
An Analysis of Measurement and Metrics Tools: A Systematic Literature
Review

Edna Dias Canedo
Computer Science Department
University of Brası́lia (UnB)

P.O. Box 4466, 70910-900, Brası́lia-DF, Brazil
ednacanedo@unb.br

Karine Souza Valença
Faculty UnB Gama (FGA)

University of Brası́lia (UnB)
Brası́lia-DF, Brazil

valenca.karine@gmail.com

Giovanni Almeida Santos
Faculty UnB Gama (FGA)

University of Brası́lia (UnB)
Brası́lia-DF, Brazil
giovannix@unb.br

Abstract

Measurement is an important field in Software
Engineering, since it allows for organizations to obtain
trustworthy estimates regarding deadlines, cost, and
quality for the development of their software projects.
Many tools are available for the calculation and storage
of metrics and therefore, choosing the best tool can be a
hard task. Faced with such a problem, this study carries
out an analysis of the measurement tools presented in
literature. The methodology chosen for the task was
the systematic literature review. The results of the
systematic review present the metric tools chosen in
literature, their functionalities, and the main metrics
used by these tools. The primary contribution of this
article is a list with the metrics used by each of these
tools, and their respective classification, according to
their use in academia as well as in the software industry.

1. Introduction

Software metrics continue to be of interest for
researchers and practitioners. Software metrics are an
essential aid to the software measurement process and
new software metrics continue to be defined by the
research community. Software measurement is a task
that is carried out during all the phases of the software
development process. During this process, many
intermediate or final software products are developed
and measured by software product metrics. One of those
products is the project management (scope, time, cost
and quality), which is part of the final software system
and is measured to assess its quality. This measurement
is achieved by mapping a particular characteristic of
a measured entity to a numerical value, taking in
consideration that for some cases that value can be also
categorical or ordinal [1].

Measurement, when done effectively, provides
enough knowledge for software development
organizations to make estimates in a trustworthy
way and detect issues ahead of time. This allows

them to have better control over risk management,
and improves the overall quality of their products
and projects [2]. The properties and quality of a
measurement scale can be assessed by evaluation of the
scale’s reliability, construct validity and content validity
[3].

The evaluation of a new metric typically consists of
correlating the (change in) value of the metric with other
quality indicators such as likelihood of change or its
ability to predict the lack of planning. In other cases,
the evaluation consists of an analysis of the values of a
metric for a set of systems, either on one single snapshot
or over a period of time. The organizations use different
metrics to evaluate their products and processes. These
metrics can be related to size, productivity, quality, and
complexity, among others [4], [5]. As such, it is useful
for the organization to have methods and tools to collect
the metrics. It is also important that the registering,
calculation, and presentation of such metrics be done
in an automated way, since it allows for more agility
in collecting and analyzing data, as well as minimizing
possible annotation errors [4].

In the literature, there are several tools available
for the calculation and storage of metrics. As a
result, choosing the most adequate tool for the software
development organization can be an arduous, complex
task. To remedy this issue, this study seeks to make
an analysis regarding measurement tools found in the
literature. In this paper we evaluate and analysis of
measurement and metrics tools present in literature,
their functionalities, and the main metric used by these
tools.

The remainder of the paper is organized as follows.
Section 2 presents the theoretical basis required for
the understanding of the study. Section 3 presents the
methodology used for the development of the study.
Section 4 presents the results obtained through the
systematic literature review. Section 5 presents the
discussion of the obtained results. Finally, Section
6 presents the conclusions and expectations of future
studies.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60133
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 6970

2. Background

Measurement in the domain of Software Engineering
corresponds to the successive process of defining,
collecting, and analyzing data in the software
development process, to understand and control
the processes [6]. That is, through measurement,
several useful items of information are studied and
analysed and, through them, one can discover how the
process is executed, what results are being generated in
it, and also learn about managing the process, making
the process better.

There are many definitions of what measurement
is. One of the classic definitions is presented by
Finkelstein & Leaning [7], who says that measurement
is the ascribing of numbers to the properties of objects
of real world events through an objective empirical
operation, so as to describe them. In the study
presented by Fenton and Pfleeger [4], measurement is
classified as the process through which numbers and
symbols are ascribed to attributes of real world entities,
so as to describe them according to clearly defined
rules. Based on these basic concepts, it can be said
that measurement seeks to numerically characterize the
attributes of objects and real world events.

The work presented by Galin [8] states that a
measurement is crucial to the progress of all sciences.
Scientific progress is made through observations and
generalizations based on data and measurements. It is
no different in Software Engineering, and measurements
have a very important role to play in the success of
organisations, as such measurement processes allow
the software teams come to grips with their capacities.
As a result, with measurements it is possible to carry
out solid project planning that will not overshoot the
planning done as regards the scope, quality, risk, and
project length, as the measurement allows one to gain
knowledge on the processes [2]. Apart from that,
there are many characteristics in software projects that
can be measured [9], strengthening the importance of
measurement in this area.

Software metrics are a way of putting a
value/measure on certain aspects of development
allowing it to be compared to other projects. These
values have to be assessed correctly otherwise they
will not give accurate measurements and can lead to
false estimations, etc. Metrics are used to maintain
control over the software development process. It
allows managers to manage resources more efficiently
so the overall team would be more productive. Some
examples of metrics include Size Projections like Source
Byte Size, Source Lines of Code, Function pointers,
GUI Features and other examples are Productivity

Projections such as Productivity Metrics [10].
The metrics can be used to measure size, cost,

effort, product quality of a project as well as putting a
value on the quality of the process taken and personal
productivity. There are certain factors that have to be
taken into account when comparing different projects
with each other using metrics. If one project has was
written in a different language then the number of lines
of code could be significantly different or perhaps the
larger project has many more errors and bugs in it.
Measurements such as Function Pointers give a better
indication because they are the actual methods that are
in the project rather than the number of lines [4].

A measurement scale corresponds to an ordered set
of values or categories, which will map a database
that stores the results of measurements and lessons
learned [10]. A measurement scale can be classified in
five main types [4], [11]: Nominal; Ordinal; Interval;
Absolute, Ratio. Nominal, in this type of scale, there
is no notion of ordering among the classes that define
the attribute. Besides that, there is no magnitude.
The values of measurement are basically categorical.
Ordinal, in this type of scale, there is the notion of
ordering, where measurement values signify position.
Mathematical operations in this kind of scale are not
used. Interval, in this type of scale, there is the notion
of ordering, where measurement values keep equal
distances, but not proportions. Mathematical operations
such as additions and subtractions are accepted in this
type, but multiplications and divisions are not allowed.
Ratio, in this type of scale, there the notion of ordering
and the interval between values. Besides that, proportion
is also kept. There is the zero value, which corresponds
to no attribute. All arithmetic operations are allowed
in this type of scale. Absolute, in this type of scale,
measurement is done only through counting the number
of elements of the entity. No arithmetic operation is
done in this type of scale.

3. Systematic Literature Review

Systematic literature review (SLR) is a secondary
form of study that looks to identify and analyze research
relevant to a certain research question. Among its
characteristics, we can highlight [12]: It has a SLR
process that is defined at the start of the research.
This protocol defines the research questions to be
approached, and which methods will be used during the
research; It proposes the creation of a well-documented
research strategy. This strategy needs to be good enough
to get the highest amount of primary studies in literature
relevant to the topic; It uses inclusion and exclusion
criteria to evaluate the primary studies found.

Page 6971

The systematic review used in this study was
composed of three main stages, as defined in [12].
The objective of the stages of the systematic review
encompass: Stage 1 - Planning the review: In this
stage the research questions addressed in this study were
chosen. Besides that, the SLR process to be used was
developed. Stage 2 - Conducting the review: In this
stage, the SLR process defined in the previous stage
was applied in the systematic literature review. Stage
3 - Reporting the review: In this stage, the results
obtained through the systematic review were revised and
documented.

3.1. Research Questions

Seeking to reach the objective of this study,
three research questions (RQ) were determined.
These questions attempt to direct the searches and
showcase the current overview of research done in the
measurement tools field. The defined research questions
were: RQ.1 – Which measurement tools exist in
the literature? RQ.2 – What functionalities do the
measurement tools offer? RQ.3 – Which metrics
were identified and used by measurement tools?

3.2. Chosen SLR Main Activities

This systematic literature review strictly followed a
SLR process. The activities for the systematic review
are:

1. Apply a search string in the research bases:
Apply the defined search string in the research
bases. This activity will be better detailed in
Section 3.3.

2. Read the title, abstract, and keywords: Read
this information in the article, in order to verify
if it fits the established inclusion and exclusion
criteria.

3. Apply inclusion and exclusion criteria: Observe
the inclusion and exclusion criteria and verify
if the article fits them. It should otherwise
be discarded. Section 3.4 presents the criteria
defined for this review.

4. Perform a thorough reading of the article:
Verify if the article answers the research question
and if it’s within the inclusion and exclusion
criteria. If the article does not answer the research
question, it must be discarded after being read.

5. Extract the data: Perform the collection of data
that answers the research question and found in
the selected articles.

6. Fill the form for data collection and analysis:
Systematically organize all the data obtained
during the systematic review, and create a detailed
report of the data. Section 3.6 presents the result
of this activity.

7. Report the obtained results: Answer the defined
research questions based on the articles selected
during the review procedure.

3.3. Search strategy

To perform a search in the research bases, the search
string was created. The string was defined using
the PICO (Population, Intervention, Comparison,
Outcomes) approach, which helps in better framing the
research questions. Each letter of the PICO approach
corresponds to the following [12]: 1. Population:
The population corresponds to a specific role within
the lifecycle of the software, an area of application, or
even a specific group of the industry; 2. Intervention:
The intervention corresponds to methodologies, tools,
technologies, or software procedures that broach a
question; 3. Comparison: Comparison corresponds
to methodologies, tools, technologies, or software
procedures in which intervention is being compared. A
comparison isn’t always mandatory; 4. Outcomes: The
outcomes must report important factors relevant to the
professionals of the software field.

According to this definition, to answer the research
questions, the defined PICO was: 1. Population:
Software measurement field. 2. Intervention: Metrics
collection tool. 3. Comparison: Does not apply. 4.
Outcomes: Functionality. After executing the PICO
approach, the following search string was obtained:

(TITLE-ABS-KEY ((”software measurement”
OR ”software metrics”)) AND TITLE-ABS-KEY ((
”metric collection tool” OR ”metric application” OR
”metric tool” OR ”metrics tool” OR ”metrics collection
tool” OR ”software tool” OR ”metrics tools” OR
”measurement tools” OR ”measurement tool”)))

With the search string defined, automatized searches
were performed in the SCOPUS digital library, since
SCOPUS indexes different research bases and is one
of the bases that indexes the main journals of Software
Engineering, including: Digital Library IEEE Xplore;
Digital library ACM; Science Direct. Scopus also
indexes other relevant bases. The full list of indexed
sources can be verified on the SCOPUS website1.
Besides that, automated searches were also performed
in the Science Direct base, since the Scopus indexing
wasn’t returning all the results for this specific base.

1https://www.scopus.com/sources?zone=&origin=sbrowse

Page 6972

https://www.scopus.com/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/
http://www.sciencedirect.com/

3.3.1. Snowballing Database searches are
challenging for a variety of reasons, including
selecting databases to use, different interfaces to
databases, different ways of constructing search strings,
different search limitations in databases, and identifying
databases and synonyms of terms used [13]. This
reasoning leads to two conclusions: 1. Choosing the
first step in the search strategy often becomes the only
step, that is, search databases; 2. Given the challenges
with the databases, important studies can be lost.

Based on the snowballing instructions proposed by
Wohlin and Prikladniki [13], in this study the steps
used to perform this technique were: 1. Use the
papers selected in automatic and manual searches as
the initial set of selected studies; 2. Based on the
selected studies, check references by looking at works
of authors already included, since they obviously carry
out relevant research in relation to their objectives; 3.
Based on the set of documents found, check studies that
cite the selected studies (forward snowballing). It is
recommended to use Google Scholar as it captures more
than individual databases.

3.4. Inclusion and Exclusion Criteria

With the intention of selecting only the most relevant
articles for the study object, inclusion and exclusion
criteria were applied. For the selection of the articles,
the following inclusion criteria were defined: 1. Articles
that present measurement tools, methods, models, or
approaches based on measurement used in Software
Engineering and articles that present a discussion on
measurement tools used in the software development
process; 2. Articles that contain title, abstract, and
keywords related to the research questions; 3. Articles
published between 2007 and 2018, to get tools relatively
recent and more likely to be active.

The exclusion criteria applied in this study were: 1.
Duplicate studies. When a study has been published
in more than one conference, workshop or journal, the
most complete version will be used, i.e., the one which
explains it in more detail; 2. Studies outside the scope
of this research, that not present measurement tools; 3.
Incomplete Articles (published as Short Paper, less than
4 pages).

3.5. Systematic Literature Review Limitations

This systematic literature review (RSL) presented in
this paper has some limitations and weaknesses. We
describe as follows the threats to validity of this RSL,
as well as mitigation strategies for each one: Research
questions: the defined questions might not have covered

the whole measurement and metrics tool area. Thus,
one may not find answers to the questions that concern
him/her. As we considered this a feasible threat, several
discussion meetings with the research team were held
to calibrate the RSL questions; Subjectivity in the
study selection: we cannot guarantee that all relevant
primary studies were selected. It is possible that relevant
papers were not chosen. In order to mitigate it, we
performed the automatic search, and complemented
it by performing manual search to try to collect all
primary studies in this field; Subjectivity in the data
extraction: during the data extraction process, the
primary studies were classified based on our judgment.
In order to mitigate this threat, the classification process
was performed using peer review; and Repeatability
of the systematic process: there is a risk involving
the ability to replicate or extend this study. This
threat is mitigated through a detailed description of the
systematic process in this work, since all details of the
study protocol were described. Moreover, we published
the data extraction results on the Web as an additional
source of information.

3.6. Data Collection and Analysis

After obtaining the primary studies that met
the established inclusion and exclusion criteria, the
collection and analysis of data was performed. The
Start tool 2 was used to organize the information from
the articles that came up from the search, as this tool
assists in the systematic review process. The results
that the search string returned during its execution in
the research bases were grouped in this tool for the
selection of the publications according to the inclusion
and exclusion criteria and for the process of data
extraction.

The first stage in the process of selecting the primary
studies consisted of the execution of the search strategy
presented in Section 3.3, that is, inserting the strings in
the research base chosen. With this stage, 215 articles
were found, The majority of them, 81% were obtained
through the Scopus digital library, while 19% of the
articles came from the Science Direct library.

The second stage of data collection consisted in
reading the title, abstract, and keywords of the 215
articles to verify if the article was within the inclusion
and exclusion criteria defined. Of the 215 articles
found in stage 1.78% were rejected, 19% were accepted,
and 3% were rejected for being duplicates. The great
rejection ratio was mainly due to the fact that the articles
didn’t meet the ”Articles published between 2007 and
2018” inclusion criteria.

2http://lapes.dc.ufscar.br/tools/start tool

Page 6973

In the third stage of the data collection, a complete
reading of the articles selected in the second stage was
done. This way, the article was evaluated to make sure
it could contribute in answering the research question.
Besides that, the other exclusion criteria were also
applied. After the complete reading of the articles, 59%,
or 24 articles, were accepted, meaning they answered
the research question and did not present the other
exclusion criteria.

During data extraction, the researchers carefully read
the primary studies. The peer-review process was put
in place and two researchers extracted data for the
same study. Disagreements were solved by a third
researcher. We performed a pilot of the data extraction,
aiming to align the understanding of the researchers
for answering the research questions. The pilot was
performed with five randomly chosen primary studies,
and the researchers discussed about the disagreements
on the individual answers.

In summary, in the first stage, where the search string
was inserted in the digital libraries, a total of 215 articles
were obtained. In the second stage, the results were
filtered by reading their title, abstract, and keywords,
and a total of 41 articles were selected. In the third stage,
another filter was applied, through the complete reading
of the article, with the object of finding the answers to
the research questions. After this stage, 24 articles had
been chosen to answer the research questions.

In addition to the 24 articles selected in the
automatic search, 3 other articles were selected through
manual search. These articles were not returned in the
automatic search with the search string, however they
were found by manual search and considered relevant to
be inserted in this study. After finishing the 3 analysis
stages, 27 articles had been selected for data extraction.
Table 1 presents the list of articles selected for that, with
its respective title, author, and year of publishing.

As per the inclusion criteria, only articles published
from 2007 onwards were included. As such, three
articles related to measurement tools were published in
2007, five articles in 2008, two articles in 2009, two
articles in 2010, three articles in 2011, three articles in
2012, two articles in 2013, no articles in 2014, three
articles in 2015, two articles in 2016, and two articles
in 2017. It’s possible to see that the year of 2008 was
the one that presented the highest scientific contribution
in the measurement tools field, since five articles were
published that year. 2014 is also noteworthy, as it had
no publications on the subject.

4. Results Systematic Literature Review

4.1. RQ.1: Tools

Many different tools that perform the collection
of measurements were found. Some tools shown by
the articles have been discontinued, that is, they are
no longer available for download or use. Therefore,
for each tool found through the systematic review, the
availability of the tool was verified by checking if
the article had the link for access and searches ere
download, and also done on Google. The research
questions considered only the available tools. Table 2
shows the tools that are available for download and use,
and the article’(s) reference them.

Some of these tools perform the collection of metrics
of the product, while others collect metrics of the
product and process. Table 3 presents the name of the
tool and the Measurement Type it collects.

4.2. RQ.2: Functionalities

The measurement tools presented by the selected
articles have different functionalities and characteristics.
For instance, many tools support a single programming
language, while others support many of them. The main
characteristics of the tools found in the literature review
are: Graphics (G); Integration (I); Multiple Languages
(M); Definition of Metrics (D);Reports (R); Export (R);
Import(Im). Table 4 presents the main functionalities of
the tools.

The graphics functionality means that the tool
allows for the creation of graphics for metrics analysis.
The integration functionality informs that the tool
performs integration with other tools. Multiple
languages implies that the tool performs the collection
of more than one programming language. The metrics
definition means that the tool allows the user to create
their own metrics. The report functionality means
that the tool generates some kind of report for metrics
analysis. The export functionality informs that the
tool allows for the exportation of its data. And the
import functionality represents that the tool allows for
the importation of data.

4.3. RQ.3: Metrics

The measurement tools identified in the systematic
literature review relate/use different metrics. Table 5
showcases the main metrics presented by the tools, as
well as the occurrence of each of the metrics and the
tools that use the respective metric.

Page 6974

Table 1. Articles Selected for Data Extraction
ID Paper Title Author Year
S1 A metrics tool for multi-language software [14] 2007
S2 Design optimization metrics for UML based object-oriented systems [15] 2007
S3 Managing software process measurement: A metamodel-based approach [16] 2007
S4 A metamodel for the measurement of object-oriented systems: An analysis using alloy [17] 2008
S5 How to measure agile software development [18] 2008
S6 Software metrics for agile software development [19] 2008
S7 ”Unit metrics” - A tool to support refactoring in agile software development [20] 2008
S8 Using a combination of measurement tools to extract metrics from open source

projects
[21] 2008

S9 A coupling and cohesion metrics suite for object-oriented software [22] 2009
S10 Analysis and implementation of software metric for object-oriented [23] 2009
S11 A framework for source code metrics [24] 2010
S12 Towards a ’Universal’ software metrics tool: Motivation, process and a prototype [25] 2010
S13 A pluggable tool for measuring software metrics from source code [26] 2011
S14 SMIILE prototype [27] 2011
S15 XML-based integration of the SMIILE tool prototype and software metrics repository [28] 2011
S16 Customizing GQM models for software project monitoring [29] 2012
S17 Towards the better software metrics tool [30] 2012
S18 Validation of measurement tools to extract metrics from open source projects [31] 2012
S19 A Methodology for Obtaining Universal Software Code Metrics [32] 2013
S20 ASSIST: An integrated measurement tool [33] 2013
S21 An object based software tool for software measurement [34] 2015
S22 Evaluating metrics at class and method level for java programs using knowledge based

systems
[35] 2015

S23 Integration of software measurement supporting tools: A mapping study [36] 2015
S24 A systematic literature review on software measurement programs [37] 2016
S25 Building a user oriented application for generic source code metrics extraction from a

metrics framework
[32] 2016

S26 An ontology-based approach for integrating tools supporting the software
measurement process

[38] 2017

S27 Investigating differences and commonalities of software metric tools [39] 2017

5. Discussion of results

5.1. Tools

Many different tools that collect metrics on the
Software Engineering field were found. The focus of
these tools is in product or the process. Table 5 presents
the distribution of the tools that were found during
the systematic review. Of the 22 tools found during
the systematic review, 19 of them, around 86%, are
tools that collect only measurements of product, or code
metrics. No tool provides collection of process metrics
exclusively, and four other tools perform the collection
of both product and process metrics. Figure 1 shows tool
distribution for each measurement type.

To evaluate the tool relevance, each one of the
articles that cites a tool was researched in Google
Scholar. Google Scholar returns the number of times

Figure 1. Distribution of Tools in Regards to Metrics

Provided.

that the article was cited. Then a summation of the
amount of citation of all articles for a specific tool was
made. Table 6 shows the relevance of the tools.

The UnitMetric tool proved itself the most relevant
among the set of tools found in the systematic review,
as it was cited 44 times. The CCMETRICS tool took
the second place in relevance, being cited 22 times. The
MASU tool stayed in third place, being mentioned 21

Page 6975

Table 2. Available Tools
Tool Name Articles

CCCC [39]
CCMETRICS [22]

Chidamber and Kemerer Java
Metrics

[21] [31]

Code Analyzer [39]
CMT++ [40]

CMTJAVA [40]
DePress [38] [36]

Eclipse Metrics Plugin 1.3.6 [39]
EPM [29]

Essential metrics [40]
JArchitect [39]

JAM [35]
JHawk [31]
JMetric [40]

LocMetrics [39]
MASU [26]
RSM [40] [21]

[31]
SAS [37]

Source Monitor [39]
Stan4j [39]

Understand [39]
UnitMetrics [19] [20]

[18]

Table 3. Measuring Tools
Measurement Type Tools

Product CCCC, CCMETRICS,
Chidamber and Kemerer

Java Metrics, Code
Analyzer, CMT++,

CMTJAVA, Eclipse Metrics
Plugin 1.3.6,Essential

metrics, JArchitect, JAM,
JHawk, JMetric,

LocMetrics, MASU, RSM,
Source Monitor, Stan4j,
Understand, UnitMetrics

Product and Process DePress, EPM, SAS

times.

5.2. Functionalities

Of the 22 tools analyzed, twelve tools, or 54%
of them, have support for reports. Ten tools, or
45% of them, have support for multiple programming
languages. Nine tools, or 41% of them, perform the
creation of graphs. Six tools perform data exporting.

Table 4. Main Functionalities
Tool G I M D R E Im

CCCC x x
CCMetrics x x

Chidamber and
Kemerer Java

Metrics

x x

Code Analyzer x x
CMT++ x x

CMTJAVA x
DePress x x x x

Eclipse Metrics
Plugin 1.3.6

x

EPM x x x
Essential
metrics

x x

JArchitect x x
JAM x

JHawk x x x
JMetric x

LocMetrics x x
MASU x
RSM x x
SAS x

Source Monitor x x x
Stan4j x x

Understand x x x
UnitMetrics x x

Three tools allow for the definition of metrics. Finally,
two tools performs integration with other tools, and two
tool performs data importing.

This shows that the focus of the tools is to generate
reports. Besides that, there is interest in supporting
multiple programming languages and generating graphs
to assist in metrics analysis.

5.3. Identified Metrics

Among the tools analyzed, the lines of code metric is
the most relevant one, appearing in 12 tools out of the 22
total. The cyclomatic complexity metric appears in 11
tools and the coupling between objects one appears in
11 of them. These are the three main metrics presented
by the selected tools.

The tools selected in the primary studies present the
use of other metrics, but all of them have a ratio of
appearance lower than 3%, and as such were dismissed
from the study, as they are mentioned in very few
articles. The definitions of the main metrics used by the
tools are presented below:

Page 6976

Table 5. Main Metrics Presented by the Tools
Metric Frequency Tools

Lines of Code (LOC) 40% CCCC, CMT++, CMTJAVA, Code Analyzer, Eclipse Metrics Plugin,
JAM, LOCMetric, RSM, Source Monitor, Stan4J, Understand,

UnitMetrics
Cyclomatic

Complexity (CC)
36,6% CCCC, CMT++, CMTJAVA, Eclipse Metrics Plugin, Essential

Metrics, JAM, JArchtect, JMetric, MASU, Stan4J, Understand
Coupling Between

Objects (CBO)
36,6% CCCC, Chidamber and Kemerer Java Metrics, Essential Metrics, JAM,

JArchtect, JHawk, MASU, RSM, Stan4J, Understand, UnitMetrics
Depth of Inheritance

Tree (DIT)
30% CCCC, Chidamber and Kemerer Java Metrics, Eclipse Metrics Plugin,

JAM, JArchtect, MASU,RSM, Stan4J, Understand
Number of Children

(NOC)
30% CCCC, Chidamber and Kemerer Java Metrics, Eclipse Metrics Plugin,

JAM, JArchtect, MASU, RSM, Stan4J, UnitMetrics
Lack of Cohesion in
Methods (LCOM)

23,3% Chidamber and Kemerer Java Metrics, Eclipse Metrics Plugin, JAM,
JArchtect, MASU, Stan4J, Understand

Weighted Methods
per Classe (WMC)

23,3% CCCC, Chidamber and Kemerer Java Metrics, Eclipse Metrics Plugin,
JAM, JHawk, MASU, Stan4J

Responde for Class
(RFC)

13,3% Chidamber and Kemerer Java Metrics, JAM, MASU, Stan4J

Table 6. Relevance of Tools
Tool Name Relevance
UnitMetrics 44

CCMETRICS 22
MASU 21

SAS 10
DePress 7

RSM 6
Chidamber and Kemerer Java Metrics 5

CMT++ 1
CMTJAVA 1

CCCC 0
Code Analyzer 0

Eclipse Metrics Plugin 1.3.6 0
EPM 7

Essential metrics 1
JArchitect 0

JAM 0
JHawk 5
JMetric 1

LocMetrics 0
Source Monitor 0

Stan4j 0
Understand 0

5.3.1. Lines of code The Lines of Code (LOC)
metric calculates the size of the software, measuring the
quantity of lines of code that it has [35].

One way of calculating this metric is presented
by [4]. This study presents two metrics to perform

the calculation, the Non-commented Line of Code
(NCLOC) metric and the Commented Lines of Program
Text (CLOC) metric. As such, to calculate the line of
code metric, the following equation is used:

LOC = NCLOC + CLOC (1)

This measurement is in absolute scale.

5.3.2. Cyclomatic Complexity The cyclomatic
complexity metric measures the number of linearly
independent paths that the software has [4]. To calculate
the cyclomatic complexity in a software with an F
fluxogram, the following equation is used:

v(F) = e− n+ 2 (2)

Where e represents the edges and n the nodes.
The higher the cyclomatic complexity of a system,

the harder it’s maintenance will be [4].

5.3.3. Coupling Between Objects The Coupling
Between Objects (CBO) metric calculates the degree of
dependency among modules [4].

An example of how to calculate this metric is
presented by [41]. In this study, we show how to
calculate coupling between two modules. To calculate
coupling between these modules, you first need to
classify the types of relations existing between them.
These relations can be [41]:

Page 6977

• R5: If X ramifies from Y, alters data or
declarations in Y;

• R4: If X and Y reference the same global data;

• R3: If X sends parameters to Y seeking to control
its behavior;

• R2: If X and Y accept the same type of registry as
parameter;

• R1: If X and Y communicate through parameters;

• R0: If X and Y do not communicate.

The equation presented is:

M(X,Y) = i+
n

n+ 1
(3)

Where i represents the highest type of relation, and
n represents the number of interconnections between X
and Y [41]. This measurement is in ordinal scale.

5.3.4. Depth of Inheritance Tree The Depth of
Inheritance Tree (DIT) metric calculates the depth of the
class in the project’s hierarchy. The more depth a class
has, the harder it will be to foresee its behavior [35],
[26].

5.3.5. Number of Children The Number of
Children (NOC) metric calculates the amount of
classes derived from the class being measured [26].
The calculation of this metric is done by adding the
immediate children of the class [4].

5.3.6. Lack of Cohesion in Methods The Lack of
Cohesion in Methods (LCOM) metric measures the
discrepancy of methods in a class when faced with
instanced variables [35]. A way of calculating this
metric is presented by [26]. The calculation is done
by taking each pair of methods within the same class,
verifying if they possess disjoined access to a set of
instance variables. If so, increment P by 1. Otherwise,
if they have at least one variable in common, increase P
in one. This way:

LCOM =

{
P −Q if P >Q
0 if else

(4)

5.3.7. Weighted Methods per Class The Weighted
Methods per Class (WMC) metric performs the sum of
the complexities of the methods in the class [26]. The
calculation of this metric is done through the sum of
each weighted method according to its complexity [4].
Therefore, we have the following equation:

WMC =

n∑
i=1

ci (5)

5.3.8. Response for Class The Response for Class
(RFC) metric represents the size of a set of answers for
the class. This set of answers consists of all the methods
called by local methods [4]. The calculation of this
metric is done through the sum of the number of local
methods plus the number of methods called by the local
methods [4].

6. Conclusion

The use of metrics assist software development
organizations in making trustworthy estimates in regards
to the software product being developed. To facilitate
the measurement process, the use of tools is indicated to
minimize possible mistakes.

Literature presents many tools to perform the
collection of metrics. The tools collect, mainly,
product metrics. Besides that, the tools have different
functionalities. Most tools present the functionalities
of supporting multiple programming languages, and
generating graphs. It’s possible to observe a tendency
in the metrics used by measurement tools, showing a
pattern in the most commonly used metrics.

This study achieved its proposed objective, since the
analysis of the tools allowed for a higher understanding
of their functionalities and of the metrics collected by
them. As such, organizations can use this information as
a base to choose a measurement tool that best fits their
business.

As a future study, the snowballing technique will be
applied to ensure that all relevant articles were covered.
A grey literature review will be made to know market
practices and which tools are being used. Besides that
the information gathered in this study will be used to
identify gaps in existing measurement tools. This will
lead to the proposal of a measurement tool that fills these
gaps and uses the main metrics listed in this study.

Page 6978

7. Acknowledgments

This research work has the support of the Research
Support Foundation of the Federal District (FAPDF).

References

[1] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E.
Martı́nez-Perez, and C. Soubervielle-Montalvo,
“Source code metrics: A systematic mapping
study,” Journal of Systems and Software, vol. 128,
pp. 164–197, 2017.

[2] W. A. Florac, R. E. Park, and A. D. Carleton,
Practical Software Measurement: Measuring
for Process Management and Improvement.
Pittsburgh, PA 15213: Carnegie Mellon
University, 1997.

[3] H. Kinnunen and E. Luoma, “Towards measuring
the agility of software business,” in Proceedings
of the 51st Hawaii International Conference on
System Sciences, 2018.

[4] N. Fenton and S. L. Pfleeger, Software Metrics
(2Nd Ed.): A Rigorous and Practical Approach.
Boston, MA, USA: PWS Publishing Co., 1997.

[5] S. H. Kan, Metrics and Models in Software Quality
Engineering. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2nd ed., 2002.

[6] J. E. Cook and A. L. Wolf, “Software process
validation: quantitatively measuring the
correspondence of a process to a model,”
ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 8, no. 2, pp. 147–176,
1999.

[7] L. Finkelstein and M. Leaning, “A review
of the fundamental concepts of measurement,”
Measurement, vol. 2, no. 1, pp. 25–34, 1984.

[8] D. Galin, Software Quality: Concepts and
Practice. John Wiley & Sons, 2018.

[9] S. Wagner and M. Ruhe, “A systematic review
of productivity factors in software development,”
arXiv preprint arXiv:1801.06475, 2018.

[10] ISO/IEC/IEEE, “Systems and software
engineering - measurement process,” standard,
International Organization for Standardization,
2017.

[11] N. Fenton, “Software measurement: A necessary
scientific basis,” IEEE Transactions on software
engineering, vol. 20, no. 3, pp. 199–206, 1994.

[12] B. Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews in

software engineering,” ech. rep. EBSE 2007-001,
2007.

[13] C. Wohlin and R. Prikladniki, “Systematic
literature reviews in software engineering,”
Information and Software Technology, vol. 55,
no. 6, pp. 919–920, 2013.

[14] P. Linos, W. Lucas, S. Myers, and E. Maier,
“A metrics tool for multi-language software,” in
Proceedings of the 11th IASTED International
Conference on Software Engineering and
Applications, pp. 324–329, ACTA Press, 2007.

[15] E. Ramaraj and S. Duraisamy, “Design
optimization metrics for uml based object-oriented
systems,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17,
no. 03, pp. 423–448, 2007.

[16] F. Garcia, M. Serrano, J. Cruz-Lemus,
F. Ruiz, M. Piattini, A. R. Group, et al.,
“Managing software process measurement:
A metamodel-based approach,” Information
Sciences, vol. 177, no. 12, pp. 2570–2586, 2007.

[17] J. McQuillan and J. Power, “A metamodel
for the measurement of object-oriented systems:
An analysis using alloy,” in Software Testing,
Verification, and Validation, 2008 1st International
Conference on, pp. 288–297, IEEE, 2008.

[18] M. Kunz, R. R. Dumke, and A. Schmietendorf,
“How to measure agile software development,”
in Software Process and Product Measurement,
pp. 95–101, Springer, 2008.

[19] M. Kunz, R. R. Dumke, and N. Zenker, “Software
metrics for agile software development,” in
Software Engineering, 2008. ASWEC 2008. 19th
Australian Conference on, pp. 673–678, IEEE,
2008.

[20] M. Kunz, N. Zenker, S. Mencke, and R. R. Dumke,
“Unit metrics-a tool to support refactoring in agile
software development.,” in Software Engineering
Research and Practice, pp. 389–395, 2008.

[21] N. Awang Abu Bakar, C. V. Boughton, et al.,
“Using a combination of measurement tools
to extract metrics from open source projects,”
in Proceeding (632) Software Engineering and
Applications-2008, ACTA Press, 2008.

[22] S. Husein and A. Oxley, “A coupling and cohesion
metrics suite for object-oriented software,” in
Computer Technology and Development, 2009.
ICCTD’09. International Conference on, vol. 1,
pp. 421–425, IEEE, 2009.

Page 6979

[23] E. Da-wei, “Analysis and implementation
of software metric for object-oriented,” in
Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International
Conference on, pp. 1–4, IEEE, 2009.

[24] N. Maneva, N. Grozev, and D. Lilov, “A
framework for source code metrics,” in
Proceedings of the 11th International Conference
on Computer Systems and Technologies and
Workshop for PhD Students in Computing on
International Conference on Computer Systems
and Technologies, pp. 113–118, ACM, 2010.

[25] G. Raki, Z. Budimac, and K. Bothe, “Towards
a ’universal’ software metrics tool: Motivation,
process and a prototype,” vol. 2, pp. 263–266,
2010. cited By 1.

[26] Y. Higo, A. Saitoh, G. Yamada, T. Miyake,
S. Kusumoto, and K. Inoue, “A pluggable tool for
measuring software metrics from source code,” in
Software Measurement, 2011 Joint Conference of
the 21st Int’l Workshop on and 6th Int’l Conference
on Software Process and Product Measurement
(IWSM-MENSURA), pp. 3–12, IEEE, 2011.

[27] G. Rakić and Z. Budimac, “Smiile prototype,”
in AIP Conference Proceedings, vol. 1389,
pp. 853–856, AIP, 2011.

[28] G. Rakić, Č. Gerlec, J. Novak, and Z. Budimac,
“Xml-based integration of the smiile tool
prototype and software metrics repository,” in AIP
Conference Proceedings, vol. 1389, pp. 869–872,
AIP, 2011.

[29] A. Monden, T. Matsumura, M. Barker, K. Torii,
and V. R. Basili, “Customizing gqm models
for software project monitoring,” IEICE
TRANSACTIONS on Information and Systems,
vol. 95, no. 9, pp. 2169–2182, 2012.

[30] Z. Budimac, G. Rakic, M. Hericko, and
C. Gerlec, “Towards the better software metrics
tool,” in Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on,
pp. 491–494, IEEE, 2012.

[31] N. S. A. A. Bakar and C. V. Boughton, “Validation
of measurement tools to extract metrics from open
source projects,” in Open Systems (ICOS), 2012
IEEE Conference on, pp. 1–6, IEEE, 2012.

[32] A. S. Núñez-Varela, H. G. Pérez-González, F. E.
Martı́nez-Pérez, and J. Cuevas-Tello, “Building a
user oriented application for generic source code
metrics extraction from a metrics framework,” in
Software Engineering Research and Innovation

(CONISOFT), 2016 4th International Conference
in, pp. 27–32, IEEE, 2016.

[33] B. Keser, T. Iyidogan, and B. Ozkan, “Assist:
an integrated measurement tool,” in Software
Measurement and the 2013 Eighth International
Conference on Software Process and Product
Measurement (IWSM-MENSURA), 2013 Joint
Conference of the 23rd International Workshop on,
pp. 237–242, IEEE, 2013.

[34] G. Santhoshini and K. Anbazhagan, “An object
based software tool for software measurement,”
in Information Communication and Embedded
Systems (ICICES), 2014 International Conference
on, pp. 1–5, IEEE, 2014.

[35] E. Umamaheswari, B. Natarajan, and D. Ghosh,
“Evaluating metrics at class and method level for
java programs using knowledge based systems,”
vol. 10, pp. 2047–2052, 01 2015.

[36] V. S. Fonseca, M. P. Barcellos, and
R. de Almeida Falbo, “Integration of software
measurement supporting tools: A mapping study.,”
in SEKE, pp. 516–521, 2015.

[37] T. Tahir, G. Rasool, and C. Gencel, “A systematic
literature review on software measurement
programs,” Information and Software Technology,
vol. 73, pp. 101–121, 2016.

[38] V. S. Fonseca, M. P. Barcellos, and
R. de Almeida Falbo, “An ontology-based
approach for integrating tools supporting the
software measurement process,” Science of
Computer Programming, vol. 135, pp. 20–44,
2017.

[39] L. Aversano, C. Grasso, P. Grasso, and
M. Tortorella, “Investigating differences and
commonalities of software metric tools,”
pp. 249–256, 01 2017.

[40] A. Núñez-Varela, H. G. Perez-Gonzalez, J. C.
Cuevas-Tello, and C. Soubervielle-Montalvo, “A
methodology for obtaining universal software
code metrics,” Procedia Technology, vol. 7,
pp. 336–343, 2013.

[41] N. Fenton and A. Melton, “Deriving structurally
based software measures,” Journal of Systems and
Software, vol. 12, no. 3, pp. 177–187, 1990.

Page 6980

	Introduction
	Background
	Systematic Literature Review
	Research Questions
	Chosen SLR Main Activities
	Search strategy
	Snowballing

	Inclusion and Exclusion Criteria
	Systematic Literature Review Limitations
	Data Collection and Analysis

	Results Systematic Literature Review
	RQ.1: Tools
	RQ.2: Functionalities
	RQ.3: Metrics

	Discussion of results
	Tools
	Functionalities
	Identified Metrics
	Lines of code
	Cyclomatic Complexity
	Coupling Between Objects
	Depth of Inheritance Tree
	Number of Children
	Lack of Cohesion in Methods
	Weighted Methods per Class
	Response for Class

	Conclusion
	Acknowledgments

