried out simultaneously by many developers and
development teams. Results are delivered frequently
and iteratively, which requires management of
dependencies on both the project and team level.

This study explores coordination mechanisms in
agile DevOps teams in a large-scale project and how
the mechanisms address different types of dependencies.

We conducted a case study where we observed 38
scheduled meetings and interviewed members of five
DevOps teams and two teams supporting the DevOps
teams. By using a dependency taxonomy, we identified
20 coordination mechanisms (eleven synchronization
activities and nine synchronization artifacts). Eight of
these mechanisms seem essential for coordination in
large-scale projects because they addressed more than
four types of dependencies. The main implication is that
project management needs to combine many practices
handling all the dependencies in large-scale projects.

1. Introduction

Dependency management in large-scale agile
software development is of great importance because
the work is carried out simultaneously by many
developers and development teams. In large-scale
projects, defined as projects with two to nine teams [7],
there is an exponential growth of interdependencies, and
effective coordination is a critical element for success
[2, 3, 11].

Furthermore, in large projects, interdependencies are
more uncertain than in small projects; therefore, teams
need to know who the experts and stakeholders are and
which experts and stakeholders to coordinate work with,
particularly when they are outside the team or even at a
different site. Moreover, agile methods are emergent

[4], which means that processes, principles, and work
structures emerge during the project rather than being
predetermined. As a consequence, dependencies in
large-scale agile projects will emerge during a project.

Dependencies in development projects can be
managed well, poorly, or not at all, but when managed
well, it suggests that appropriate coordination
mechanisms are present [30]. Malone and Crowstone
[18] define coordination as “the managing of
dependencies between activities.”

Understanding how to manage dependencies in
large-scale agile projects may help product leaders,
managers, and developers create better agile behaviors
and more successful projects by choosing the
appropriate coordinative practices from the large
number of agile practices that are employed. While
several studies have been performed on dependencies
and coordination in small projects, studies on
coordination and how to manage dependencies in large-
scale agile is lacking [20, 31]. Further, Dingsøyr et al.
[9] suggest that there is a need to develop a further
understanding regarding coordination mechanisms in
large development programs to investigate how
coordination mechanisms are tailored to the specific
context of a project.

Motivated by the need to understand how to manage
dependencies in large-scale agile, we have identified the
following research question:
How are dependencies managed in large-scale agile
projects?

To address this question, we conducted a case study
to investigate the management of dependencies. Our
work aims to answer a call for trying out a recently
developed taxonomy in a large-scale context [30].

The remainder of this paper is organized as follows.
Section 2 outlines the relevant background. Section 3
describes the research methods used. Section 4 reports
our results. Section 5 discusses the results, implications
for practice and the limitations of the study. Section 6
concludes and suggests future work.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60137
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Background

To understand dependencies in large-scale agile, it is
first important to understand autonomous agile teams
and coordination in large-scale projects.

2.1 Agile teams

Agile favors self-management (where teams
determine the best way to handle the work), emergent
processes (processes, principles, and work structures
emerge during the project rather than being
predetermined), and more informal coordinating
mechanisms [4]. Pikkarainen et al. [23] used Malone
and Crowston's theory from 1994 to study two small co-
located agile projects and found Sprint planning
meetings, daily meetings, and open work area to be
important for enabling communication and coordination
in agile teams. Moreover, Pries-Heje and Pries-Heje
[24] identified coordination as one of the critical
elements that explained why Scrum worked in a

globally distributed agile project, especially the product
backlog, scrum board, sprint backlog, and daily
meetings were identified for achieving coordination.
Moe et al. [21] studied a co-located Scrum project using
a teamwork model and found team members “not
knowing what others were doing” to be a major problem
for the agile team. When team members do not know
what others are doing, it is challenging to manage
dependencies. The coordination suffered due to
misapplication of Scrum practices partially caused by an
existing organizational structure that promoted
specialization of skills within individuals (ibid). Strode
[30] explored dependencies in three co-located agile
software development projects and found that
coordination mechanisms such as cross-team talk, a
product backlog, a done checklist, task breakdown
sessions, and a wallboard displaying stories, tasks, and
task assignments were important to manage
dependencies.

Table 1. A description of the eight dependency types based on [30]:
Dependency Description

Knowledge
dependency

Expertise

Knowing who knows what is essential in large projects. Expertise dependencies
are managed when people identify the roles and expertise of other team
members that are needed. When technical or task information is known only by
a particular person or group, this has the potential to affect project progress.

Requirement

Requirements are a critical input in software development because they define
the basic functions and qualities of the software. When domain knowledge or
details of requirements are not known and must be located or identified, this has
the potential to affect project progress. Prioritizations of requirements in agile
projects and customer access are vital.

Task allocation
Knowing who is doing what is useful information when it comes to managing
dependencies in large-scale projects. When it is not known who is doing what
or when they are doing it this has the potential to affect project progress.

Historical
Historical dependencies are defined as the need for organizational memory and
knowledge about previous decisions [13]. When knowledge about past
decisions is needed, this has the potential to affect project progress.

Process
dependency

Activity
When an activity cannot proceed until another activity is complete this may
affect project progress. That is, progress is blocked or delayed as people wait
for resources, necessary information or the activities of others to be completed.

Business
process

When existing business processes cause activities to be carried out in a certain
order, this may affect project progress.

Resource
dependency

Entity
Having to wait for information or people to be present is a common issue in
large-scale projects. When a resource (person, place, or thing) is not available,
this has the potential to affect project progress.

Technical
Technical dependencies are involved when the presence or absence of a
software component that another software component must interact with affects
project progress.

Page 7008

2.2. A dependency taxonomy

The previously mentioned case study on agile
projects by Strode [30] addressed dependencies and
coordination mechanisms by a dependency taxonomy in
co-located projects. The taxonomy identifies three types
of dependencies: knowledge, process, and resource.
Knowledge dependency occurs when team members are
waiting for information about a requirement, a task,
technical information, a past decision, or because they
do not know what other team members are doing [30].
Process dependencies occur when a team has to wait for
a process to complete. Resource dependencies occur
when the workflow is blocked because the team is
waiting for a resource to become available. These three
types of dependencies are further divided into eight
subcategories, see Table 1 for the descriptions.

2.3 Dependencies in Large-Scale Agile

In large-scale software development, coordination is
an essential but challenging success factor [25, 26].
Previous studies have used frameworks to study large-
scale coordination. For example, Scheerer et al. [27]
used the multiteam systems perspective from
organizational psychology to study inter-team
coordination and found that strategies that rely on
organic and cognitive mechanisms may help achieve
coordination effectiveness in large-scale agile projects.
Nyrud and Stray [22] applied a framework proposed by
Van De Ven, et al. [32] in a case study on inter-team
coordination in large-scale agile and identified eleven
different coordination mechanisms (such as open work
area, stand-up meeting, retrospective, backlog
grooming, demo, Sprint planning, and Jira).

One of the earliest mechanisms introduced for
managing dependencies across several teams in large-
scale agile is Scrum of Scrum. Scrum of Scrum is a
scheduled meeting were one team-member acts as
"ambassador" to participate in a daily meeting with
ambassadors from other teams. However, Scrum of
Scrum has been found to be inefficient in larger projects
[25, 26]. Paasivaara et al. [25] found that Scrum of
Scrums in two large-scale projects with 20 teams was
challenging. The results showed that the audience was
too big to keep everyone interested, and the participants
did not know what to report.

Because of challenges with agile practices in large-
scale projects, agile consultants have created several
frameworks for scaling agile, such as the Large-Scale
Scrum (LeSS) [15] and Scaled Agile Framework
(SAFe) [16]. SAFe describes inter-team coordination
practices such as a product increment planning event,

Product Owner sync meeting, a demo and Scrum of
Scrum meetings.

2.4 DevOps

DevOps is a pretty new concept for developing
software that extends agile principles to the entire
software delivery process [14]. In most companies,
development and operations exist as separate functions,
therefore, the collaboration in DevOps seeks to bridge
the silos of software development and operations
functions, and the idea is that this will reduce the amount
of overhead that is usually prevalent in organizations
where there are a lot of hierarchies, middle-managers,
and inter-team cooperation [17]. DevOps is about rapid,
flexible development iterations through domain-
crossing team compositions that break complex
architecture and features sets into small chunks that can
be produced and deployed independently [10].
Furthermore, a key concept in DevOps is continuous
integration, defined as a process that is triggered
automatically and includes inter-connected stages such
as compiling code, running tests, validating code and
building deployment packages [12].

To sum up, DevOps highlight principles such as: 1)
Knowledge sharing by breaking down barriers between
development and operations 2) Automation of build,
deployment and test, 3) Embracing shared responsibility
and 4) Ensuring continuous software development [14].

3. Method

Our case is a large Norwegian municipality with
approximately 50,000 employees, and 50 organizational
units, all varying in size, responsibilities, domain, IT-
competence, and funding. The municipality has its own
development program, which is responsible for
integrating hundreds of internal systems and is a data
hub for communicating with the population and other
business partners. Examples of solutions they provide
are web solutions, mobile solutions, document-handling
solutions, and business systems. We conducted a case
study to investigate the research question since a case
study is an appropriate method to answer “how” and
"why" questions [33]. We wanted to investigate how
agile teams manage dependencies and why the
coordination mechanisms identified in the project were
used. The project had seven teams, which makes it a
large-scale agile project (following the definition in [7]).
Five teams were DevOps team; teams Jupiter (7
members), Pluto (5 members), Mars (8 members),
Saturn (5 members), and Venus (4 members). Two of
the teams supported the DevOps teams; they are called

Page 7009

team Earth (8 members) and team Customer (6
members).

3.1 The DevOps teams

 Five of the teams under study followed DevOps
principles, meaning that, for features they implemented,
they had full responsibility from developing and testing
to deploying to production and monitoring the feature.
Each team had responsibility for a set of components,
and other teams could access these components through
a defined API. All the components could be deployed
independently.

The team size varied from four to eight members,
with an average of six members. Some teams focused
on frontend-oriented tasks, others on backend-oriented
tasks. Each team had a team lead (who they sometimes
referred to as the Scrum Master). All the teams followed
an agile approach, and they could choose either Scrum,
Kanban or a combination. Independent of which agile
method they followed, they all used agile practices such
as daily stand-up meetings, Scrum of Scrum meetings,
and product demos. Jira was the project management
tool where user stories, issues, sprint plans, and
priorities were collected. Each of the teams had a
separate electronic Kanban board showing their tasks in
the columns “to do,” “in progress,” “awaiting,” and
“done.”

3.2. Data collection and analysis

We chose participant observations as the primary
method for data collection. We observed 38 scheduled
meetings, see Table 2 for an overview. We also
observed the teams working. The meetings were
observed between November 2017 and January 2018.
Additionally, we supplemented with four interviews of
project members in February 2018, mainly to confirm
our observations and help us understand issues that were
unclear after the first round of data analysis.

Our first step in data analysis was to prepare a
summary and a reflection paper of each note from the
meetings and other observed material. In total, we
analyzed more than 60 pages from the observed meeting
notes. The reflection paper included details of the
organization under study, the project, the teams, the
meetings, the roles, and other coordination
observations.

We used both inductive and deductive coding
techniques [19]. The taxonomy of dependencies and
coordination mechanisms proposed by Strode [30] was
used to acquire an overview of the key concepts. All the
data sources were uploaded into a software program tool
for analyzing qualitative data called QSR NVivo. The

data items were given a descriptive name, a code, and
each code was defined uniquely. The coding approach
was guided by Crowston and Osborn [6] and aimed at
identifying dependencies and their associated
coordination mechanisms.

Table 2. Overview of the meetings observed
Observations Total Team Observed

Daily Stand-up 12 3 team Jupiter, 3 team Mars,
2 team Saturn, 4 team Venus

Demo meetings 6 Participants from all 7 teams

Sprint meetings 2 Participants from team
Venus

Scrum of Scrum
meetings 5 Participants from all 7 teams

Project
meetings 7 Participants from team Earth

and the customer

Workshop 3
Participants from Jupiter,
Pluto, Mars, Saturn, and
Venus

Team leader
meetings 2

Participants from Jupiter,
Pluto, Mars, Saturn, and
Venus

Retrospective 1 Participants from team Pluto
Sum: 38

4. Results

Table 3 provides an overview of the identified

coordination mechanisms in the categories
“synchronization activities” and “synchronization
artifacts,” and how they address relevant dependencies
for this large-scale project. There are eight types of
dependencies, and the coordination mechanisms can
address one or more dependency.

We found 20 synchronization activities and artifacts.
In this section, we report on the practices and artifacts
that addressed four or more types of dependencies since
these indicate to be effective and essential coordination
mechanisms in large-scale projects.

4.1. Daily stand-up meetings

The daily stand-up meeting was vital for managing
task allocation dependencies and expertise
dependencies (knowing who knows what). In these
meetings, a team member started by telling the team
what he or she had done since the last daily stand-up
meeting before discussing obstacles. An obstacle often
caused another team member to discuss what was the

Page 7010

best solution to the identified problem. The discussion
usually ended up with coordinating tasks with a
discussion of who should be involved in solving the task
and the obstacles (task allocation dependencies). The
team member ended his or her round by telling what
would be done before the next meeting Then, the next
team member started his or her status update, and the
cycle began again by telling what was done since the last
meeting. Often, team members raised obstacles of types
process dependencies (having to wait for other
teams/persons to complete a module) and resource
dependencies (having to wait for information or
technical bugs to be solved) so that the team leader
could be aware and manage the dependencies with other
stakeholders. After the update from the last team
member, team members and team the leader provided
general information before summing up the meeting and
ending it.

4.2 Scrum of Scrum meetings

The Scrum of Scrum meeting was a weekly
scheduled meeting with a duration of 60 minutes. The
participants in the meeting were project managers (from
supplier and customer), team leaders, UX designers,
Product Owners, architects, test lead, and security
manager. Generally, 12 participants attended the
meeting. This meeting was the most important meeting
to manage expertise dependencies. In the meeting, the
roles and expertise of others and who should coordinate
with whom in the different teams were discussed. Every
team leader gave a status of their tasks to the project
manager customer. During the meeting, the participants
discussed issues reported by the team leaders. The
Product Owners and the project managers discussed the
issues with the specific team leader and suggested
solutions to what the DevOps teams could do to solve
the problems. A project manager commented on how the
meeting helped to solve dependencies:

Table 3: Dependencies and coordination mechanisms identified in the large-scale program

Dependencies
Knowledge Process Resource

Expertise

R
equirem

ent

Task
allocation

H
istorical

A
ctivity

B
usiness

process

Entity

Technical

C
oordination M

echanism
s

Synchronization
activities

Scrum of Scrum meetings

Team leader meetings

Daily stand-up

Retrospective

 Software release

 Workshops

 Sprint Planning meetings

Ad hoc conversations

Project meetings

Prep. for product demo

Product demo to customer

Synchronization
artifacts

Wiki
Task
Product backlog
Communication tools
Project management tools
Priority list
Kanban board
Whiteboard
Open work area

Knowledge dependency
Process dependency
Resource dependency

(Coordination mechanisms marked in bold
addressed four or more dependencies)

Page 7011

We schedule this type of meeting every week because
it is valuable to gather different important roles from
the project. It allows us to prepare and discuss
problems when roles, such as Product Owners and
team leaders, are gathered together. This makes it
worth spending one hour weekly at this type of
meeting.

The Scrum of Scrum meetings were essential for

managing activity dependencies (when progress is
blocked or delayed as people wait for resources,
necessary information, or the activities of others to be
completed [30]). A team leader explained:

We have external dependencies. We had several
cases where we were supposed to integrate with
external parts of the system, but either they had not
completed their part, or what they had done was not
documented or they had not granted us access. It is
frustrating when we are done with our deliverables,
but we have to wait for this external part to be able
to deliver it to the customer.

 These kinds of issues were shared at the Scrum of

Scrum meetings, as well as task allocation and
requirements.

4.3 Sprint planning meeting

The Sprint planning meetings for a DevOps team
lasted two hours and were divided into two phases; pre-
planning and Sprint planning. First, 60 minutes with
pre-planning was conducted. The purpose of the pre-
planning was to plan unfinished tasks from the last
Sprint and plan new tasks for the new Sprint period. The
team leader focused on goals and tasks from the "to do"
list from the Kanban board and discussed the tasks with
the team members. Together, the team members
coordinated the tasks and estimated when the task
should be done. The Sprint planning meeting ensured
coordination between the team members. After the pre-
planning, the team ate lunch.

After the lunch break, the team met for Sprint
planning. The duration was a new 60 minutes with the
team members, the team leader, and the Product Owner.
The goal was to agree on the tasks list suggested in the
pre-planning. If the Product Owner disagreed on the
priority and estimates, the Product Owner changed the
priority list and the product backlog. The Sprint
planning meeting was the most important meeting to
manage requirement dependencies. In this meeting, the
team became aware of the priorities and details of the
user stories and tasks.

4.4 Team leader meetings

The team leader meeting was a weekly meeting,
scheduled for one hour. The participants during this type
of meeting were all the team leaders and the project
manager. The topics for the meeting were challenges in
the project and status updates for each team. Every team
leader talked about what was done since last team leader
meeting and updated the project manager about finished
tasks. The project manager also gave a brief update from
the management meetings held the day before. Issues
and information about resources were also often a hot
topic in the meeting and a concern for the project
members. It was normal to make tactical decisions
regarding resources in each team during the meeting. A
team leader from one of the teams with a high historical
competence commented on the future work:

If the plan is to continue, we need more resources in
the form of back-end developers. We don’t want that
one of our team members shall be removed because
our team has too many priorities in the project. We
also do not want new resources who do not have the
historical knowledge needed.

Moreover, another team leader from the project

stated, "We need more and competent resources in order
to reach the goals and complete our tasks in this
project."

4.5 Ad hoc conversations

Informal ad hoc conversations occurred several
times a day. Every team in the project practiced this way
of managing dependencies. The informal conversations
took place everywhere, especially where the teams were
located. The open work area made it easy for the team
members to make quick discussions, which created a
fast working culture. By having other teams within a
short distance, it was possible to walk from team to
team. Ad hoc conversations often occurred between
developers and the project manager. When developers
or team leaders from the DevOps teams were unsure
about details of the domain requirements, it was easy to
talk to a specialist from the customer who was co-
located in the room with the teams. The spontaneous
communication when tasks and requirements were
unclear often lead to unscheduled meetings. One of the
Product Owners stated:

By sitting in the same location as the customer and
a short distance from the DevOps teams, it is
possible to make important decisions through fast,
informal conversations. If there are several small

Page 7012

issues, it is easier to handle the problem by talking
with other team members instead of using time on
the issues in the scheduled meetings.

4.6 Open work area with boards

The DevOps teams were seated in an open work
area, see Figure 1. The open work area facilitated
coordination through easy access to other team members
and teams and promoted ad hoc conversations. The
work area enabled frequent discussions of tasks and
possible solutions to problems. Moreover, with meeting
rooms available just a few meters from the seating
arrangements, it was possible to implement informal
and unscheduled meetings.

The project manager commented: “By using the
offices in the best possible way, and with so many
participants involved in the project, we know from
earlier that an open area makes the teams more
autonomous and enables decisions in the project.” The
observations of the teams made it clear that the open
work area and the visual boards were essential to
managing task allocation dependencies because the
project members could easily see who was working on
what and help each other. Many of the teams used the
board also during other meetings, typically in the daily
stand-up meetings.

Figure 1: The open work area from Saturn

4.7 Communication tools

The teams made use of several tools for
communications, such as Slack1 and Skype.2 Slack is a
communication platform where team members can post

1 Slack is a registered trademark of Atlassian, www.slack.com
2 Skype is a registered trademark of Skype Tech., www.skype.com

messages to a group of people in chat rooms or directly
to individuals. Team members have conversations in
different chat rooms (called channels) according to a
topic or a team. Through Slack, the team members
informed others about issues, deliveries, and other
work-related tasks. Besides, the tool was also rather
social; team members invited other teams to lunch or
other social small events during the workday.

Skype is a tool for video conversations and chat
messaging. This tool was used when team members
joined meetings, such as daily stand-up and demo
meetings through video if they were located at home or
on a special trip away from the office.
 Both Skype and Slack helped manage entity
dependencies because it made it possible to reach out to
people who were not present more easily. The tools thus
reduced the time having to wait for information and
absent resources.

5. Discussion

In Section 4, we reported on the practices and
artifacts that addressed the most types of dependencies
since these are the most effective and essential
coordination mechanisms in large-scale agile projects.
These mechanisms lead to frequent production settings,
a common understanding of what was being created, and
enabled autonomous decisions.

We now discuss our research question: How are
dependencies managed in large-scale agile projects?
By using a dependency taxonomy [30], we identified
two main categories of dependency management:
synchronization activities and synchronization artifacts.

5.1. Synchronization activities

Two of the synchronization activities were inter-
team coordination mechanisms: the Scrum of Scrum
meetings and the team leader meetings. Both
coordination mechanisms manage four dependencies,
and together, they complement each other by managing
seven dependencies.

The goal of the Scrum of Scrum meetings was to
allow teams to communicate with each other to ensure
that the solutions integrated well with the fundamentals
of the other teams. From the literature, the Scrum of
Scrum meeting is suggested to be time-boxed to last a
maximum of 15 minutes [20], just like the daily stand-
up meeting [29]. However, in a large-scale context with
seven teams, this is not sufficient if the goal is to have it
as a synchronization meeting that manages knowledge

Page 7013

dependencies and especially expertise dependencies.
Our results suggest that 60 minutes is a better time frame
for a Scrum of Scrum meeting where various roles are
present, and the meeting is used for managing
dependencies, not just reporting status information from
each of the teams. Other research also indicates that
Scrum of Scrum needs to last longer than 15 minutes [5,
25].

In our study, the Scrum of Scrum meetings were
successful as a synchronization activity because they
allowed teams to communicate with each other and
integrate information and knowledge from other teams
while simultaneously giving status about tasks to the
project manager. However, the Scrum of Scrum
meetings were not enough and had to be supplemented
with the team leader meetings. In the team leader
meetings, there were usually 6 participants with similar
roles, while in the Scrum of Scrum there were 12
participants with various roles. The team leader
meetings, having fewer participants and roles, allowed
for different discussions than the Scrum of Scrum
meetings. Bick et al. [2] also found that the Scrum of
Scrum meeting should be supplemented with other
inter-team-level meetings in large-scale projects.

The rest of the synchronization activities in the
large-scale agile project was intra-team coordination
mechanism. Daily stand-up meetings helped in
managing team-internal dependencies, specifically task-
allocation dependencies. The daily stand-up meeting
allowed the team members to share information on who
was doing what, and when. The daily stand-up meeting
managed six types of dependencies and, together with
ad-hoc conversations, it was the most important
coordination mechanism for the teams.

A recent study of a large-scale agile project found
that project members spent on average 1.1 hours per day
in scheduled meetings and 1.6 hours in ad-hoc
conversations and unscheduled meetings [28]. In that
study, all roles, including developers, testers, and
managers, said they spent more time in unplanned
coordination (ad-hoc conversations and unscheduled
meetings) than they did in planned coordination
(scheduled meetings). One reason for spending much
time in unplanned coordination might be that ad hoc
conversations are an efficient way of managing
dependencies, and we found that it was used to manage
five different types of dependencies, across all the three
categories: knowledge, process, and resource.

The goal of the Sprint planning meetings was to
delegate tasks to team members, estimate time on the
tasks, and prioritize the tasks. Abrahamsson et al. [1]
suggested that these meetings should be divided into
two phases: First, users, management, the customer, and
the Scrum team should decide the goals for the next
sprint. Second, the Scrum Master and the Scrum team

should focus on how to implement the product
increment during the Sprint. In our case study, the
meeting was also split into two phases, but in the
opposite order. First, pre-planning with the team leader
and the developers. Second, the Product Owner, team
leader, and developers were gathered. This worked very
well to manage task allocation dependencies effectively.

5.2. Synchronization artifacts

 The teams made use of several tools for
communications, such as Slack and Skype where they
informed each other about deliveries and other work-
related tasks. Slack managed historical dependencies
because the logs could be read by all at a later time to
find the reasoning of a previous decision. Slack also
managed task-allocation dependencies because team
members used the tool to discuss who should do what.

An open work area with boards enabled ad-hoc
conversations, which is the main reason why it managed
several types of dependencies. A recent study of a very
large-scale project also found that the open work area
contributed to efficient coordination and knowledge
sharing [8]. The open work area and the boards
coordinated activity dependencies by giving people
necessary information of when others were completed
with activities. The boards also helped manage task
allocation dependencies because all project members
could see who was working on what. The teams also
used the boards in the meetings when they discussed
requirement dependencies.

5.3. Implications for practice

Our research has several implications for practice.

First, organizations should make sure that they prioritize
the coordination practices and meetings that manage a
high number of dependencies.

Second, agile projects change over time and so do
the synchronization activities and artifacts. When teams
or managers think of introducing a new coordination
mechanism, they should evaluate which type of
dependencies the mechanism will help manage (similar
evaluations should be made when removing or changing
existing practices).

Third, synchronizations tools such as Slack should
be supported by the organization so that it is available
and used by everyone, independent of which department
they belong to. If practices are only used by part of the
large-scale project, the project will experience
misalignment in how dependencies are managed.

Page 7014

5.4. Limitations

As in any empirical study, there are some limitations
that need to be discussed. Regarding the data collection,
the presence of researchers may be intrusive and alter
the behavior of the meeting attendees. Nevertheless, we
believe this effect was small because most of the teams
were observed over a longer period.

Another limitation is that the amount of observation
per meeting type probably affected what dependencies
we identified were managed by that particular meeting.
For example, if we had observed more retrospective
meetings, it might be the case that we would have
identified that the practice managed more dependencies.

6. Conclusions and future research

In this case study, we used a dependency taxonomy
to explore agile practices that acted as coordination
mechanisms in a large-scale project. Meetings, ad-hoc
conversations, communication tools, and an open work
area with boards provided an essential venue for
managing dependencies. The dependency taxonomy
was useful for describing different dependencies and
their associated agile practices that helped achieve
effective project coordination.

Our study supports the finding that Scrum of Scrum
meetings by themselves are not enough to manage inter-
team dependencies in large projects. Other types of
meetings, such as a meeting with the project manager
and all the team leaders, is also necessary. The main
implication of our study is, therefore, that project
management needs to combine many coordination
practices to be able to handle all the dependencies in
large-scale agile projects.

Future research should focus on other types of agile
teams (e.g. BizDev and BizDevOps) to investigate
synchronization activities and artifacts and see what
dependencies they manage and how they are different or
similar to a project with DevOps teams. Additionally,
one should investigate the two other strategy
components in the framework by Strode [30]: structure
(with the components proximity, availability, and
substitutability) and boundary spanning (with the
components spanning activity, spanning artifact, and
coordinator role). Especially interesting to investigate
would be what kind of dependencies are managed by the
different agile roles acting as coordination mechanisms.
Furthermore, one should analyze chat logs from
communication tools such as Slack to see what kind of
dependencies that are discussed and managed.

7. Acknowledgments

We are grateful to all those who participated in this
research and to the anonymous reviewers for their
valuable comments. This work was supported by the
Research Council of Norway (grant 267704) and the
companies Kantega, Knowit, Sbanken and Storebrand
through the research project Autonomous teams.

8. References

[1] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.,
"Agile Software Development Methods: Review and
Analysis," VTT Technical Research Centre of Finland, VTT
Publications 478, 2017.

[2] Bick, S., Spohrer, K., Hoda, R., Scheerer, A., and Heinzl,
A., "Coordination challenges in large-scale software
development: a case study of planning misalignment in
hybrid settings," IEEE Transactions on Software
Engineering, no. 1, pp. 1-1, 2017.

[3] Blichfeldt, B. S. and Eskerod, P., "Project portfolio
management – There’s more to it than what management
enacts," International Journal of Project Management, vol.
26, no. 4, pp. 357-365, 5// 2008.

[4] Boehm, B. and Turner, R., "Management Challenges to
Implementing Agile Processes in Traditional Development
Organizations," IEEE Software, vol. 22, no. 5, pp. 30-39,
2005.

[5] Cohn, M., "Advice on conducting the scrum-of-scrums
meeting," 2007.

[6] Crowston, K. and Osborn, C. S., "A coordination theory
approach to process description and redesign," In Malone, T.
W., Crowston, K. & Herman, G. (Eds.) Organizing Business
Knowledge: The MIT Process Handbook (pp. 335–370).
Cambridge, MA: MIT Press. 1998.

[7] Dingsøyr, T., Fægri, T. E., and Itkonen, J., "What is large
in large-scale? A taxonomy of scale for agile software
development," in International Conference on Product-
Focused Software Process Improvement, 2014, pp. 273-276:
Springer.

[8] Dingsøyr, T., Moe, N. B., Fægri, T. E., and Seim, E. A.,
"Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method
adaptation," Empirical Software Engineering, journal article
pp. 1-31, 2017.

[9] Dingsøyr, T., Moe, N. B., and Seim, E. A., "Coordinating
Knowledge Work in Multi-Team Programs: Findings from a
Large-Scale Agile Development Program," arXiv preprint
arXiv:1801.08764, 2018.

Page 7015

[10] Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N.,
"DevOps," IEEE Software, vol. 33, no. 3, pp. 94-100, 2016.

[11] Faraj, S. and Sproull, L., "Coordinating Expertise in
Software Development Teams," Management Science, vol.
46, no. 12, pp. 1554-1568, 2000.

[12] Fitzgerald, B. and Stol, K.-J., "Continuous software
engineering: A roadmap and agenda," Journal of Systems and
Software, 2015.

[13] Grinter, R. E., "Understanding dependencies: A study of
the coordination challenges in software development,"
University of California, Irvine, 1996.

[14] Jabbari, R., bin Ali, N., Petersen, K., and Tanveer, B.,
"Towards a benefits dependency network for DevOps based
on a systematic literature review," Journal of Software:
Evolution and Process, 2018.

[15] Larman, C. and Vodde, B., Large-scale scrum: More
with LeSS. Addison-Wesley Professional, 2016.

[16] Leffingwell, D., SAFe® 4.0 Reference Guide: Scaled
Agile Framework® for Lean Software and Systems
Engineering. Addison-Wesley Professional, 2016.

[17] Lwakatare, L. E. et al., "Towards DevOps in the
Embedded Systems Domain: Why is It So Hard?," in 2016
49th Hawaii International Conference on System Sciences
(HICSS), 2016, pp. 5437-5446.

[18] Malone, T. W. and Crowston, K., "The interdisciplinary
study of coordination," ACM Comput. Surv., vol. 26, no. 1,
pp. 87-119, 1994.

[19] Miles, M. B., Huberman, A. M., Huberman, M. A., and
Huberman, M., Qualitative data analysis: An expanded
sourcebook. sage, 1994.

[20] Moe, N. B. and Dingsøyr, T., "Emerging research
themes and updated research agenda for large-scale agile
development," presented at the Proceedings of the XP2017
Scientific Workshops, Cologne, Germany, 2017.

[21] Moe, N. B., Dingsøyr, T., and Dybå, T., "A teamwork
model for understanding an agile team: A case study of a
Scrum project," Information and Software Technology, vol.
52, no. 5, pp. 480-491, 2010.

[22] Nyrud, H. and Stray, V., "Inter-team coordination
mechanisms in large-scale agile," presented at the
Proceedings of the XP2017 Scientific Workshops, Cologne,
Germany, 2017.

[23] Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P.,
and Still, J., "The impact of agile practices on
communication in software development," Empirical
Software Engineering, vol. 13, no. 3, pp. 303-337, 2008.

[24] Pries-Heje, L. and Pries-Heje, J., "Why Scrum Works: A
Case Study from an Agile Distributed Project in Denmark
and India," in 2011 Agile Conference, 2011, pp. 20-28.

[25] Paasivaara, M., Lassenius, C., and Heikkila, V. T.,
"Inter-team coordination in large-scale globally distributed
scrum: Do Scrum-of-Scrums really work?," in Empirical
Software Engineering and Measurement (ESEM), 2012
ACM-IEEE International Symposium on, 2012, pp. 235-238.

[26] Rolland, K. H., Mikkelsen, V., and Næss, A., "Tailoring
Agile in the Large: Experience and Reflections from a Large-
Scale Agile Software Development Project," in International
Conference on Agile Software Development, 2016, pp. 244-
251: Springer.

[27] Scheerer, A., Hildenbrand, T., and Kude, T.,
"Coordination in large-scale agile software development: A
multiteam systems perspective," in System Sciences (HICSS),
2014 47th Hawaii International Conference on, 2014, pp.
4780-4788: IEEE.

[28] Stray, V., "Planned and Unplanned Meetings in Large-
Scale Projects," in Proceedings of the XP2018 Scientific
Workshops, Porto, Portugal, 2018, pp. 1-5: ACM.

[29] Stray, V., Moe, N. B., and Sjøberg, D. I. K., "The Daily
Stand-Up Meeting: Start Breaking the Rules," IEEE
Software, 2018 (in press).

[30] Strode, D. E., "A dependency taxonomy for agile
software development projects," Information Systems
Frontiers, journal article vol. 18, no. 1, pp. 23-46, February
01 2016.

[31] Strode, D. E., Huff, S. L., Hope, B., and Link, S.,
"Coordination in co-located agile software development
projects," J. Syst. Softw., vol. 85, no. 6, pp. 1222-1238, 2012.

[32] Van De Ven, A. H., Delbecq, A. L., and Koenig, R.,
"Determinants of Coordination Modes within Organizations,"
American Sociological Review, vol. 41, no. 2, pp. 322-338,
1976.

[33] Yin, R. K., Case study research: Design and methods.
California: SAGE Publications 2002.

Page 7016

