
The Hatchery: An Agile and Effective Curricular Innovation for

Transforming Undergraduate Education

Tim Andersen Amit Jain Noah Salzman Don Winiecki Carl Siebert

Boise State University Boise State University Boise State University Boise State University Boise State University

tandersen@
boisestate.ediu

ajain@
boisestate.edu

noahsalzman@
boisestate.edu

donwiniecki@
boisestate.edu

carlsiebert@
boisestate.edu

Abstract

The Computer Science Professionals Hatchery

utilizes strong partnerships with industry and a

vertically integrated curriculum structure, embedding

principles of ethics and social justice and diversity, to

create a nurturing, software company environment for

students that also provides tools to allow them to take

on the challenges of real-life company environment.

The goal is to produce graduates who are well-

rounded, who have a shorter pathway to full
productivity after graduation, who can be leaders, and

who can operate as agents of positive change in the

companies where they work.

1. The CS Professionals Hatchery

The Computer Science Professionals (CSP)
Hatchery seeks to transform undergraduate education

in Computer Science by replicating the best elements

of a software company environment, layering in moral,

ethical, and social threads with entrepreneurship and

professional skills. The goal is to create a curriculum

and environment that produces graduates with the

experience, training, and skills necessary to swiftly

integrate into software company workflow and

influence culture, shortening the path from graduation

to being productive and beneficial. While this paper

focuses on Computer Science Education, we believe

that the Hatchery structure can be adapted to improve
student outcomes in any subject area.

Computer science curriculum often focuses on

technical aspects while relegating ethics to a single

course. Issues of inclusivity and teamwork aren’t

integrated into the curriculum so cultural problems in

the profession continue to be propagated. Industry

complains about a lack of responsiveness to rapidly

changing technologies, and a corresponding lack of

real-world relevance in the curriculum – i.e. students

may learn the theory but current technologies and

practice are not sufficiently integrated into the
curriculum. The CSP Hatchery is an attempt to address

all of these problems.

The CSP Hatchery utilizes a progressive academic

curriculum structure where students at all grade levels

work with each other. This structure focuses on three

curricular innovations: (1) Infusion of ETHICS AND
SOCIAL JUSTICE principles, starting at the first

course taken by Freshmen CS majors and continuing

throughout the curriculum. Our goal is to inseparably

infuse ethical/moral elements into the practice of

software engineering for our students, to empower our

students to be agents of revolutionary change in

reshaping the practice of computer science to be a

more just and inclusive profession. (2) Short, narrowly

focused, agile courses, which we call HATCHERY

UNITS, are threaded with regular course work and are

used to infuse foundational concepts and skills at key
points into the curriculum. Industry involvement in the

design and delivery of hatchery courses ensures that

they focus on the skills and capabilities most useful to

students in the work that they will actually perform in

an industry setting. (3) Vertically Integrated Teaching

and Learning (VITaL) curriculum. Instead of being in

siloes, students at all grade levels work with and learn

from each other on industry-sponsored projects,

fostering a strong sense of community amongst

students, faculty, and industry.

The CSP Hatchery project is currently in the third

year of its implementation, with two years remaining.
Since the start of the project in Fall 2016, five required

and three elective Hatchery courses have been

designed and offered. Infusion of ethics and morality

and vertical integration is also in the process of

implementation.

2. Related Work

Over time, there have been efforts to address matters of

ethics and social-justice in techno-scientific fields.

Historically, most of these have focused on the former

through the post-hoc analysis of engineering failures

from a mostly technical perspective ([30]). More
recently there has been considerable effort to develop

more nuanced, philosophically-oriented approaches, or

behavioral-psychology approaches to ethics in a

society all-but built around techno-science ([23], [30],

[31], [32], [33])), and even more focus on trying to

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60216
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7779

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tandersen@boisestate.ediu
mailto:tandersen@boisestate.ediu
mailto:ajain@boisestate.edu
mailto:ajain@boisestate.edu
mailto:noahsalzman@boisestate.edu
mailto:noahsalzman@boisestate.edu
mailto:donwiniecki@boisestate.edu
mailto:donwiniecki@boisestate.edu

understand how to understand the problem itself in a

world increasingly dependent on full-time access to

technologies that themselves reflect ethical dilemmas

in our society ([34], [35], [36], [37], [38]).

However, it is worth noting that efforts to actually

introduce these issues into curricula appear to have
usually accepted the traditional approach of

concentrating all such content into one course. While

this may be easier to accommodate from an

administrative angle (and one cannot deny the

substantive pressure against innovation in the

structuring of components in a degree plan in the very

bureaucratic world of higher education), the result is

that while students may be required to complete an

‘ethics course’ as part of their education and degree

completion, they have not been provided with

examples or strategies for actually incorporating this

content into their day to day practice as computer
scientists and engineers. This is the case even if the

content of that course went beyond the usual issues of

professional and legal responsibility, copyright,

contract considerations, etc.

 With this in mind, and following the idiom of

‘regular practice, distributed practice,’ and the use of

the methodology of cognitive apprenticeships from

educational psychology ([24], [39], [40]), the CSP-

Hatchery aims to incorporate content related to ethics,

professional morality and social justice across the

undergraduate curriculum through both 1-credit
‘hatchery unit’ courses, and by partnering with

technical faculty to develop instructional modules that

fit professional ethics into otherwise ‘purely technical’

courses. In this process, students will have many

opportunities to puzzle with and apply structured

processes for addressing ethical and social justice

issues within the context of computer science practice

and product development, and thus graduate better

prepared for addressing these issues in their real-world

practice.

 The idea of short, agile Hatchery courses is novel.

Several programs do offer 1-credit supplementary
courses but we are not aware of any program using

them in a foundational way like we are doing.

 Vertical integration isn’t a new concept in

curriculum reform. See [25], [26], and [27] for

examples in computer science programs. However,

vertical integration of technical, social and ethical

issues is a novel application. Instead of being

concentrated in one or two courses, we are threading

these concepts through the curriculum using multiple

courses at various academic levels.

3. Hatchery Units

Hatchery Unit (HU) courses are envisioned as

light-weight (generally 1 credit hour or less), industry

inspired, focused courses addressing key skills and

core concepts, such as foundational values (like

teamwork, inclusivity, ethical frameworks), navigating

computer systems (expert navigation in a system,
systems administration, scripting to automate tasks,

etc.), security, version control, agile development, and

intro to databases, which are important for students to

know in order to be successful both in our program and

in their internships/jobs. In some cases, HUs help to

‘level the playing field’ by providing students without

extensive CS experience integrate more readily into the

undergraduate curriculum and become more

competitive for professional internships. HUs are

delivered over a short time-frame, such as 5 weeks or 7

weeks, enabling students to take multiple HUs back-to-

back in a single 15-week semester if they so desire.
HUs prime students with the core knowledge they

need in focused skill areas at specific, key points in the

curriculum. The focused content delivered in the HU is

then woven through the regular full-semester courses

in the curriculum from the point of the Hatchery Unit

onward, with subsequent courses incorporating and

continuing to exercise HU skill sets through additional

course content, activities, and assignments. Students in

HU courses work with and learn from faculty, industry

professionals, senior capstone teams, and from each

other. Industry professionals are brought in to assist
with HU content delivery as appropriate.

The requirements were gathered via a group of 17

industry representatives who responded to an inquiry

as to the Knowledge, Skills, and Abilities (KSA) their

company looks for when hiring. These KSA were

collected from the individuals (or groups within a

company) and collated into unique KSAs. The KSAs

were then grouped into 6 unique categories which

emerged as the KSAs were collected and analyzed -

these include (Technical, Professional, Collaboration &

Teams, Research & Development, Entrepreneurship,

and Business). The industry representatives were then
pulled together in a meeting in which they voted for

the two KSAs in each group that were most important

to them. The votes were tallied, reviewed, and used as

the basis for the creation of new 1-credit Hatchery Unit

courses, enhancements to existing CS course content,

and threading the content into additional CS courses.

3.1. HU Integration into Current Curriculum

Five required HU courses have been integrated into

the current Boise State Computer Science curriculum

along with several elective HUs as well. Figure 1

shows how these required HUs (orange shaded

rectangles) integrate with regular course work. The

Page 7780

course catalog descriptions for these courses can be

found at the CS-HU website [29].

The Foundational Values HU (see Section 3.1.1 for

details) and subsequent team activities in follow-on

courses sensitize students and give them the social and

professional-skills they need to be more effective and
inclusive members of software development teams.

The Agile Development, Navigating Computer

Systems, Intro to Database System Usage, and Version

Control HUs add valuable technical knowledge and

skills that students previously did not have until later in

the curriculum (or often as a side topic in other

courses) and that help students hit the ground running

in their internships with our industry partners.

Typically, software/tech companies have required

students to take data structures (CS 321) before they

will consider hiring them for internships.

Figure 1. HU curriculum integration.

With the addition of the five HU courses, students

who have taken the data structures course now have

several additional professional and technical skills that

make them much more capable and able to integrate

into company projects and workflow as interns. The

HU structure makes it possible to introduce these

important concepts into the curriculum with minimal

overhead and maximum benefit for the students.

Table 1 gives the number of students who have

taken each of these required courses so far.

Table 1. HU student enrollments.

HU Course Start #Students

Foundational Values Fa’17 232

Agile Development Fa’17 52

Navigating Computer Systems Sp’18 182

Intro to Database System Usage Sp’18 42

Version Control Su’18 15

We have also added several elective 1 credit HU

courses that allow students to explore other relevant

topics. These elective HU courses, shown in Figure 2,

include courses focused on Human Computer

Interaction; Software Testing; Secure Programming;

and Technical Interviews, Jobs and Careers.

Figure 2. Selected HU electives

CS-HU 390 Technical Interviews, Jobs and

Careers provides an example of how hatchery units

can help students level the playing field and increase

their readiness for computing careers. This course

teaches students the technical interview process to start

with but then leads them to investigate what their first

job and then their career can be like. Fifteen industry

professionals participated in the first offering of the

course, helping with invited lectures, mock interviews

and panel discussions. A significant part of the course
is to encourage and support underrepresented students

by demystifying the interview process.

3.2. Ethics and Social Justice

One need look no further than the headlines of

major newspapers and online reporting to find breaches

of social justice that adversely affect underrepresented

groups in CS professions and in the commercial use of

CS products ([1], [2], [3], [4], [15], [16]). Academic
research has long focused on issues of bias in society.

With new focus on STEM industries and even

academic practice, we now know more clearly than

ever how widespread and deeply rooted are these

Page 7781

biases ([7], [8], [9], [10], [11], [12], [13], [14], [20].

We can no longer assume that computer science is

simply meritocratic and that those who do not succeed

are somehow inherently incapable. Rather we have to

face the fact that embedded bias prevents inclusion and

diversity in the field, limiting the available talent pool.
It is with this backdrop that we saw it necessary to

institute a new beginning course for computer science

students. The first course in our curriculum is CS-HU

130 Foundational Values. CS-HU 130 takes a path

different from most courses in `computer science and

engineering ethics` that review well known disasters of

poor design or poor planning, and ask students to apply

formal ethical theories to an academic (i.e., abstracted

and detached) analysis of their conditions. CS-HU 130

is designed as a problem-based learning experience in

which students (a) review case studies in which bias is

reflected in the context of actual computer-science
related work ([16], [3], [5]), and in the design and

application of computer-science products that reinforce

that bias and loss of social justice ([1], [2]), and then

(b) in teams, work to apply a problem-analysis and

problem-solving rubric based on Rawls’ Theory of

Justice ([17]) and principles of organizational

performance improvement to draft proposed solutions

that can be enacted both within computer science and

more broadly in organizations and in society itself.

Additionally, these problem-based learning teams

use a research- and practice-based rubric for scoring
their teammates’ contributions ([6], [21]), to assess

teammates’ contributions to the team product, and their

own motivation to contribute to the team’s interactions.

The curriculum of CS-HU 130 is designed to guide

students to assess what happens `out there` in

problematic case studies, what is happening in their

own problem-based learning teams, and if problems

are identified to propose actionable solutions.

Some students are excited by this curriculum,

providing feedback that it has altered their

perspectives, and in some cases even increased their

interest in computer science as a field in which they
can contribute lasting positive change. One student

said, “…my parents were surprised when I talked about

[bias toward underrepresented groups in CS] when I

went home for Thanksgiving. My Dad suggested that I

should talk to my high-school CS teacher and ask if he

would be interested in learning more about these

things.” Another student who was debating whether he

should major in computer science or philosophy and

chose CS because of future job prospects, said, “…I’m

really glad I chose CS, because now I know I can do

both CS and ethics!” A third student described how
one of the topics in CS-HU 130 convinced her she

should focus on artificial intelligence and machine

learning: “…when I saw that software biased against

minorities in things like facial recognition and voice

recognition, it convinced me that I had to focus on that.

I am mixed race and speak English as a second

language.” A female student from one section of the

course asked for extra readings and research articles on

the topic of the equality of women and men in math
and science knowledge and skill. She said, “…when

you told us about research that said women were as

good as men in math, it made me feel, like, ‘Yeah!’ –

now I know that I’m not weird just because I like math

and I’m good at it.”

Additionally, over the eight sections of CS-HU 130

offered in the 2017-18 academic year, student teams

generally improved the depth and breadth of their

solutions to problem-based learning cases through the

five-week course, showing an improvement in

curriculum-related knowledge and skill. As reflected in

the quotes included above, in interviews with students
following CS-HU 130 they sometimes reference case

examples used in that class before describing episodes

from personal experience in which circumstances may

expose bias against others. This suggests the CS-HU

130 curriculum serves as the basis for a new

understanding of factors related to inclusion, diversity

and social justice, especially how it relates to

professional computer science contexts and how they

are already realizing new possibilities and new

potentials for themselves. Regular interviews with

these students starting from CS-HU 130 though their
subsequent years in the CS curriculum aims to track

such things in detail, to identify places where (or if)

students are applying what they have learned in in CS-

HU 130 in other courses or other areas of their lives.

We acknowledge that one course, taken in the first

semester of a student’s career is only a small step, and

that is why the Hatchery concept requires follow-on

courses to incorporate learning experiences that focus

on similar issues specific to the technical focus of those

courses. For example, the CS-HU 153 (Navigating

Computer Systems) course has a module where the

students have to apply foundational concepts to
challenging social and ethical issues related to systems.

They are provided with two scenarios involving ethical

dilemmas concerning systems that were drawn from

actual industry events. Their assignment is to identify

the stakeholders, their interests, concerns and risks, and

then apply one of the five ethical theories (Utility,

Rights, Justice, Common Good, and Virtue, See [22]

for more information on these theories) to analyze the

situation.

 This is one out of the six total modules in a

technical course but it ties technical concepts with the
social and ethical dilemmas that they can lead to.

These concepts are also being integrated into other HU

courses and core CS courses. In this way, the Hatchery

Page 7782

Unit concept aims to reinforce issues and practices

countering bias and breeches in social justice

throughout the computer science curriculum.

Additionally, other faculty have begun to express

interest in adapting their curricula to incorporate these

topics with the assistance of faculty from CS-HU
courses. These include instructors for the Senior

Capstone course, who will be incorporating some of

the instructional content and evaluation tools

introduced in CS-HU 130 in order to put emphasis on

professional skills within project teams, and instructors

in data science and machine learning courses are now

including case studies of unintended bias in the

products of these technologies. We are investigating

ways of allowing students in CS-HU 130 to participate

as ‘consultants’ to project teams in other courses.

These outgrowths serve to further embed Hatchery

concepts across the curriculum, deepen the
implementation of VITaL across courses, and expose

another avenue through which to realize the overall

goals of this project.

3.3. Advantages of Hatchery Units for Faculty

Development

HU courses are intentionally lean, enabling these

courses to be quickly designed and incorporated into

the curriculum. They are intended to foster a much

more agile and adaptable curriculum that is more

aligned with industry needs and that can keep pace

with the rapidly changing software engineering

landscape. While not required, for HU courses it is

encouraged that at least some of the course content be

online (and for some HUs almost all of the course

content is delivered online). The idea is to identify core

knowledge areas within the curriculum and use HU
style courses that are easy to pick up and teach in order

to deliver that core knowledge to students. This makes

it easier for both faculty and industry professionals to

create these courses and deliver them.

Offering HUs partially or entirely online also

increases flexibility for offering courses — allowing

more courses to be offered than would otherwise be

allowed by physical classroom space. This also

benefits transfer students by providing added flexibility

for them to complete courses they could not have

gotten in previous institutions.
HUs have other advantages from a faculty

development perspective. For required HUs we

generally teach multiple sections of the HU in a single

15-week semester. These sections can be taught back-

to-back in two or three 5-week sessions, or

concurrently in the same 5-week session.

Research-active faculty are required to teach at

least 3 credit hours’ worth of courses per semester, and

to fulfill this requirement they may choose to teach

either three 1 credit hour HUs, or one 3 credit hour

regular course. For new faculty, teaching the same HU

course back-to-back allows them to receive course

feedback and implement course improvements up to

two times in a single semester, a significant reduction
in the performance/feedback loop that approximates an

agile development process, and which should lead to

faster teaching performance improvement. Also,

teaching a HU course back-to-back three times in a

single semester is much easier than teaching a single 3

credit hour course due to the reduced course prep time,

which frees faculty time for their research and other

responsibilities. Additionally, faculty may choose to

teach all three sections of a HU concurrently, leaving

them completely free to do research during the

remaining 7-10 weeks of the semester.

We have also created other incentives to increase
HU participation. Faculty designing a new HU course

get extra summer salary or release time. To encourage

faculty to rotate through multiple HU courses, the

departmental workload policy counts two HU courses

the same as three HU courses when a faculty teaches a

new HU course.

3.4. Assessing the Impact of the CSP Hatchery

As we are still relatively early in the implementation of

the CSP Hatchery Project, we currently have limited

data establishing the effectiveness of this approach.

Moving forward, we will utilize several key

performance indicators (KPI) to assess the success and

impact of the CSP Hatchery approach. Primary among
these KPIs are the assignments that we have tied to

assessment of ABET outcomes, which we have

consistently collected as part of the accreditation

process. These include assessments in Data Structures

(CS 321) and Intro to Systems Programming (CS 253)

as well as other courses down the pipeline. Four of the

new HU courses are pre/co-requisites for existing

courses and we will be compare the historical data to

new data after students have gone through the HU

courses. In particular, we anticipate that the increased

focus on teamwork and project management infused

through the Hatchery Units will improve student
performance on assessments designed to measure these

outcomes.

We are also using student records and enrollment

data to measure the effects of changes. These include

number of HUs offered and number of students

enrolled (Figure 3), along with tracking retention rates

and other enrollment data with a particular focus on

women and underrepresented minorities.

Page 7783

Figure 3. HU Offerings and Enrollment.

Feedback from industry is another important

component as the new students interview and are
placed. We have already received positive feedback

from industry about students who are going through

the CSP Hatchery.

Other more novel approaches to assessing the impact

of the CSP Hatchery project will include interviews

and focus groups with students and faculty, and

utilizing sociograms and social network analysis to

explore how students and faculty build connections and

community within the undergraduate CS program at

Boise State University.

4. Importance of Industry Involvement

Developing and maintaining strong industry

partnerships is critically important for the development

of the software company environment that is
envisioned for the CSP Hatchery. Without strong

industry relationships, it is difficult to know about the

issues that industry faces, and the current trends in

industry in terms of tool usage and desired skill sets,

and it is difficult to get the real-world feedback on

graduate performance that is a necessity for

maintaining a relevant and targeted curriculum.

Good industry relationships are also required to be

aware of the best practices amongst industry partners,

and in order to design customized methods for

identifying and addressing moral and ethical issues
relative to professionals in the workplace in computer

science.

Having a mutually beneficial relationship with

industry partners requires academic departments to

create, foster, and disseminate a value-proposition that

is enticing to them. This value proposition can

certainly appeal to altruistic desires to be a “good

citizen” and give back by providing benefit to the

program and students, but could also appeal to industry

needs, such as having a talent pool that is well-trained

and fits industry’s desired skills and abilities, as well as

giving those industry partners who are actively

benefiting and participating in program improvement

an inside track to this talent pool. The key is to

understand what motivates each industry partner and

speak to that motivation if feasible. In cultivating these
relationships, it is extremely important that industry

feels that their feedback and concerns are being heard

and actively addressed.

Well before we applied for the RED program, we

began cultivating industry relationships and feedback

through one-on-one contacts and relationships, and

through invited membership of high-level industry

representatives on our industry advisory board, which

meets twice a year. For several years, feedback from

our industry partners has been actively incorporated

into curriculum changes and design, and progress

reports have been duly reported to industry on a regular
basis.

In 2014 we also established a scholarship/internship

program, called Expand.CS, funded by industry

donations, which to date has generated over $534,000

in industry funded scholarships for 60 students who

have also participated in over 40 internships at

different companies. Industry partners who donate

money to the Expand.CS program meet with faculty to

assist in reviewing student application materials and

awarding scholarships, and are given an inside track to

hiring these students as interns. Through these and
other activities we have developed a reputation for

responsiveness to industry needs, and quality

graduates, which made it much easier to ask for and

receive their input and help on our NSF funded CSP

Hatchery project.

In conceptualizing the CSP Hatchery, we wanted to

ensure and ease industry participation in both the

design and the offering of curriculum elements, and

this was one of the factors considered, and advantages

of, the Hatchery structure. It is much easier for industry

partners to commit to helping in an accelerated

(shorter) course vs. assisting in a regular 3 credit hour
course for an entire semester. It is also easier and more

motivating for them to take on the task of assisting in

the design of a focused topic course that directly

matches a clear need for them. The HU course concept

lowers the bar for the participation of industry

professionals.
Upon receiving word that the grant would likely be

funded, we contacted industry partners and asked them

to brainstorm on the skills and abilities that are

important for success but that are typically lacking in

CS graduates. Each industry partner independently put
together a team to do this, and we collected and

summarized the results of this effort to reduce overlap.

We then met with the industry partners together to

Page 7784

discuss and prioritize their feedback. This was then

taken to the faculty, and over the course of six months

faculty worked on how to address the prioritized

industry feedback, and curriculum changes were

proposed and designed. Another meeting was called

with industry partners and the new courses and
curriculum design was presented and enthusiastically

approved.

A total of forty industry professionals ranging from

junior engineers to senior executives from twelve

different companies have participated in the CSP

Hatchery project so far. The companies range from

large multinational technology companies to smaller,

local software companies. It also includes non-

technology companies from other areas that have a

strong interest in software solutions to their problems.

Their ongoing participation in the project allows us to

incrementally refine and steer our efforts toward
providing a curriculum that meets the technical and

social needs of the industry.

5. Vertical Integration

The Vertically Integrated Teaching and Learning

(VITaL) curriculum is vertically integrated in two

ways:
1) Vertical threading of HU course concepts

through HU and regular courses. HU courses introduce

students to core knowledge areas and give students

preliminary exposure and experience in these areas.

The students are then required to exercise the

principles/skills that they have learned in the HU

course in follow-on courses. This requires a high level

of coordination between courses (and the faculty

teaching them) to ensure that students are given

multiple opportunities to learn and apply core

concepts.

2) Vertical integration of student teams on capstone
projects. The core skill formation activity in VITaL

HU curriculum design involves HU student teams

working with senior capstone teams on their capstone

projects. Specifically, the knowledge taught in HU

courses will be leveraged to create HU student teams

that work with the senior capstone teams on some

aspect of their capstone project related to the skill that

the HU is delivering. In effect, students in HU courses

act as a sort of subject-matter consultant to the senior

capstone teams.

At the same time, since capstone teams are formed
of senior level students who have already gone through

this process, they are prepared to perform as mentors

for the HU students they are working with, to help HU

students deepen their knowledge of the systems in

which particular skills are applied. In their

performance in the mentoring role, the core concepts

will be reinforced for these senior level students, and

they will form beneficial relationships with juniors,

sophomores, and freshman.

6. Building Community

Building community to create a more welcoming

environment for students, especially those historically

underrepresented in undergraduate computer science

programs, is another overarching goal of this project.

Grounded in Wenger’s ([19]) theory of Communities

of Practice, we are exploring changes to the curriculum
and structure of our program that will build community

among students, faculty, and industry partners. This

goal is embedded across multiple elements of the

Hatchery curriculum, including the focus on ethics and

social justice, the development of Hatchery Units, and

building the VITaL curriculum. As described in the

previous section on Ethics and Social Justice, computer

science and software development environments can

often be hostile to women and underrepresented

minority students, making it difficult for members of

these groups to develop a sense of community or
belonging in their computer science degree program.

By helping all students to become more aware of these

issues, we hope to reduce bias, which should in turn

help to build a more welcoming community for all

students.

The nature of the Hatchery Units also promotes

building community among faculty, students, and

industry. Faculty design and implement all Hatchery

Units as part of an instructional team, strengthening the

faculty community and creating opportunities for

faculty to learn from each other regarding their

teaching practices. VITaL curriculum design that
involves threading of HUs with other HUs and normal

courses also promotes faculty community as they have

to work more closely together. Many Hatchery Units

were developed in response to industry needs and

input, and often involve an industry partner as part of

the course development team. This creates

opportunities for further collaboration with industry

partners, and helps to integrate faculty and students in

the local software development community. Hatchery

Units also allow faculty members an efficient way to

develop a new course related to their research
programs, creating an opportunity for training and

recruiting students to work in their research groups,

which creates another entry point for building

community within the department.

Implementing the VITaL curriculum also

represents a novel way of building community in an

undergraduate computer science program. Most

students tend to take classes with the same group of

Page 7785

peers progressing through the curriculum at the same

time. While this does create a sense of community

within a given class year, it minimizes students’

opportunities to interact and build community across

grade levels. The VITaL curriculum transforms this

paradigm by having students across all grades working
together on shared design projects, allowing students to

work with and get to know peers at different points in

the curriculum. Through these interactions, students

will both build community across grade levels and

learn more about the experiences of students further

along in the curriculum, which may better prepare

them for their future classes and help students to persist

in their degree program. Overall, the Hatchery

structure is designed to create a more nurturing

environment for students, and building community is

an important and intentionally designed aspect of this

transformative approach to undergraduate education.

7. Industry Impacts

The industry partner involvement in the CSP

Hatchery project, explained earlier, shows a

comprehensive approach to engagement. Even though

the project is only starting year three of the five-year

commitment, evidence of positive benefits to the

software and information technology industry are

already recognized. As part of the Outside Evaluator’s

oversight of project activities and effects, the Outside

Evaluator interviewed eleven industry partners on their

beliefs and perceptions on the CSP Hatchery project,
the preparation of students for employment, and social

skills/diversity in the work environment as well as in

their organization. Interviews lasted between 30 to 45

minutes and followed a protocol that directed the

recorded discussions. An outside firm transcribed the

recordings to avoid any transcription bias.

An analysis of the interview data show that

industry partners view the CSP Hatchery project as a

commendable effort on the part of the Boise State CS

Department. For example, one partner stated “I think

the Hatchery approach is probably one of the biggest
strengths … ‘we’ hope it stays,” Partners do recognize

that the project is early in the effort to graduate a more

well-rounded student, but proclaim that the project is

well on its way to achieving this goal. In addition, the

industry partners believe the CS Department does an

excellent job with encouraging and facilitating industry

engagement in curriculum activities and with providing

early access to students who will enter the workforce.

The Outside Evaluation will seek feedback from

industry partners two additional times in the coming

years to fully identify the impact of the CSP Hatchery

project through the eyes of the industry partners.

8. Challenges

Complexity of the curriculum changes requires

careful attention to details such as the timing of the

introduction of HU courses, making sure options exist

for students “caught in the middle of the

transformation,” scheduling of courses, and proper

communication to the students. For example, we had

originally planned on updating the requirement of new

Hatchery Unit prerequisites for the Data Structures

course (CS 321) for Spring’18 but we pushed it back to

Fall’18 to allow students caught in the middle one

more semester to complete the old version of the
course, extending the original one year notice to one

and half years, which was sufficient to resolve almost

all of the concerns.

Advising complexity needs to be addressed as well.

We worked closely with the college advisors so they

are aware of the changes and can advise students on

what they can take advantage of and how. For

example, many juniors and seniors don’t need HU

courses as they are on the older catalog, but we are

allowing them to take HU courses in place of one

upper-division elective. We have held a special
workshop for the advisors and we pay attention to the

“word on the street” that we get from them. We have

created a website especially for students (also used by

advisors and faculty) that acts as a reference.

VITal curriculum has serious logistics challenges.

How do we get freshmen and sophomores to work

together with juniors and senior in a meaningful way

without having scheduling nightmares? We are

reviewing several possible approaches to make this

feasible. These approaches will be shared at large so

others who want to implement a VITal curriculum can

benefit from our solutions.
Scheduling Hatchery Unit courses such that they

can be taken consecutively rather than concurrently is

important in keeping a balanced workload for the

students. However, scheduling them in first/second

five (or seven weeks) is also important as standard 3

credit courses tend to ramp up towards the end.

Finding instructors from industry has been

relatively easy due to the strong relationships and

connections that we have developed over time. We also

incentivize industry involvement by paying industry

partners for their part in both the development and
delivery of HU-courses, and we always pair the

industry partners with faculty coordinators so they

have proper support. Currently, grant funds are used to

supplement industry pay. So, when the grant is over a

challenge will be to find money in the department

budget to continue this model.

Another challenge is getting faculty buy in.

Initially, the grant is being used to provide summer

Page 7786

salary or release time to faculty that wrote proposals to

create HU courses. This has been successful in getting

the courses off the ground. The next challenge was

how to update the workload policy to ensure that the

HU courses count as appropriate amount of workload.

Faculty were very concerned about this issue, which
we resolved with an updated workload policy. Two 1-

credit HU courses count the same as one 3-credit

traditional course when a faculty teaches the HU

course for the first time. This creates an incentive for

faculty rotate through multiple HU courses. The

rotation through HUs also helps faculty develop a more

comprehensive understanding of the curriculum. Once

the workload policy was updated, that resolved most of

the concerns faculty had about the effect of the HU

courses on their workload.

9. Conclusions

In this paper, we have described the design and

initial implementation of the Hatchery: an agile and

novel curricular innovation that has the potential to

transform undergraduate curriculum not only in

computer science but other areas as well.

The starting premise of the Hatchery is to introduce

short accelerated courses and vertically integrated
opportunities to develop professional skills in students.

Close collaboration with motivated industry partners in

the design and delivery ensures the relevance of the

Hatchery. This also increases the motivation and

interest from the students.

By introducing students to social, moral, and

ethical foundational values from the start and threading

them through technical courses, we can create agents

of change that can go out into industry and create

lasting improvement in the culture of the companies

and beyond.

The Hatchery model can also benefit faculty
development due to the requirement for more threading

between courses. The scheduling structure has the

potential to help faculty more quickly improve their

teaching performance, while simultaneously giving

them more time to perform research.

The Hatchery curriculum is structured to enable

industry participation, and to enable adaptability to

rapidly changing industry needs. The focus on job

skills motivates students and naturally leads to better

student engagement and performance. Being

responsive to and producing a product that is more
aligned with industry needs also leads to more engaged

industry partners. The CSP Hatchery thus fosters a

mutually beneficial and self-reinforcing relationship

between industry, faculty, and students. We believe

that the general model of the CS Professionals

Hatchery represents a revolutionary approach to

undergraduate education with potential to be adopted at

other institutions and adapted to other disciplines.

10. Acknowledgements

We would like to acknowledge Ernie Covelli and

Dianxiang Xu for their help with this paper. This

material is based upon work supported by the National

Science Foundation under Grant 1623189.

10. References

[1] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016,

May 23). Machine Bias: There’s software used across
the country to predict future criminals. And it’s biased
against blacks. [ProPublica]. Retrieved May 24, 2016,
from https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing

[2] Buolamwini, J. (2017). Gender Shades: Intersectional
Phenotypic and Demographic Evaluation of Face
Datasets and Gender Classifiers (Master of Science).
Massachusetts Institute of Technology, Cambridge, MA.
Retrieved from
https://www.media.mit.edu/publications/full-gender-
shades-thesis-17/

[3] Fowler, S. (2017, February 19). Reflecting on one very,

very strange year at Uber. Retrieved February from
https://www.susanjfowler.com/blog/2017/2/19/reflectin
g-on-one-very-strange-year-at-uber

[4] Lohr, S. (2018, February 9). Facial Recognition is
Accurate, if You’re a White Guy. New York Times.
Retrieved from
https://www.nytimes.com/2018/02/09/technology/facial-
recognition-race-artificial-intelligence.html

[5] Mims, C. (2017, August 13). What the Google

Controversy Misses: The Business Case for Diversity.
Wall Street Journal.

[6] Strauss, V. (2017, December 20). The surprising thing
Google learned about its employees -- and what it
means for today’s students. The Washington Post.
Retrieved from
https://www.washingtonpost.com/news/answer-
sheet/wp/2017/12/20/the-surprising-thing-google-

learned-about-its-employees-and-what-it-means-for-
todays-students/

[7] Bazerman, M., & Tenbrunsel, A. (2012). Blind Spots:
Why we fail to do what’s right and what to do about it.
Princeton, NJ: Princeton University Press.

[8] Ceci, S., Williams, W., & Barnett, S. (2009). Women’s
Underrepresentation in Science: Sociocultural and
Biological Considerations. Psychological Bulletin,

135(2), 218–261. https://doi.org/10.1037/a0014412
[9] Ceyer, S., Chisholm, S., Friedman, J., Hewitt, J.,

Hodges, K., Hopkins, N., …, Stubbe, J. (1999). A Study
on the Status of Women Faculty in Science at MIT
(Manuscript). Cambridge, MA: Massachusetts Institute
of Technology. Retrieved from
http://web.mit.edu/fnl/women/women.pdf

Page 7787

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.media.mit.edu/publications/full-gender-shades-thesis-17/
https://www.media.mit.edu/publications/full-gender-shades-thesis-17/
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://doi.org/10.1037/a0014412
http://web.mit.edu/fnl/women/women.pdf

[10] Crowston, K., & Howison, J. (2005). The Social
Structure of Free and Open Source Software
Development. First Monday, 10(2). Retrieved from
http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/
article/view/1207/1127

[11] Hill, C., Corbett, C., & St. Rose, A. (2010). Why So
Few? Women in Science, Technology, Engineering, and
Mathematics. Washington, D. C.: American Association
of University Women (AAUW). Retrieved from
http://www.aauw.org/files/2013/02/Why-So-Few-
Women-in-Science-Technology-Engineering-and-
Mathematics.pdf

[12] Natanson, H. (2017, October 20). `A Sort of Everyday

Struggle`. The Harvard Crimson. Retrieved from
https://www.thecrimson.com/article/2017/10/20/everyda
y-struggle-women-math/

[13] Rattan, A., Steele, J., & Ambady, N. (2017). Identical
applicant but different outcomes: The impact of gender
versus race salience in hiring. Group Processes &
Intergroup Relations, OnlineFirst.
https://doi.org/10.1177/1368430217722035

[14] Tonso, K. (2007). On the Outskirts of Engineering:
Learning Identity, Gender, and Power via Engineering
Practice. The Netherlands: Sense Publishers.

[15] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016,
May 23). Machine Bias: There’s software used across
the country to predict future criminals. And it’s biased
against blacks. [ProPublica]. Retrieved May 24, 2016,
from https://www.propublica.org/article/machine-bias-

risk-assessments-in-criminal-sentencing
[16] Damore, J. (2017, August 4). Google’s Ideological Echo

Chamber: How bias clouds our thinking about diversity
and inclusion. Retrieved from
https://assets.documentcloud.org/documents/3914586/G
oogles-Ideological-Echo-Chamber.pdf

[17] Rawls, J. (1999). A Theory of Justice (Revised edition).
Belknap Press of Harvard University Press.

[18] Gilbert, T. (2007). Human Competence: Engineering

Worthy Performance. Washington, D.C. Pfeiffer.
[19] Wenger, E. (1998). Communities of practice: learning,

meaning, and identity. Cambridge, U.K. ; New York,
N.Y: Cambridge University Press.

[20] Hyde, J., Lindberg, S., Linn, M., & Williams, C. (2008).
Gender Similarities Characterize Math Performance.
Science, 321(5888), 494–495.
https://doi.org/10.1126/science.1160364

[21] Frenkel, S., Korczynski, M., Shire, K., & Tam, M.
(1999). On the Front Line: Organization of Work in the

Information Economy. Cornell University Press.
[22] Vallor, S. (2016). Technology and the Virtues: A

Philosophical Guide to a Future Worth Wanting.
Cambridge: Oxford University Press.

[23] Adams, C., & van Manen, M. (2017). Teaching
Phenomenological Research and Writing. Qualitative
Health Research, 27(6), 780–791.
https://doi.org/10.1177/1049732317698960

[24] Bergamin, J. (2017). Being-in-the-flow: expert coping
as beyond both thought and automaticity.
Phenomenology and Cognitive Science, 16, 403–424.
https://doi.org/10.1007/s11097-016-9463-1

[25] Abler R., Coyle E., DeMillo R., Hunter M., Ivey E.
(2012) Team-Based Software/System Development in
the Vertically-Integrated Projects (VIP) Program. In:
Thaung K. (eds) Advanced Information Technology in
Education. Advances in Intelligent and Soft Computing,

vol 126. Springer, Berlin, Heidelberg.
[26] R. D. Parslow, Vertical integration in group learning,

Proc. of the Eleventh SIGCSE Technical Symposium on
Computer Science Education (SIGCSE’80), page 130

[27] M. Baxter, B. Byun, E.J. Coyle, T. Dang, T. Dwyer, I.
Kim, C.-H. Lee, R. Llewallyn, and N. Sephus, “On
Project-Based Learning through the Vertically
Integrated Projects Program”, Proceedings of the 41st

Annual ASEE/IEEE Frontiers in Education Conference,
Rapid City, SD, Oct. 12-15, 2011.

[28] CS Hatchery Unit website (2018). Retrieved from
http://coen.boisestate.edu/cs/cs-hu/#HUDescription

[29] Jasanoff, S. (2016). The Ethics of Invention: Technology
and the Human Future. W. W. Norton & Company.

[30] Bielby, J. (2015). Comparative Philosophies in
Intercultural Information Ethics. Confluence: Journal of

World Philosophies, 5, 233–253.
[31] Brewis, D. (2017). Social Justice ‘Lite’? Using Emotion

for Moral Reasoning in Diversity Practice. Gender,
Work & Organization, 24(5), 519–532.
https://doi.org/doi:10.1111/gwao.12171

[32] Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics
into Artificial Intelligence. The Journal of Ethics.
https://doi.org/10.1007/s10892-017-9252-2

[33] Gintis, H. (2011). Behavioral Ethics. In E. Slingerland
& E. Collard (Eds.), Creating Consilience: Integrating
the Sciences and the Humanities. Oxford University
Press.

[34] Floridi, L. (2013). Distributed Morality in an
Information Society. Science and Engineering Ethics,
19, 727–743. https://doi.org/10.1007/s11948-012-9413-
4

[35] Haraway, D. (1993). Situated Knowledges: The Science

Question in Feminism and the Privilege of Partial
Perspective. In E. Keller & H. Longino (Eds.),
Feminism and Science. Oxford University Press.

[36] Heersmink, R. (2017). Distributed Cognition and
Distributed Morality: Agency, Artifacts and Systems.
Science and Engineering Ethics, 23, 431–448.
https://doi.org/10.1007/s11948-016-9802-1

[37] Henslee, A., Murray, S., Olbricht, G., Ludlow, D., Hays,

M., & Nelson, H. (2017). Assessing Freshman
Engineering Students’ Understanding of Ethical
Behavior. Science and Engineering Ethics, 23, 287–304.
https://doi.org/10.1007/s11948-016-9749-2

[38] Pennock, R., & O’Rourke, M. (2017). Developing a
Scientific Virtue-Based Approach to Science Ethics
Teaching. Science and Engineering Ethics, 23, 243–262.
https://doi.org/10.1007/s11948-016-9757-2

[39] Adams, C., & van Manen, M. (2017). Teaching
Phenomenological Research and Writing. Qualitative
Health Research, 27(6), 780–791.
https://doi.org/10.1177/1049732317698960

[40] Schön, D. (1987). Educating the Reflective Practitioner.
San Francisco: Jossey-Bass.

Page 7788

http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207/1127
https://doi.org/10.1177/1368430217722035
https://doi.org/10.1177/1368430217722035
https://doi.org/10.1177/1368430217722035
https://assets.documentcloud.org/documents/3914586/Googles-Ideological-Echo-Chamber.pdf
https://assets.documentcloud.org/documents/3914586/Googles-Ideological-Echo-Chamber.pdf
https://doi.org/10.1126/science.1160364
https://doi.org/10.1177/1049732317698960
https://doi.org/10.1007/s11097-016-9463-1
http://coen.boisestate.edu/cs/cs-hu/#HUDescription

