
Teaching Software Engineering with Free Open Source Software
Development: An Experience Report

Anya Tafliovich
University of Toronto Scarborough

atafliovich@utsc.utoronto.ca

Thomas Caswell
matplotlib

Brookhaven National Laboratory
tcaswell@bnl.gov

Francisco Estrada
University of Toronto Scarborough

festrada@utsc.utoronto.ca

Abstract

We report on the design and delivery of a senior
Software Engineering course within the limits of a
Computer Science program. The course is structured
around a collaboration with a large, active Free Open
Source Software project. We show how this structure
allows us to (a) incorporate principles of Project
Based Learning and of Service Learning, reaping the
benefits of these pedagogies, (b) effectively, using a
hands-on approach, teach a number of essential topics
in Software Engineering, (c) provide the students with
a capstone project experience, given the lack of one in
our curriculum, and (d) use the project as a powerful
motivating factor for the students.

We outline the experiences of the course instructor,
of the teaching assistants team, and of the students of
the course. We also describe the experience of the lead
developers of this open source project, and report on the
benefits and costs (time commitment) to the project.

1. Introduction

Much has been said about the gap between the
industry expectations and the needs and abilities of
recent Computer Science graduates [1, 2]. Promptly
after graduation many students are required to dive into
a code base that is orders of magnitude larger and more
complex than any projects they have worked on through
their university courses. Importantly, this code base
is not an academic project, or an ad-hoc, course-based
distribution designed with specific learning objectives
in mind. Instead, it is fairly often a poorly documented
and sometimes a poorly designed system [3, 4], which
is difficult to properly maintain even by a seasoned
developer. To be prepared to enter the workforce,
students need a solid foundation in Software Processes,
Software Design, Software Verification and Validation,
Software Quality, Security — the list continues.

Producing quality Software Engineers within
a Computer Science (as opposed to Engineering)

department/faculty, presents additional challenges.
A Computer Science program that is solid, rich,
and well-grounded in Mathematics and Theoretical
Computer Science leaves little room for the applied,
hands-on courses that teach students how to build and
maintain well-designed, high quality software, how
to document and test it, how to use state-of-the-art
industry processes and tools, how to work in a team and
communicate effectively, etc.

In recent years, Computer Science and Software
Engineering educators are becoming increasingly
interested in Project Based Learning and, not necessarily
related, in Service Learning (see Section 2). Many
institutions now require a capstone project course or
courses. These senior-level courses provide students
with an opportunity to integrate and synthesise the
knowledge learned in multiple courses and to apply it
to a real problem. By definition, a capstone project
must constitute an authentic, project-based activity that
closely relates to professional work in the field. Students
must apply the discipline knowledge and skills acquired
in their program, as well as generic skills, such as
communication and teamwork skills. The benefits of
having a capstone project in the program curriculum
have been well reported and recognized (see Section 2).

In this paper, we will describe our experience
developing and running a senior-level Software
Engineering course within the limits of a Computer
Science program. The course is designed and structured
around a collaboration with matplotlib, a large,
active, widely used Free Open Source Software project.
This collaboration:

• incorporates principles of Project Based Learning
and of Service Learning, reaping the benefits of
these pedagogies,

• allows us to effectively, using a hands-on
approach, teach the following topics:

– software modelling and analysis,
– software architecture and design patterns on

a large scale,

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60211
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7731



– software quality analysis,
– verification and validation,
– technical writing,
– agile software development (reinforce),
– project planning and estimation,
– teamwork and soft skills, and
– professional practice,

• provides the students with a capstone project
experience, given the lack of a capstone project
course in our curriculum, and

• serves as a powerful motivating factor for the
students.

We outline the experiences of the course instructor,
of the teaching assistants team, and of the students of
the course. We also describe the experience of the lead
developers of this open source project, and report on the
benefits and costs (time commitment) to the project.

2. Related Work

Over the past two decades, Project Based
Learning [5] has been gaining acceptance as higher
education continues to shift toward student-centred
learning. Although a vast majority of available
literature on Project Based Learning is devoted to
domains outside of exact sciences and information
technology, interest in using Project Based Learning
in Computer Science classes is growing. Recent work
by Putcher and Lehner [6] reviews over five hundred
instances of incorporating Project Based Learning in
Computer Science classes. The authors report on the
benefits of the approach, as well as identify critical
success factors for such projects.

In recent years many universities have introduced
a capstone project in the curriculum. Capstone
projects enable students to integrate and synthesise
the knowledge learned in multiple courses and to
apply it to a real problem — an essential part of
preparing students for the workforce. The work
of Dugan [7] provides an excellent overview of the
available capstone projects literature, categorising the
course models and course topics, and summarising the
benefits of the courses. The work of Levia [8] studies an
important aspect of a capstone project — its evaluation,
and suggests grading rubrics that both encourage the
students to remain engaged in the project and enable
the instructor to diagnose student learning. The work
of Todd and Magleby [9] examines success factors of
capstone projects, with an emphasis on the needs of all
stakeholders, not just the students.

The work of Pinto et. al. [10] looks at introducing
FOSS projects in SE courses from the professor’s
perspective. Our experience aligns with some of the
reported benefits to the students, such as improved
students’ communication and technical skills and the
importance (as perceived by both the students and the
employers) of enhancing the students’ resumes. We
also experienced some of the challenges reported in
their work, such as significant demands on professors’
effort and time, as well as a challenge and importance
of creating appropriate assessment schemes. In
the following Sections we describe our assessment
scheme, which evolved over several offerings of our
course, and which we believe to be appropriate for
our setting. Another reported challenge, namely the
required fast response on the part of the FOSS project
lead developers, we addressed by forming a long-term
effective partnership with the project lead developers
(one of the authors of this work is a lead developer for
the project). The demands on the professor’s effort and
time is still something we have not found effective ways
to address, and this remains to be a challenge in our
experience as well.

In recent years we have seen growing interest
in Service Learning, both at the high-school level
and in higher education. It has been shown that
Service Learning not only increases learning of the
subject [11], but also influences students’ personal and
social development [12], and has far reaching academic,
personal, social, and citizenship outcomes [13, 14].
There is also literature that examines success factors of
Service Learning projects, e.g. [15] and [16].

The work of Jamieson [17] examines the application
of Service Learning specifically to Computer Science
and Engineering Education. The work of Webster and
Mirielli [18] examines the students’ perspective on this
topic. Interestingly, recent work of Dahlberg et. al. [19]
suggests that Service Learning may help us attract and
engage under-represented students — a problem faced
by every higher education institution teaching Computer
Science or Engineering.

3. Environment

The course we describe here is offered at a large
(over 60, 000 undergraduate students between multiple
campuses), public, research-intensive North American
University. Ours is not an Engineering Department
/ Faculty, and the undergraduate programs we offer
are in Computer Science, rather than in Software
Engineering. Students choose to specialise in one of
several “streams”, and Software Engineering is one
such stream. Approximately 80% of Computer Science

Page 7732



students opt for the Software Engineering stream —
likely because of the promise of better employment
opportunities upon graduation.

The length of a term in our institution is 12 weeks.

3.1. Software Engineering Stream

As we mention above, our SE stream is heavily
theoretical. The program prescribes 13.5 credits out of
the 20 credits required by the University for graduation.
Of these 13.5 credits, the following required courses are
what we would label as “applied”, or “programming”,
or “software development” courses:

1. CS1 and CS2 are fairly typical introductory
courses that students take in their first year; these
are taught in Python, in an object-late fashion,

2. a second-year course, which introduces basics of
object-oriented design, some tools for effective
collaboration and version control, and provides
the first opportunity to practice working in teams;
the course is taught in Java and sometimes
includes Android,

3. a second-year Computer Architecture course,
which introduces boolean algebra, digital circuits,
and assembly language,

4. a second-year Introduction to Systems
Programming taught in C,

5. third-year Introduction to Databases, Introduction
to Operating Systems, and Principles of
Programming Languages courses,

6. a third-year Introduction to Software Engineering
course, which serves as a direct prerequisite for
the course we describe in this report and, finally,

7. the course itself.

A keen reader will notice, in particular, the lack of a
capstone project in the curriculum.

Examining the above list, we see that the subject
of Software Engineering in the Software Engineering
stream essentially needs to be covered within two
12-week-long senior courses.

Following the general North American trend, the
enrolments in the course have steadily increased from
32 students in 2012 to over 160 students in 2018. An
overwhelming majority of the students registered in the
course are in their final year of the program.

3.2. Software Engineering Courses

The 2015 edition of the ACM and IEEE Computer
Society Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering [20] lists,
among others, the following areas of knowledge:
Professional Practice, Software Modelling and
Analysis, Requirements Analysis and Specification,
Software Design, Software Verification and Validation,
Software Process, Software Quality, and Security.

As we describe above (Section 3.1), we are faced
with the challenge of introducing these topics within the
scope of two senior courses. Our approach, briefly and
at a very high level, is as follows.

The first (third-year) Software Engineering course
focuses on small-scale systems. In this course students
learn about Requirements Elicitation and Analysis,
Project Management and Planning, Object-Oriented
Design and Design Patterns, basic Software Modelling,
version control with git, and elements of Verification and
Validation. The course is taught with a strong emphasis
on Agile Software Development / Scrum, and students
are required to use Agile Software Development in
their project. The project is a team project, it is 9–10
weeks long, and involves eliciting requirements from a
real client and designing, developing, and validating a
software product for the client.

The second (and last!) Software Engineering Course
looks at large scale systems. This is where our
partnership with Free Open Source Software community
of matplotlib becomes invaluable.

For the vast majority of the students this is their very
first experience working with a large code base. The
reader should realise what a difficult task this is for an
inexperienced student. The team is given over 200,000
lines of code in hundreds of files, a requirement for a
new feature (or to fix something that is broken), and
a time limit. They need to figure out how to make
this happen! The vast majority of the students, at the
beginning of the course, have no idea where to even start
looking within this large amount of code.

3.3. The Co-op Stream

Our institution also offers a Co-op Program in
Computer Science. The program includes three
mandatory co-op terms (internships) four-month-long
each. The program is very competitive: in addition
to the higher admission requirements, the students are
also required to maintain their GPA in order to stay in
the program. The numbers vary from year to year, but
on average only 30% of our students are enrolled in it.
Higher tuition may also be a deterring factor.

Page 7733



4. Learning Objectives

We had several sources of inspiration when
designing the course. In addition to the ACM and IEEE
Computer Society Curriculum Guidelines, we referred
to the work of Radermacher et. al. [21] in aiming to
bridge the gap between industry needs and expectations
and typical abilities of graduates. As a result, we
made every attempt to provide the students with an
opportunity to learn about and to practice:

• software modelling and analysis,

• software architecture and design patterns on a
large scale,

• software quality analysis,

• verification and validation,

• technical writing,

• agile software development (reinforce),

• project planning and estimation,

• teamwork and soft skills,

• professional practice,

and last, but not least, to have a capstone project
experience, given the lack of a capstone project course
in our curriculum.

In addition, we had another important objective: we
wanted to motivate the students. As in many other
institutions, we have witnessed a general decline in the
levels of and a qualitative change in the kind (from
internal to external) of student motivation [22].

5. Towards Achieving the Learning
Objectives

In this Section we describe how incorporating a Free
Open Source Software project into the course facilitates
achieving the above goals.

Because of the curriculum restrictions, we are
unable to cover the knowledge areas in class prior to
the commencement of the project. Furthermore, it
has been suggested that this is not the best way to
structure student learning [23]. We therefore opt for
Just-In-Time teaching. In other words, we cover a topic
in class / lab immediately prior to when the students
begin to incorporate this knowledge in their project
work.

Keeping in mind that by the end of 12 weeks student
teams should have been provided with an opportunity to

make a significant contribution to a large open-source
project, we structure the course as follows.

Students work in small size teams with four or five
students in each team. Of course, as some students
choose to withdraw from the course in the early weeks
of the term, we are sometimes forced to restructure.
As a rule, we decided to leave groups of four as is,
and to merge and/or rearrange groups of three or fewer
students. Forming these teams is a non-trivial task to say
the least. In [24] we discussed strategies for effective
student team formation and management. In addition,
as we mention in Section 3.3, approximately 30% of our
students are in the Co-op program. Having at least one
student from this program in each team provides benefits
for both the Co-op students, as they have an opportunity
to mentor their peers in the use of tools they may already
be familiar with from their internship experiences, and
to the rest of the team, who have immediate access to
extra help.

As the term is only 12 weeks long, the length
of the project is 11 weeks. The students are
required to work on it continuously throughout the
term: last-minute-cramming is discouraged as marks are
deducted. Each team has a teaching assistant assigned to
guide the team through the term, as well as to evaluate
the process, team’s progress, and the final product. To
ensure continuous help and feedback, and to monitor
and steer the agile development process, the teams meet
with their TA on a weekly basis. As an additional
benefit, this structure enables several instances of
written and oral presentation, which provides a badly
needed opportunity to repeatedly practice and get
feedback on these important skills, largely neglected in
the rest of our curriculum.

Furthermore, the teams are given an opportunity to
address the TA’s feedback and to re-submit their work
for re-evaluation (which has a small, but non-negligible
effect on the grade for that phase). We found this
provides a strong incentive for studying the TA’s
feedback, and understanding and correcting the errors,
thus improving their chances of future success.

Finally, evaluation of the project is a non-trivial
course design decision. While educators uniformly
agree on the importance of using student team projects,
there is no agreement on best methods of forming
and managing student teams and on best policies of
evaluating student team projects [25]. As a result of an
extensive literature overview (see Section 2), as well as
our own results on evaluating team projects [26, 27], we
developed the following method of evaluation.

Having the project divided into several
phases / deliverables provides us with an opportunity
to offer multiple instances of evaluation — both the

Page 7734



evaluation of the teams’ work by the teaching assistant
and the evaluation of individual’s work by her peer
teammates. Peer evaluation is done anonymously (to
the students, not to the instructor), and the students are
presented with an aggregate “score” that reflects their
peers’ beliefs on their individual performance. The
individual grade is then obtained from the team grade
by adjusting it according to this score.

The first rounds of both TA and peer evaluations are
performed early on in the term, providing the students
with an opportunity to learn if they have not been
performing up to the team’s standards, and to correct
their behaviour. It is important to note that team
members were not evaluated on their general knowledge
or ability to write good code, etc., but rather on the
quality of their collaboration with their teammates.

Finally, every contribution accepted into the code
base of the open source project is additionally rewarded
with marks.

5.1. Learning from the Code Base: Reverse
Engineering and Software Modelling

The first major deliverable in the student project
involves learning the code base. Students have three
weeks to work on this deliverable.

The teams begin by forking the project, installing
it, reading the documentation, and learning to use the
tool. A more important and a more challenging task is
learning and analysing its software architecture.

The deliverable requires the teams to provide
a commentary on the architecture of the system,
highlighting interesting aspects of the design
(e.g., architectural style, degree of coupling, etc.),
discussing the quality of the architecture used in the
system, and suggesting possible improvements where
appropriate.

Teams are required to submit a detailed description
of the overall architecture of the system, using
UML diagrams to illustrate the points they wish to
make. Students have a choice of notation they
deem appropriate for their purpose (e.g., packages,
components, interfaces, etc.), and, in general, the exact
UML notation that they use is much less important than
the modelling decisions they make: what is important
enough to include, what to omit, how to structure the
diagrams, etc. They need to show clearly where the
classes belong in this architecture, and what external
packages the system interacts with.

Students use reverse engineering tools to generate
UML diagrams representing the modules, classes,
subclass relationships, and associations in the source
code. The majority of the modelling work is in editing

the generated model to capture information missed by
the tool, to remove unnecessary detail, etc., in order to
provide a clear picture of the system architecture.

Corresponding to the tasks in this deliverable, the
contents of the preceding lectures includes Software
Modelling and Analysis, Software Architecture and
Design Patterns on a large scale, and Software Quality
Analysis.

Working with a real, large code base, the students
observe the benefits of software modelling, including
use of modelling tools. They witness the use of what
they otherwise may see as “yet another useless thing we
are forced to learn” — an unfortunately common student
sentiment in Software Engineering courses — as an aid
in describing and analysing system architecture.

The deliverable also requires the students to identify
(a minimum of three) design patterns used in the system,
and to show how each is implemented. They submit
a detailed description of each of the design patterns
they identified, which must include both structural and
behavioural models, and links to the corresponding
code.

The study of design patterns in class is timed with
the due date for this delivery, so that the students are
prepared for the task. Examples of design patterns
in the code are also discussed, along with methods of
identifying these in a large code base, for example,
with the aid of reverse engineering tools. The continual
guidance from the teaching assistants additionally
ensures that the students know what they are looking for
and know how to look for it, when they are working on
this part of the deliverable.

Seeing the design patterns they study in class
implemented in a widely used software package and
witnessing the benefits in a large code base are
invaluable sources of motivation for the Software
Engineering students.

5.2. Learning to Estimate, Plan, and Manage

For the next deliverable, the student teams are
required to select at least two issues (bugs and/or
features), complete the implementation of them, and
provide suitable test cases to demonstrate that the
changes have been correctly implemented. Students
have three weeks to work on this deliverable. Most
importantly, this part of the project requires students
to use their judgement about which change requests to
select for implementation. The time available for this
part of the project is deliberately tight: the team’s goal is
to select issues they will be able to solve by the deadline!

The topics covered in class prior to this deliverable
include a review of Agile Software Development and

Page 7735



Project Management (these topics are covered in the
prerequisite course), Project Planning, and Estimation.

As the first step, the teams examine the list of issues
currently open in the project. From the issue list, they
select a handful (a minimum of five) of promising bugs
or features to examine further. From this shortlist, they
need to select a minimum of two items to implement
and test. This process involves estimating the effort
required to implement each change, and identifying any
anticipated risks. The report must contain a detailed
explanation of the reasons for selecting the chosen
issues.

The weight (marks allocated) for this deliverable
is small compared to that of the rest of the project
(yet significant enough not to discourage putting in a
significant effort). This is an excellent opportunity
to make mistakes, underestimate the time required to
solve the issues, get ample feedback from the team’s
teaching assistant, learn from mistakes, and practice
Risk Management.

Working with a large, active open source project
provides us with an irreplaceable source of excellent
exercises on estimation and planning.

5.3. Learning to be a Professional: Soft Skills
and Technical Writing

There has been much talk recently about declining
levels of maturity and professionalism among university
students [28, 29, 30]. If we are failing to teach the
students to behave professionally in the classroom, how
are we going to prepare them for the workforce [31]?

Many institutions, in particular those awarding
an Engineering degree, offer an entire course in
professional ethics. In the absence of such a course
in the curriculum, educators are left with the task of
teaching elements of professionalism in various courses
in the program. The course we are describing here
proved to be an appropriate home for this topic.

Let us begin with a reminder that the students spend
11 weeks working on a project in a team, where their
grade depends both on the team’s work and on their
peers’ perception of their contribution. Even if a
student does not fully realise the impact of effective
communication and collaboration on the final team
product, he/she cannot neglect the potentially large
adjustment to his/her individual grade.

The team begins by discussing, agreeing upon,
writing down, and signing a Team Agreement that
establishes the ground rules for team collaboration and
communication. For example, expected time for an
email or message response, dealing with lateness for,
or absence from, a team meeting, etc. are part of this

agreement. During the term, whenever an issue arises,
the students are advised (and helped) to refer back
to the agreement. It is critical that help is readily
available both from the TA and from the instructor to
deal with team conflicts. These very often turn out to be
effective learning opportunities to improve the students’
soft skills.

Importantly, each contribution may take several days
of back-and-forth online discussion with main project
developers, and addressing their requests for changes,
improvements, etc., until getting a final “Thank You”
from the project. We found that the fact that the
team needs to effectively communicate with people from
“the real world”, outside of the university environment,
provides a great incentive to think carefully about
phrasing questions, explanations, etc. on the project’s
public forum.

Last but not least, the students need to write! Each
deliverable involves a report, which is, in part, marked
based on the report’s presentation (the report must be
well formatted, easy to read, and easy to navigate, with
a well-chosen layout), as well as the quality of writing
(language, grammar, clarity, and professionalism). The
teams have multiple opportunities to improve on their
technical writing, following the detailed feedback from
the TAs.

5.4. Learning to Verify and Validate

Given that Verification and Validation is a major
knowledge area in the ACM and IEEE Computer
Society Curriculum Guidelines, and yet is one of the
top items in the list of most important knowledge
deficiencies of recent graduates [21, 2], it is important
for us to provide the students with a solid introduction
to the topic.

The majority of the subject matter is covered in
the prerequisite course, so the content of the lectures
on this topic is largely a review. Luckily, the project
naturally provides the students with ample exercise both
in automated unit testing and in acceptance testing. The
former is required by the open source project: all new
code must pass all the tests that are already in place,
including checks for correct style of the code, as well as
any new ones added to verify the new features or bug
fixes introduced by the new code. The latter is required
by the project deliverable, as well as, to some extent,
by the necessity to document their feature on the project
website.

Page 7736



5.5. Synthesising and Applying the
Knowledge, and Making a Difference in
the “Real World”

In the final project deliverable student teams select,
design, implement, test, and document a new feature
(cannot be a bug fix) for the open source project. This
is the most significant — both in terms of workload and
in terms of allocated marks — part of the project. The
students have five weeks to work on this deliverable.

Each step in this part needs to be explained,
documented, and reflected upon. In the selection
process, the students practice their estimation skills. In
designing the solution, students practice their modelling,
design, and evaluation skills: the design of new
code must be fully documented and evaluated, and all
interaction with existing code needs to be explained.
The development must follow the agile development
process. The new feature must be fully tested: (a) the
open-source project requires every new contribution
to be accompanied by new tests that must be added
to the existing, extensive, automated test suite, and
(b) the students are required to submit a comprehensive
suite of acceptance tests for their feature. Finally, the
new feature needs to be fully documented: (a) again,
the open-source project requires new features to be
documented in their “What’s New” section, and (b) for
the course, students must explain and defend their
design decisions. All in all, completing this deliverable
incorporates knowledge and skills learned in the entire
Software Engineering curriculum of our program.

6. Results and Experiences

After four offerings of the course, we acquired
considerable experience in setting up and running
the course, and in maintaining a productive working
relationship with the lead developers.

We have not conducted any formal studies, and thus
we do not have quantitative data on the results of the
course. We nevertheless feel it is valuable to share
our observations, both from the university education
perspective and from the development community
perspective.

6.1. Benefits and Challenges for the Students

We have already mentioned that unfortunately, at
present our institution is unable to offer / require a
capstone project course. The benefits of completing a
capstone project are, of course, numerous [7]. This is an
opportunity for the students to integrate and synthesise
the knowledge learned in multiple courses and to apply
it to a real problem — an essential part of preparing

students for the workforce.
We believe that the course project we described here

is, at the very least, the next best thing to having a
separate capstone project course. In fact, it demonstrates
all of the accepted benefits of a capstone project:

• It constitutes an authentic, project-based activity
that closely relates to professional work in the
field.

• Students must apply the discipline knowledge and
skills acquired in their program, as well as generic
skills.

• It helps students develop communication skills.

• It facilitates students producing “explicit
evidence of complex and sophisticated graduate
capabilities”.

• Last, but not least, it enables the
instructor / department to assess the student’s
final graduate capabilities, as well as to assess
and reflect on the effectiveness of our programs.

In addition to the above benefits, we believe that
our implementation of the course project serves as a
great motivating factor for our students. Research
shows (see Section 2) that both Project Based Learning
and Service Learning can greatly increase the levels of
student motivation. Our personal experience as course
instructors strongly suggests that computer science and
software engineering students are highly demotivated
by working on “fake” projects, “simplified for the
classroom” projects, projects that are thrown away at the
end of the term.

In our experience, the sole fact that the student
code is being reviewed by the lead developers on the
open-source project — evaluated by “real” professionals
outside of the university setting — encourages a great
sense of ownership of and responsibility for the product
of students’ work. The realisation that people all around
the world might, at this very moment, be using the
code written by their team, fills the students with pride
for their work. And, of course, it provides them with
something awesome to put on their resumes and stand
out among recent graduates.

As of today, the students from our course have made
over 80 pull requests to the FOSS project. To the best
of our knowledge (from the instructor’s record keeping
in each course offering), not a single request resulted
in no communication between the lead developers and
the students. The amount of the communication and the
time span of the communication varied tremendously.
From a quick “Thank you” and merge, to requesting

Page 7737



stylistic changes in various pieces of the code, to
changes in the way the PR was submitted (for example,
merge vs rebase in git), to larger design-level changes.
The longest that we have recorded was 2.5 weeks of
such back-and-forth. In the early offerings of the
course, in several cases the instructor had to submit
the students’ grades before the PRs were merged. In
this case, it was explained to the teams that if they
choose to follow up (and they were encouraged to do so),
then a grade amendment would be submitted once the
contribution is made. In all of these cases, the students
were already communicating with the developers and
making the required changes, by that time, and every
single one of these teams followed up and received
amended grades after the term ended. In the more recent
offerings, when the instructor and the lead developers
established a partnership, and the coordination was
greatly improved, all the students’ grades were ready on
time for submission.

The teams get extensive coaching from their team
TAs on this part of the course work, the “failure” rate
(i.e., the number of pull requests not accepted by the
project is low: the instructor has 9 instances recorded).
In 4 cases, these decisions came from disagreement
with the design decisions made in these contributions.
In particular, the effects that these decisions may have
on future development plans (with which the lead
developers are familiar, but neither the students nor the
TAs / instructor are). One pull request generated a
long discussion among the developers who disagreed
on the future course. All of these were excellent
learning opportunities for the teams, who had first-hand
experience witnessing how such decisions are made in
a large project, what the arguments are, etc. As for
the assessment part, these teams got the marks for the
PRs as if they were accepted by the project, and the
instructor explained why their work was recognised this
way. In 5 cases, it was the team’s choice not to follow
up and make the required changes. To the best of our
understanding, the reasons were either prioritising other
courses over working on this course (e.g., finishing a
project in a different course, which was due at the end
of the term), or what looked like lack of motivation on
the part of the students. As unfortunate as we feel it is,
we acknowledge that such cases are probably inevitable
given the large class sizes and the wide variance in
students’ motivation. Since getting a PR accepted is not
mandatory in our course, and results in a bonus mark,
not every student is going to be motivated to put in the
work.

As of today, the students from our course made 60
contributions to the code base. At this point we should
mention that the FOSS under discussion has very high

standards, and every single PR is thoroughly examined
by at least one (most often two) lead developers.
In addition, the coding style guidelines, as well as
guidelines for working with version control are very
strict. We believe that the students, having witnessed
the level of scrutiny applied to their contributions, have
extra reasons to be proud of their work.

We should also note that although most of the
contributions were either bug fixes or minor features,
several contributions were complex new features, which
now appear on the What’s New pages of the project’s
releases. We also note that what we or the project
developers deem “a minor feature” is certainly not a
minor achievement for the students, for whom the main
challenge is learning to work with the real, very large
code base.

The remaining difference between submitted and
accepted PRs came from having two teams approach the
same issue, in different ways. In at least three recorded
cases, the lead developers commented on the pros of
each approach and encouraged the teams to join their
efforts to come up with a joint solution that benefits from
each team’s ideas. In these cases, the teams and their
TAs were instructed to work together to produce a single
PR. All of these were accepted into the code base.

Students are encouraged by the developers’
comments:

• This looks like a great PR...
• ... this feature makes a significant

improvement...
• ... [thumbs up emoji] — this is an

excellent piece of work with a test to
boot — great stuff!

• Thank you for your work! Hopefully
we will hear from you again.

• ... [thumbs up emoji] on tracking this
one down, this looks subtle...

In the end, the students report on having had a
positive experience as a result of integrating work on the
open-source project into the course delivery:

• I think it is absolutely great that we
got to work with a real open source
project like that...

• One of my favourite courses. The
fact that we made real open source
contributions meant our project and
effort actually mattered which I didn’t
feel in any other course.

• I enjoyed the course project and feel it
was a good way to apply most of the
topics learnt.

Page 7738



• The lectures were informative and
interactive. Project was amazing to
work with. More time on feature
implementation would be nice.

6.2. Benefits and Challenges for the Teaching
Team

Running this course is demanding on the teaching
team. The instructor’s work begins long before the
course starts, as it is essential that the instructor is
familiar with the code base and ready to help the
students with technical advice.

The course timeline needs to be carefully designed,
as just-in-time teaching calls for close integration
between lecture contents and project deliverables, tight
deadlines, and short turn-around time between the time
students submit their deliverables and the time they get
their feedback.

The most important task in organising the course is
building and managing a competent and efficient team of
teaching assistants. TAs for this course require extensive
qualifications. In addition to being knowledgeable in
the course material, they must possess a deep technical
familiarity with the architecture and code base of the
FOSS project. Soft skills, such as communication skills,
responsibility, and conflict resolution are invaluable for
this job, as the TAs must be able to effectively manage
teams of developers, carry out the weekly meetings
establishing the atmosphere that enables students to
bring up any potential problems or roadblocks in time.

In practice we have been successful in developing
excellent TA support by providing just-in-time
mentoring. First time TAs are coached by either a
head-TA, who has been a part of the teaching team
for the course at least once before, or by the course
instructor. The coaching involves detailed discussion
of each deliverable, the potential places where teams
may struggle, advice on how to keep teams focused and
on-track, and a live example of how team interviews are
carried out so that the TAs can see what they will need
to do with their teams.

Detailed rubrics are provided for each deliverable
and for each interview. The level of detail goes right
down to the list of questions that will be asked during
the interview and to the procedure by which each team
member will be required to participate at least once.
For marking, the head-TA or course instructor provides
examples of fully marked deliverables, showing how
work of different levels of quality should be evaluated,
illustrating the right amount and tone of the feedback
given to the students, and providing a baseline to
compare work submitted by different teams.

Once the marking is complete, all TAs get together,
discuss the marking for each team, identify potential
problems that may need attention by the course
instructor, and ensure consistency of both marking and
feedback across the board.

This involves a lot of work for the members of
the teaching team, but it is also incredibly rewarding.
The TAs gain invaluable experience in managing teams
of developers, identifying and addressing teamwork
issues, and motivating students to work more effectively
and at a higher level of quality. A good TA can
turn a dysfunctional team into a capable unit able to
deliver solid work, and the continued and close working
interaction between the teams and their TAs builds a
sense of comradeship that is not found in other courses
in our program. Often the students will freely share with
their TAs their thoughts about the course and the project,
providing timely feedback on the course delivery.

6.3. Benefits and Challenges on the FOSS
Project Side

In this Section we report on the perspective of
the collaborators from matplotlib, the open-source
project used in the course.

The main benefits to matplotlib are three-fold.
Firstly, the project receives direct contributions, often of
great quality, as judged by the lead project developers
and reported on the PR pages of the project. Secondly,
on-boarding higher education students over generic
first-time contributors reduces the burden on the main
developers. Lastly, the collaboration cultivates new
regular contributors to the project.

The FOSS project described in this work is widely
used in data-science. It has a significant installation
base across many domains and a large code-base and
API surface developed over 15 years, primarily by
volunteers.

The project has commensurately large back logs of
both bug reports and feature requests. In 2017 the
project saw approximately 200 unique contributors, and
160 of those were first time contributors to the project.
Many of those were first-time contributors to any open
source project and required coaching from the project
developers on Software Engineering practices. Student
teams, who have support “at home” for basic skills,
such as version control, testing best practices, and work
planning, can have a real impact on improving the
project with a reduced burden on the core developers.

Having had the support from the institution, the
students will likely have a better first contribution
experience than a generic first contributor, thus
increasing the odds that they will become a continuing

Page 7739



contributor and member of the community.
The primary resource provided by the project

developers to the students is peer-review — one of our
scarcest resources. In terms of absolute numbers, the
current class size does not provide a problem. However,
due to the timeline of the course, the rapid influx of
pull requests can be challenging to review in a timely
manner.

Since these contributions are part of course work,
rather than self or employer driven, if the pull requests
are not reviewed and merged in the timeline of the
course, it may be less likely that the authors will follow
up after the end of the course. It is possible that the
scarcity of resources will become more of a problem as
the course continues to grow.

Overall, this collaboration is a win-win for both
matplotlib and the students, and the developers
would like to see such collaborations more widely
implemented.

7. Conclusion

We reported on the design and delivery of a senior
Software Engineering course, within the limits of
a Computer Science program. We showed how a
collaboration with a large, active Free Open Source
Software project structure allows us to

• incorporate principles of Project Based Learning
and of Service Learning, reaping the benefits of
these pedagogies,

• effectively, in a hands-on approach, teach
a number of essential topics in Software
Engineering,

• provide the students with a capstone project
experience, given the lack of a capstone project
course in our curriculum, and

• use the project as a powerful motivating factor for
the students.

We describe that, given a well-planned structure of
the course, the integration of a Free Open Software
Source project into the course work provides invaluable
opportunities and positive experiences for all parties
involved: for the teaching team, for the students, and
for the open-source community.

References

[1] A. Radermacher, G. Walia, and D. Knudson,
“Investigating the skill gap between graduating students
and industry expectations,” in Companion Proceedings
of the 36th International Conference on Software
Engineering, ICSE Companion 2014, pp. 291–300,
2014.

[2] A. Radermacher, G. Walia, and D. Knudson, “Missed
expectations: Where cs students fall short in the software
industry,” Software Education Today, 2015.

[3] L. Briand, “Software documentation: How
much is enough,” in Proceedings of the Seventh
European Conference on Software Maintenance and
Reengineering, IEEE, 2003.

[4] S.Huang and S.Tilley, “Towards a documentation
maturity model,” in Proceedings of the 21st annual
international conference on Documentation, ACM Press,
2003.

[5] P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik,
M. Guzdial, and A. Palincsar, “Motivating project-based
learning: Sustaining the doing, supporting the learning,”
Educational Psychologist, vol. 26, no. 3-4, pp. 369–398,
1991.

[6] R. Pucher and M. Lehner, “Project based learning in
computer science — a review of more than 500 projects,”
in Proceedings of the 2nd International Conference on
Education and Educational Psychology, 2011.

[7] R. F. D. Jr, “A survey of computer science capstone
course literature,” Computer Science Education, vol. 21,
no. 3, pp. 201–267, 2011.

[8] D. F. Levia and S. M. Quiring, “Assessment of student
learning in a hybrid pbl capstone seminar,” Journal of
Geography in Higher Education, vol. 32, no. 2, 2008.

[9] R. H. Todd and S. P. Magleby, “Elements of a successful
capstone course considering the needs of stakeholders,”
European Journal of Engineering Education, vol. 30,
no. 2, pp. 203–214, 2005.

[10] G. H. L. Pinto, F. F. Filho, I. Steinmacher, and M. A.
Gerosa, “Training software engineers using open-source
software: The professors’ perspective,” in 2017 IEEE
30th Conference on Software Engineering Education and
Training, IEEE, 2017.

[11] J. L. Warren, “Does service-learning increase student
learning?: A meta-analysis,” Michigan Journal of
Community Service Learning, pp. 56–61, 2012.

[12] L. Simons and B. Cleary, “The influence of service
learning on students’ personal and social development,”
College Teaching, vol. 54, no. 4, 2009.

[13] J. M. Conway, E. L. Amel, and D. P. Gerwien, “Teaching
and learning in the social context: A meta-analysis of
service learning’s effects on academic, personal, social,
and citizenship outcomes,” Teaching of Psychology,
vol. 36, no. 4, pp. 233–245, 2009.

[14] J. Eyler, “Reflection: Linking service and learning —
linking students and communities,” Journal of Social
Issues, vol. 58, no. 2, pp. 517–534, 2002.

[15] K. Lambright and E. Y. Lu, “What impacts the learning
in service learning? an examination of project structure
and student characteristics,” Journal of Public Affairs
Education, vol. 14, no. 4, pp. 425–444, 2009.

[16] J. A. Hatcher, R. G. Bringle, and R. Muthiah, “Designing
effective reflection: What matters to service-learning?,”
Michigan Journal of Community Service Learning,
vol. 11, pp. 38–46, 2004.

[17] L. H. Jamieson, “Service learning in computer science
and engineering,” in Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’02, (New York, NY, USA), pp. 133–134,
ACM, 2002.

Page 7740



[18] L. D. Webster and E. J. Mirielli, “Student reflections
on an academic service learning experience in a
computer science classroom,” in Proceedings of the 8th
ACM SIGITE Conference on Information Technology
Education, (New York, NY, USA), pp. 207–212, ACM,
2007.

[19] T. Dahlberg, T. Barnes, K. Buch, and K. Bean, “Applying
service learning to computer science: attracting and
engaging under-represented students,” Computer Science
Education, vol. 20, no. 3, pp. 169–180, 2010.

[20] J. T. F. on Computing Curricula IEEE Computer Society
Association for Computing Machinery, “Curriculum
guidelines for undergraduate degree programs in
software engineering,” 2014.

[21] A. Radermacher and G. Walia, “Gaps between
industry expectations and the abilities of graduates,” in
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, pp. 525–530, 2013.

[22] J. M. Twenge and K. Donnelly, “Generational
differences in american students’ reasons for going
to college, 1971–2014: The rise of extrinsic motives,”
The Journal of Social Psychology, vol. 156, pp. 620–629,
2016.

[23] G. Novak, E. Patterson, A. Gavrin, and W. Christian,
Just-in-Time Teaching: Blending active Learning and
Web Technology. Saddle River, NJ: Prentice Hall, 1999.

[24] A. Tafliovich, J. Campbell, D. Zingaro, F. Estrada, and
L. Porter, “Forming strong and effective student teams.,”
in Proceedings of the 48th ACM Technical Symposium
on Computer Science Education, (New York, NY, USA),
ACM, 2017.

[25] R. Lingard and E. Berd, “Teaching teamwork skills
in software engineering based on an understanding
of factors affecting group performance,” Frontiers in
Education, vol. 3, 2002.

[26] A. Tafliovich, A. Petersen, and J. Campbell, “Evaluating
student teams: Do educators know what students think?,”
in Proceedings of the 47th ACM Technical Symposium
on Computer Science Education, (New York, NY, USA),
pp. 181–186, ACM, 2016.

[27] A. Tafliovich, A. Petersen, and J. Campbell, “On
the evaluation of student team software development
projects,” in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, (New York,
NY, USA), pp. 494–499, ACM, 2015.

[28] P. Gray, “Declining student resilience: A serious problem
for colleges,” 2015.

[29] N. Howe and W. Strauss, Millennials Go To College:
Strategies for A New Generation on Campus. Lifecourse
Associates, 2007.

[30] A. F. Keaton, “Teaching students the importance of
professionalism,” in The Teaching Professor, (Atlanta,
GA), Magna Publications, 2015.

[31] K. L. Campana and J. J. Peterson, “Do bosses give
extra credit? using the classroom to model real-world
work experiences.,” College Teaching, vol. 61, no. 2,
pp. 60–66, 2013.

Page 7741


