

On the Syntactic, Semantic, and Pragmatic Quality
of Students’ Conceptual Models

Justin MacCreery, Bastian Tenbergen*

State University of New York at Oswego
justinmaccreery@gmail.com | bastian.tenbergen@oswego.edu*

* corresponding author

Abstract

Visual notations and conceptual models, such as ER
diagrams or UML diagrams aid in aligning
stakeholder needs, defining and prioritizing processes
and goals for the system under development, serve as a
reference for requirements elicitation, negotiation, and
enable validation as well as verification of artifacts.
With such a ubiquitous presence and paramount
importance, conceptual models have therefore been
introduced in software engineering curricula far and
wide. However, it is exceedingly difficult to teach and
learn conceptual modeling. Not only does it require
educators to instruct notation and syntax of the visual
language, but also semantic intricacies. Similarly,
students struggle with what differentiates a “good”
conceptual model from an inadequate one, how to use
conceptual models of different types in conjunction
with one another in a meaningful way, or simply how
to avoid ambiguity and vagueness. In this paper, we
discuss the syntactic, semantic, and pragmatic quality
of conceptual models in four courses from an
undergraduate software engineering program. It is not
our aim to present empirically rigorous results, but to
contribute to the body of knowledge on the quality of
typical novices’ conceptual models. We seek to foster
discussion in the community and present observations
and results for comparison.

1. Introduction

It has been over 20 years since the need to

standardize visual languages has been identified in
software engineering [3]. Albeit natural language
remains the most widely used form of documenting
software engineering artifacts [14, 18, 19], conceptual
models and visual notations are gaining importance for
academia [4] and industry [19, 22]. In fact, conceptual
models play a significant role in aligning stakeholder
needs for a system under development, guide
requirements elicitation, negotiation, and validation,
help in conceiving system architectures, enable code
generation, and allow for formal verification [22].

It is therefore not surprising that there have been
increasingly strong arguments to incorporate
conceptual modeling into undergraduate software
engineering curricula at the university level [7, 13, 16].
Yet, teaching conceptual modeling to students and, of
course, learning the intricacies of conceptual models as
a student, are daunting tasks [21]: students must learn
the notation, syntax, the meaning of notational
elements, as well as the meaning of the diagram.
Moreover, instructors must deal with vagueness and
uncertainty in student models, offer and discuss
appropriate modeling alternatives, and find ways to
enable students to select the right level of abstraction.

Yet, often, conceptual modeling instruction is done
as a by-product of courses on software engineering
processes, architecture, or requirements engineering
(see, e.g., [5]). This means that students must become
familiar with the inception process while they are
learning about conceptual modeling. While this may be
successful in some cases, there is the danger that either
conceptual modeling, software engineering processes,
or both are learned only superficially, or not at all.
Albeit some reports on the experiences with and
avenues to improve the quality of students’ conceptual
models in software engineering education are available
(e.g., [5, 11]), to the best of our knowledge, very little
quantifiable data on model content is available.

Therefore, the purpose of this paper is to contribute
to the body of knowledge on students’ conceptual
model quality, typical syntactic and semantic errors,
and instructional experiences. We hope that this paper
sparks discussions in the community and helps fellow
educators tailor their instructional approaches to instill
good modeling practices in software engineering
students.

The following Section 2 discusses the related work
with regard to model quality and reviews some
instructional approaches and experience with
conceptual modeling. Section 3 introduces the study
design. Section 4 reports on qualitative and
quantitative findings in student model quality as well
as our experiences in instructing conceptual modeling.
Section 5 draws conclusions and Section 6 discusses
threats to validity. Section 7 concludes this paper.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60209
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7711

2. Related Work

In the following, we review the central notion of

model quality (Section 2.1), and report on experiences
and approaches in instructing conceptual modeling
(Section 2.2).

2.1. Conceptual Model Quality

Alongside the unification of largely divergent

conceptual model types into UML, work was
undertaken to answer the question what differentiates a
“good” from a “poor” conceptual model. One of the
earliest works to investigate this question was done by
Lindland et al [17], who stipulate that the quality of a
conceptual model consists of three aspects:
• Syntactic quality describes the correspondence of a

diagram with the notational rules of the modeling
language. For example, syntactic quality is impaired
when sharp-cornered rectangles (like in UML
classes) are used to depict UML actions and
activities (instead of rounded-cornered rectangles).

• Semantic quality describes the correspondence of a
diagram with the semantic domain that is being
depicted. For example, semantic quality is impaired
when UML class diagrams contain one or more
associations labeled “has” or “is a,” instead of
aggregations, compositions, or generalizations.

• Pragmatic quality describes the correspondence of
a diagram for its intended purpose. For example,
pragmatic quality is impaired if a modeler uses a
UML class diagram instead of a sequence diagram
to document interactions between components.

These types of quality depend on one another to a

large degree. For example, if the wrong notation is
used (syntactic), the diagram may become ambiguous
(semantic), which in turn might mean that the diagram
is no longer useful during development (pragmatic).
Specifically, the question of usefulness for
development has been a concern for quite some time.
To this end, several frameworks and approaches have
been proposed, less to assess quality, but more to
prescribe beneficial use of diagrams. Examples include
Kruchten’s renowned 4+1 View Model [12], the SPES
Modeling framework [4], but also approaches
suggested in software engineering textbooks that focus
on the use of UML and other conceptual modeling
languages (see, [15], for just one example). Yet, these
approaches and frameworks focus on the consistency
between diagrams as well as their use for a
development project, and less on the quality of the
diagrams themselves.

2.2 Experiences with and Approaches for
 Conceptual Model Instruction

Improving the way of instructing software

engineering methods, skills, processes, and conceptual
modeling at the undergraduate level is a core endeavor
of many educators. A plethora of reports exist which
reflect on the experiences made therein. However,
most of these reports mainly reflect on either teaching
software engineering processes (e.g., [5, 7]), formal
methods (e.g., [9]), or how to use conceptual modeling
to improve the instruction of basic Software
Engineering skills, such as programming (e.g., [1, 16]).

Others reports on the qualitative and quantitative
quality of student models. For example, in [11] novice
modelers were asked to interpret and create class
diagrams. Their performance was rated against an ideal
solution. Results show approximately 30% error rate in
model interpretation. During creation, an error rate of
between 14% and 38.6% was reported, mainly due to
attribute related errors.

In [23], a report on the modeling process itself is
given. Using an online experiment, novice modelers’
way of creating visual diagrams was assessed. Results
show that both a “depth first” or a “breadth first”
modeling approach is feasible. However, one key
aspect that fosters understandability within the model
is the layout of the model. Layout correlates with the
grades received on models by approximately 32%. Yet,
concrete numbers on the content of the model elements
used by students are not given.

A comparison of model understandability between
student and expert modelers is reported in [10]. Both
expert and student modelers were asked to self-
evaluate and peer-evaluate diagrams. Results show that
peer-evaluated student diagrams are significantly
similar to expert judgments. Moreover, when assessing
model quality, understandability, layout, and
completeness are rated as the most significant.

It is to note that [10, 11, 23] predominantly
consider class diagrams. In fact, UML class diagrams
appear to be the most often studied conceptual models
in regards to novice modeler’s model quality. A
notable exception is [20], where a sample solution-
based tutoring system was used to critique students’
UML activity diagrams, albeit the study in [20]
considers UML class diagrams as well.

While reports on students’ ability to solve a
modeling task or acquire expertise are valuable,
quantitative measurements about the specific content of
student models in free-modeling scenarios are largely
absent. In other words, it is largely unknown how
students perform, when the task is to produce a
conceptual model for a hypothetical system under
development, when no ideal solution available.

Page 7712

3. Study Design

Considering that for modeling tasks in industrial

settings, instructor-provided ideal solutions are seldom
available, we seek to understand how students perform
when tasked with freely inventing system properties.
Therefore, with this paper, we investigate the content
of students’ conceptual models, specifically UML
diagrams, syntactic errors, and diagram interrelation.
We gathered data about student models in four
different undergraduate software engineering courses
over two years of instruction. In this section, we
present our study approach and research question
(Section 3.1), introduce the courses in which we
recorded data (Section 3.2), and explain our analysis
procedure (Section 3.3). Section 4 reports on results.

3.1. Approach and Research Questions

To investigate the content, syntactic errors and

subjective quality of students’ conceptual models, we
applied Glaserian Grounded Theory (GGT, see [8])
and followed the guidelines for applying grounded
theory in software engineering research, as outlined in
[24]. As mentioned in Section 2.2, students’ modeling
performance is usually evaluated against some ideal
solution. In this research, we were interested in how
students perform in free-modeling tasks, i.e. when
asked to conceive the requirements for some system
under development, from scratch. Our underlying
theoretic starting point is the idea that the quality of
conceptual models will have an effect on the entire
development process. This means that not only the
finished product, but also intermediate artifacts are
influenced by the quality of other artifacts [2].
However, what a “poor,” “better,” or “good”
conceptual model is cannot easily be established. We
built our grounded theory with regard to the qualities
from [17], by investigating three research questions:
• RQ1: What quantifiable properties and errors

do student models present? The purpose of this
RQ is to allow gauging the average model size and
complexity of student’s models, wrt. the typically
used language. As size and complexity can change
with diagram type, this RQ informs interpretations
of the following RQ2 and RQ3.

• RQ2: What is the semantic quality of the student
models? The purpose of this RQ is to gauge how
the perceived (subjective, but quantified) quality of
the models are, despite errors, but in light of the
number and nature of contained modeling elements.

• RQ3: What is the pragmatic quality of the
student models? The purpose of this RQ is to
gauge continuity between models, i.e. how elements
from one diagram appear in other diagrams and

thereby make up the specification of one system
under development. We theorize that only diagrams
that “fit together” are useful for implementation.

3.2. Data Collection & Course Descriptions

Data was collected in four undergraduate software

engineering courses at the State University of New
York at Oswego (SUNY Oswego). Each course
focused on the use of diagrammatic representations and
conceptual models to specify a hypothetical system
under development in a semester-long case study
project. The following subsections describe the
courses, properties of the students, and how conceptual
models were used. Unless otherwise specified, all
courses meet three times a week for 55 minutes over
the course of 15 weeks. Each course can be taken for
elective credit in software engineering (SE), computer
science (CS), and information science (IS)
baccalaureate degree programs at the institution. In
each course, the SPES Requirements Viewpoint [6]
and the diagram types discussed therein were taken as
the example pattern to follow during specification. The
study design was approved by the institution’s ethics
review board and students supplied informed consent.

3.2.1 Software Engineering (CSC380)

This course is an introductory course on software

engineering processes, the development life cycle, and
conceptual modeling. Half the course is dedicated to
lecturing, giving detailed introductions into notation
and beneficial use of UML for the development
process. The other half is dedicated to developing and
implementing the specification of a project, with
weekly meetings being dedicated to presentation,
discussion, implementation, and revision of artifacts.

The course is a core requirement for SE
undergraduate students at the institution and may be
taken for elective for CS and IS degree programs.
Moreover, this course is a prerequisite for all other
courses and takes place every semester. Data was
gathered in this course in fall 2017, where 40 students
(second year and higher) enrolled, separated into eight
groups of five to eight students.

3.2.2 Software & Safety Requirements Engineering
 (CSC436)

This course is an advanced course on development

of safety-critical embedded software, with particular
focus on requirements engineering, safety assessment,
and safety argumentation in early stages of
development. During a semester-long industrially
realistic project, students produce and implement a

Page 7713

requirements specification consisting of the
aforementioned diagram types from [6], enhanced with
natural language requirements. Class meetings are
dynamically allocated to presentation, discussion, and
improvement of diagram artifacts as well as lecturing.
Content delivery in lectures is aligned with project
milestones and student group progress.

The course takes place every spring semester. Data
was gathered in spring 2017, where 24 students (third
year and higher) enrolled, separated into four groups of
six students.

3.2.3 Software Design (CSC480)

This course is an advanced course, in which the

entire software development process of a start-up
company is simulated. During a semester-long project,
all students in the course work together to produce and
implement a requirements specification consisting of
the aforementioned diagram types, enhanced with
natural language requirements. Students are
responsible for quality assurance (i.e., unit testing,
usability testing, etc.). Class meetings are exclusively
dedicated to daily SCRUM meetings, progress
planning, discussion of artifacts, and conflict resolution
(when necessary). There are no classic lectures.

The course is co-listed as a core requirement for
graduate students in the institution’s Human Computer
Interaction degree program. Like CSC380, it is also a
core requirement for SE undergraduate students and
can be taken for elective credit in CS and IS. The
course takes place every spring semester. Data was
gathered in spring 2016, where 30 students (15
graduates and 15 third year and higher) enrolled.
Students are separated into requirements, quality
assurance, usability, engine, database, and user
interface groups, consisting of three to six students.

3.2.4 Software Engineering Capstone (CSC495)

This course is an advanced course, in which the

contracted software development process is simulated.
Like in CSC480, a requirements specification is
produced, implemented, and quality assured in a
semester-long project. However, unlike CSC480,
students work by themselves, or in small groups. Class
meetings are dedicated to progress reporting, planning,
discussion of artifacts, and demos of the current state
of the project. There are no classic lectures.

Like CSC380, the course is a core requirement for
SE undergraduate students and can be taken for
elective credit in CS and IS. The course takes place
every semester. Data was gathered in fall 2016, where
eight students (third year and higher) enrolled,
separated four teams of one to three students.

3.3 Analysis Procedure

The object of study were the diagrams produced in

each course. The diagram types discussed and created
in all courses comprised UML sequence and class
diagrams. More activity and state machine diagrams
were discussed in CSC380, CSC436, and CSC480, but
were excluded from CSC495 due to time constraints.
The final version for each diagram in each course was
collected after the respective course had concluded.
Subsequently, each diagram for each course was
subjected to the data analysis procedure is shown in
Fig. 1. The steps are explained in the following.

Fig. 1 Data Analysis Procedure and RQ Dependencies

Count Model Elements. The first step consisted of
counting the modeling elements for each diagram by
each group in each course. This entailed, for example,
counting the number of classes, attributes, operations,
associations, etc. in class diagrams (and equivalently in
other diagram types). This informed RQ1.

Count Syntactic Errors. This step involved
looking for explicit syntax errors within each diagram
by each group in each course. For example, it was
counted as a syntactic error, if rounded-edges (which in
UML is reserved for actions and states in dynamic
diagrams) are used for classes in class diagrams (which
are static). For another example, it was counted as a
syntactic error, if a decision node in activity diagrams
contained only one outgoing edge, was missing guards
on the outgoing edges, etc. This also informed RQ1.

Match Model Elements between Diagrams.
Diagrams produced by each group (in each course)
were then compared to the other diagrams by the same
group (in the same course). The goal was to ascertain
how the diagrams fit with each other. This was done by
checking for name identity of modeling elements (e.g.,
names of lifelines in sequence diagrams, class names,
operations in class diagrams, or activity names). For
example, a sequence diagram describing the interaction
between the system with its context is expected to
contain lifelines, which (depending on the system
under development) would also be present in the
implementation or in a class diagram describing the

Count Model Elements

Count Syntactic Errors

Match Model Elements
between Diagrams

Compare Diagrams to
Modeling Task

Model Elements (RQ1)

Syntactic Errors (RQ1)

Perceived Quality (RQ2)

Pragmatic Quality (RQ3)

Page 7714

internal structure and external interfaces of the system.
During this step, whether or not model element labels
and diagram purpose were adequately applied was also
checked. For example, if a sequence diagram was used
to describe the internal structure, this was counted as
inadequate (since the purpose of sequence diagrams is
to highlight component interaction, not structure). For
another example, if a UML class was labeled using a
verb, this was also considered inadequate. Together
with the previous steps, this step allows understanding
specific project specification produced by each student
group and hence build our theory of conceptual model
quality. This step informs RQ2 and RQ3.

Compare Diagrams to Modeling Task. Finally,
the diagrams produced by each group in each course
were compared to the respective milestone and/or
assignment, under consideration of UML’s notational
rules and check rules between diagrams from [6].
Unlike the previous step, it was ascertained to what
degree the diagrams satisfy the requirements outlined
in the individual course. This was done by assigning a
numeric value between -1 and 1 to a diagram, if a
certain requirement from the modeling task was met.
For example, a standing requirement in all courses was
for class diagrams to “define all relevant details for
implementing and testing the system.” If 75% or more
of the details were found in the implementation, the
conceptual model scored a 1; if less then 75%, but
more than 25% of the conceptual model details were
relevant to implementing and testing, a score of 0.5
was assigned. If 75% or more of the conceptual model
details were not relevant to implementing or testing,
the score of -1 was assigned. Otherwise, 0 was
assigned. In addition, in this step, consistency between
the diagrams of the same group was recorded. This
entailed the number of modeling elements from RQ1,
which were used in two or more types of diagrams
within a project as well as their representation in the
final implementation. This step informs RQ2 and RQ3.

4. Results

In the following, we present results from our

research questions from Section 3.1.

4.1 RQ1: Quantifiable Model Properties

As we have illustrated in Section 3.2, UML

sequence, class, activity, and state machine diagrams
were used in the courses. The tables show the average
and standard deviation of modeling elements in all
courses. If a standard deviation cannot be computed,
“n/a” is noted. Empty cells indicate that the
measurement is not applicable; missing fractions
indicate precise number (and not an average). If a

language feature was not used, the corresponding row
is missing. For example, in Table 2, the fact that a row
for “property-strings” for UML class attributes is
missing indicates that this language feature was not
used in any course. Due to the fact that for many
courses, standard deviations cannot be computed (since
only one group used some language feature), statistical
hypothesis testing was inapplicable.

Table 1 shows the modeling elements and syntactic
errors for sequence diagrams. Albeit all courses
instructed students to use the entire feature set of
sequence diagrams, students focused almost
exclusively on lifelines and interactions between them.
Partitions, i.e. “par,” “break,” “loop,” “alt,” “opt,” or
“ref” were not employed by most groups. A notable
exception is one group in CSC380, who used two loops
in their diagrams. Moreover, two groups made frequent
use of “alt” and “loop” in CSC495. Only two syntactic
errors were found in the same group in CSC380. This
can likely be explained with the fact that this group
chose to use only a single sequence diagram, of a
particularly large size. It featured a total of 49
modeling elements (messages, lifelines, and partitions).
By comparison, in CSC480, a total of nine sequence
diagrams with between seven and fifteen modeling
elements were created. The lowest number of modeling
elements was found in one sequence diagram in
CSC495, where only three modeling elements (two
lifelines and one message) were employed.

Table 1 Modeling Elements in Sequence Diagrams

 CSC380 CSC436 CSC480 CSC495
Lifelines 11.75 (10.42) 3 (n/a) 3.75 (0.96) 6.79 (4.89)
Messages 24.50 (16.03) 8 (n/a) 3.63 (1.85) 2.79 (1.40)
Partitions
(e.g., loop, break) 4 (n/a) 1 (n/a) 1.63 (1.06)
Errors 2 (n/a)

Table 2 shows the modeling elements and syntactic

errors for class diagrams. It can be seen that in
CSC480, the student team decided not to use class
diagrams. Albeit in that semester, a database was
developed and students were encouraged to make use
of a class diagram to show the internal structure of the
program, students decided not to follow this
suggestion. In terms of used language features, it can
be seen that students in CSC380 and CSC495
employed the largest variety. In fact, only students in
CSC380 used association classes, multiplicities, and
generalizations. Aggregations and composition were
used by students in all remaining courses, however
only relatively few such modeling elements were
included. It is also noteworthy that not only did
students in CSC380 use the widest variety of language
features, the diagrams themselves were also larger in

Page 7715

size, as can be seen by the higher means across the
board. In general, the minimum number of classes in
the diagrams was five and the maximum was 22 with
the average being approximately nine. The number of
attributes ranged between six and 110 with (avg. ca.
27). Similarly, the range in the number of associations
was between two and 218 (avg. ca. 9).

Table 2 Modeling Elements in Class Diagrams

 CSC380 CSC436 CSC480 CSC495
Classes 11.75 (2.22) 8.57 (2.37)

no
 su

ch
 d

ia
gr

am
 c

re
at

ed
 b

y
stu

de
nt

s

4.75 (3.50)
Attributes 17.50 (14.90) 6.00 (1.73)
Operations 28.00 (12) 9 (n/a)

Associations 11.28 (4.96) 8.29 (1.89) 2.50 (0.71)

Assoc. Classes 3 (n/a)

Assoc. Names 8.80 (8.11)

Multiplicities 17.00 (9.84)

Aggregations
& Compositions 5.00 (1.41) 3.67 (3.06) 2.00 (1.41)

Generalizations 2.50 (0.71)

Errors 2 (n/a) 2.50 (0.71)

Table 3 shows the modeling elements and syntactic
errors for activity diagrams. As outlined above, in
CSC495, were excluded from course proceedings due
to time constraints. Instead, students were encouraged
to use sequence diagrams and focus on the interaction
between components rather than control flow. In
CSC380, however, with the exception of one group
(who produced one activity diagram with six actions
and control flows in four swimlanes), all groups
attempted to use activity diagrams, the content and
nature of model elements was largely akin to that of
state machine diagrams. A possible explanation for this
issue is that in a prerequisite course for CSC380,
strong emphasis is placed on automata theory. Hence,
the idea of statefulness in systems together with the
largely overlapping notation in UML between activity-
and state machine diagrams could have contributed to
students not understanding the difference. In general,
there appears to be a conceptual burden to understand
the purpose of UML activity diagrams. In both
CSC436 and CSC480, actions (which typically denote
things the system does and not what it has or is) were
frequently described using nouns (e.g., an action called
“card reader,” instead of “read card,” avg. 3.50, std.
dev. 0.707). It is also noteworthy that in CSC480, only
a single activity diagram was created. Yet, like with
class diagrams in CSC380, the activity diagram in
CSC480 was rather monolithic and large, consisting of
16 actions and 26 control flows. Interestingly, language
features like object flows, parameter pins, forks/joins,
or interruptible regions, were omitted by all groups.

Table 3 Modeling Elements in Activity Diagrams

 CSC380 CSC436 CSC480 CSC495
Opaque Actions
& Activities 6 (n/a) 8.00 (3.70) 16 (n/a)

di
ag

ra
m

 ty
pe

 e
xc

lu
de

d
 fr

om
 c

ou
rs

e Control Flows 6 (n/a) 10.28 (4.75) 26 (n/a)

Start / End Nodes 2 (n/a) 1.00 (0.00) 0 (n/a)

Decision
& Merge Nodes 1 (n/a) 4 (n/a)

Swimlanes 4 (n/a)

Errors 2 (n/a)

Table 4 shows the modeling elements and syntactic

errors for state machine diagrams. Similar to activity
diagrams, state diagrams were excluded from CSC495.
Instead, students were encouraged to consider the
interaction between components to describe the system
behavior. Moreover, like class diagrams, students in
CSC480 decided not to model state machine diagrams.
By contrast, state machine diagrams were used rather
excessively in both CSC380 and CSC436. In fact,
many groups created precisely one diagram for other
diagram types, hence satisfying the course requirement
of “creating at least one diagram”. Yet, all groups in
CSC380 and CSC436 created several diagrams. The
number of elements in state machine diagrams ranged
between three states and five transitions in one group
in CSC436 and 228 states with 233 transitions in one
group in CSC380. This explains the high standard
deviation in Table 4. It is furthermore to note that
compared to other diagram types, there was a
considerable number of mistakes. This was in part due
to the aforementioned problems students had with
activity diagrams. The majority of mistakes in both
courses were either due to missing start/end nodes or
due to erroneously used decision/merge nodes (which
are syntactic features of activity diagrams only).

Table 4 Modeling Elements in State Machine Diagrams

 CSC380 CSC436 CSC480 CSC495
States 68.33 (74.35) 7.00 (2.58)

no
 su

ch
 d

ia
gr

am
 c

re
at

ed
 b

y
stu

de
nt

s

di
ag

ra
m

 ty
pe

 e
xc

lu
de

d
fro

m
 co

ur
se

Transitions 80.33 (73.17) 13.43 (10.11)

Hierarchical
Substates 6.50 (0.50) 2.33 (1.53)

Concurrent
Substates 3 (n/a)

Entry/Exist Points 15.67 (12.27) 1.50 (1.17)

Conditionals
(Guards) 2.86 (2.85)

Errors 13 (n/a) 7.50 (7.98)

4.2 RQ2: Semantic Model Quality

As outlined in Section 3.3 and Fig. 1, after

matching of modeling elements concluded, we

Page 7716

compared the quality of the models against the specific
project milestones, modeling tasks, and project scope
of each group. Our aim was to ascertain how the
conceptual models and visual diagrams were able to
express system properties and features. For each
diagram type, five to eight criteria were adopted, based
on the notational rules of the UML and check-rules of
the Requirements Viewpoint ([6]). As stated in Section
3.3, for each criterion, values were assigned to models
being evaluated which correspond to whether or not
the model satisfied the criteria. For example, a criterion
for state diagrams is “state transitions describe change
of state”, to which models could be given a score
according to this measurement: “1 if 75% of state
transitions describe change in state; -1 if 75% of state
transitions do not describe change in state; 0.5 if 25% <
of state transitions describe change in state < 75%; 0
otherwise”. A full list of measurement criteria and their
scoring, broken down by model type, can be found in
the Appendix. In the following, we provide an
overview of the perceived model quality for each
course. Missing standard deviations indicate exact
results, not averages.

In CSC380, sequence diagrams all scored similarly,
as can be seen in Table 5, as the standard deviation for
the quality score is relatively low. However, the
relative quality of activity diagrams was relatively poor
in that on average, the diagrams scored less than one-
thirds of the possible score. Sequence and state
machine diagrams were of a similar quality, albeit with
lower variance in sequence diagrams. Activity
diagrams had the poorest quality, albeit interestingly,
this was the most used diagram type. Class diagrams
scored the highest quality with comparable variance
between them.

Table 5 Model Quality in CSC380

 Sequence Class Activity State
 # Groups (# Students) 8 (40)

Diagrams 21 7 40 8

Quality Score 62.50% 89.29% 39.43% 65.56%

Standard Deviation 7.07% 15.75% 26.81% 21.28%

In CSC436, variance between diagrams was quite

high, ranging from ca. 32% to ca. 47%. Moreover,
quality of activity diagrams was very low as indicated
by the negative percentage (please recall the grading
scheme in the interval [-1;1], negative results indicate
that more than half the criteria were satisfied to less
than 75%). This was mainly due to the aforementioned
confusion between activity and state diagrams as
outlined in Section 4.1. Average scores for all models
within a team ranged from -0.5 to 3.75. Table 6 shows
these results.

Table 6 Model Quality in CSC436

 Sequence Class Activity State
 # Groups (# Students) 7 (24)

Diagrams 1 6 7 7

Quality Score 40.00% 26.19% -7.14% 89.29%

Standard Deviation 37.09% 31.67% 47.01%

In CSC480, as we have outlined in Section 4.1, no

class and state machine diagram were created.
Moreover, only one activity diagram was created,
which satisfied only few criteria fully. On the other
hand, the system described in the class project was a
web-based system, which was described rather
successfully using a series of nine sequence diagrams.
Albeit quality was on average 58%, standard deviation
in quality between diagrams was quite low, as can be
seen in Table 7.

Table 7 Model Quality in CSC480

 Sequence Class Activity State
 # Groups (# Students) 1 (30)

Diagrams 9 0 1 0

Quality Score 58.00% 7.14%

Standard Deviation 6.32%

As mentioned above CSC495, only sequence- and

class diagrams were created. Like in CSC480, the
system to be developed was described using a series of
sequence diagrams, mostly. The case example systems
were mainly from the safety-critical embedded systems
domain and hence were heavily dependent on their
interaction with the operational context (i.e. external
users and systems).

Table 8 Model Quality in CSC495

 Sequence Class
 # Groups (# Students) 4 (8)

Diagrams 52 5

Quality Score 47.76% 63.33%

Standard Deviation 34.11% 7.45%

Yet, many of the sequence diagrams contained but

a single lifeline and (see Section 4.1) and many
reflexive messages (i.e. from the object to itself), which
indicates that students focused on the process- or state-
oriented aspects of the system. For this, activity or state
machine diagrams could have yielded higher quality
and lower variance than the 47.76% (34.11% std. dev)
shown in Table 8. By comparison, class diagrams
depicted the entire system and were of relatively high
quality (63%), with low variance.

Page 7717

4.3 RQ3: Pragmatic Quality

As outlined in Section 3.3, RQ3 is answered based

on matching of the name identity of modeling elements
to check for continuity between diagrams, i.e. whether
there was correspondence of modeling elements
between diagrams of the same and different types and
between the conceptual model and the implementation.
Modeling elements in each group's models were noted
for how many different diagram types the modeling
element appeared in. CSC380, CSC435, and CSC495
continuity was considered between diagrams and
implementation. For CSC480, continuity was
considered between sequence diagrams and
implementation (see Section 4.2). In the following, we
report on the qualitative pragmatic quality we found
between diagrams.

In CSC380, results show that continuity between
models was relatively high. Most modeling elements
had corresponding modeling elements in other
diagrams and could be found in the implementation.
However, one group had no modeling elements appear
in more than two model types. Seemingly, this group
failed to understand that different diagrams pertain to
the same conceptual model of the system and hence
considered each individual diagram a chore to be
completed. This is further evidenced by the fact that
this group frequently questioned the use of conceptual
models in class and produced only one diagram of each
type, with relatively poor quality.

In CSC436, unlike CSC380, only two groups had
at least twice the number of modeling elements in only
one model type compared to the sum of modeling
elements that were mentioned in two or more diagram
types. These two groups had very similar projects,
where the project of one group dependent on the results
of the other group. Both groups hence worked together.
Interestingly, albeit both groups had relatively poor
continuity and correspondence between their own
diagrams, a high level of correspondence to diagrams
of the respective other group was achieved. Other
groups in this course had a relatively high pragmatic
quality, where the vast majority of modeling elements
(e.g., interfaces, data types, or components) were found
in several diagrams and the implementation.

In CSC480, a particular effort was made to by the
project’s requirements team to specifically demonstrate
the interaction between humans and the system. This is
part of the reason for the relatively high number of
sequence diagrams. Moreover, correspondence
between components (in the implementation) and
lifelines (in sequence diagrams) as well as between
sequence diagrams was exceptionally high. Yet, due to
the fact that the activity diagram was created by a
different group, there was little correspondence

between the sequence diagrams and the activity
diagram. In fact, one sequence diagram was taken as
the template, after which the processes were modeled.

In CSC495, only one of the four student groups had
at least twice the number of modeling elements in only
one model type compared to the sum of modeling
elements that were mentioned in two or more model
types or the implementation. This indicates that some
modeling elements were included in one diagram,
however, never treated any further in corresponding
diagrams. Similarly, these modeling elements were
also absent from the implementation. These modeling
elements could have been remnants from previous
diagram iterations which in the later revisions, where
simply forgotten to be removed or renamed. Other
groups included at least one of same object in all
model types and the implementation.

5. Conclusions

The conclusions that can be drawn from the data

presented in Section 4 are limited due to the diversity in
diagrams and courses. Nevertheless, we summarize
some intriguing findings with regard to the research
questions from Section 3.1 and share some additional
subjective experiences.

RQ1: Syntactic Quality. Results show that student
diagrams rarely make full use of the diagram type’s
feature set and are limited to relatively simple features.
Moreover, class diagrams are most likely to be used
successfully, yielding large (i.e., non-trivial) diagrams
and activity diagrams are least likely to be used
successfully. This may be due to the fact that activity
diagrams overlap with state machine diagrams in terms
of notation and with sequence diagram in terms of
content. In general, we observe that students struggle
with adopting the appropriate notational elements of the
various diagram type. Albeit the diagrams submitted at
the end of the courses were typically of high syntactic
quality (i.e. only few syntactic errors remained), we
observed that the modeling process itself was riddled
with difficulty for most students. Detailed introductions
and “cheat sheets” detailing the notation of diagram
types were given in each course, yet students struggled
with even simple concepts (e.g., sharp-edged corners
for classes only; rounded-edge corners for activities and
states only; state machine diagrams must contain at least
one start node; reading directions on class associations
are denoted with association label decorations; etc.). In
early modeling phases, these were the most frequently
noted syntactic errors.

RQ2: Semantic Quality. Recurring semantic errors
include missing labels on associations, control/data
flows, or transitions; ambiguity in labelling of classes,
activities, states, or associations, confusion between
states and events, confusion between states and
activities; and general appropriateness of diagrams. In

Page 7718

this case, the term “appropriateness” is to be understood
with regard to the system properties expressed in the
diagram. For example, students often used decisions in
activity diagrams to check, e.g., the value of a variable.
Students would specify conditions that check if the
value is above or below some threshold, but would
forget to specify the exact threshold value. Such and
similar specification gaps were quite common and is the
main reason why the reported quality in Section 4.2 is
between +30% and +50% for most diagrams.

RQ3: Pragmatic Quality. Despite semantic flaws
in diagrams and syntactic struggle during the modeling
process, pragmatic quality was surprisingly high in
most groups. In part, conceptual models contain
considerable syntactic and semantics flaws, which may
impair interpretability by external stakeholders. Yet, the
process of conceptual modeling was useful and highly
effective for members of the same development team.
In nearly all cases, the team members knew how to
interpret the information contained in the conceptual
models and how to move on with development, despite
the flaws. We consider this one of our key findings.

However, students’ motivation seems to be an
important confounding factor. It appeared to us that
while some students truly appreciate the systematic
process of conceiving the system before implementing
it, others despised it. For example, after work on some
diagram was concluded, students shared the sentiment
that they have a better understanding of how and what
to do next. For a counter-example, several students,
especially more technically inclined ones, often claimed
that they failed to see the point in modeling and “would
rather just code.” In fact, a testimony given by one
student was “I’m a code monkey, why should I care
about pictures.” Ironically, at one point during the
semester, the same student spontaneously resorted to
drawing a UML class diagram in pencil while clarifying
an idea for the system behavior with a team mate.

6. Threats to Validity

Some threats to validity may have impaired our

work. These and their mitigations are as follows.
Internal Validity. One threat that may impair the

generalizability of the conclusions presented in Section
5 is related to sampling. We have taken diagrams from
courses at our home institution, to which we had
convenient access. Moreover, these courses had
educational objectives that were not aligned with our
study and therefore contain some differences, which
limit comparability. Lastly, some courses were
instructed by one of the authors such that researcher
bias may be have been a factor. However, it is not our
aim to present empirically rigorous results, but to
contribute to the body of knowledge on how the quality
of typical novice modelers’ conceptual models may
look like. We seek to foster discussion in the

community and present results for comparison. For this
reason, we have adopted a grounded-theory approach,
based on the quality framework in [17] and make
available our raw data in the Appendix, so the reader
may compare our work to their own courses easily.

Construct Validity. Especially with regard to the
semantic quality for RQ2, our mode of measurement
may have impacted our results. Measuring the semantic
quality of a diagram is inherently hard, as it largely
depends on the specific system under development. For
this purpose, we have not only resorted to UML’s
notational rules and the check rules for model-based
specifications outlined in [6], we are also making
available our scoring criteria in the Appendix to allow
others to adopt and/or compare our results.

Conclusion Validity. As mentioned above,
researcher bias may have been a factor in drawing our
conclusions. Of course, as the instructor of the courses,
the second author has inherent interest in their students’
success. To remedy this issue, we provided quantifiable
results to the farthest possible degree and supplemented
conclusions with our in-class experiences, thereby
clearly differentiating objective and subjective findings.

External Validity. A considerable issue with any
study, especially regarding education, is the use of
student participants. We concede that given a different
choice of classes and students, the results outlined
above may be different. Moreover, as mentioned above,
comparability between courses is limited, due to the
educational objectives. For this reason, we have
provided a detailed description of similarities and
differences between courses and provided sufficient
details to foster comparability to other courses and
other institutions. We have drawn conclusions that
pertain to students’ conceptual models at large, pointing
out individual factoids and experiences, when
appropriate. In fact, we are confident that the results
and experiences reported herein are typical and similar
for other samples and encourage other educators to
share, compare, and discuss their results.

7. Summary & Outlook

In this paper, we have reported on the syntactic

(RQ1), semantic (RQ2), and pragmatic (RQ3) quality
of students’ conceptual models in software
development. We have reported quantifiable
measurements on the usage and error frequency of
language features in UML sequence, class, activity, and
state machine diagrams in four software engineering
courses at the baccalaureate level. Moreover, we have
quantified the semantic quality based on criteria derived
from UML’s notational rules and the correspondence
rules of the SPES Requirements Viewpoint [6]. Lastly,
we have reported the pragmatic quality of the student

Page 7719

produced models, commenting on how well different
diagrams fit together and lead towards implementation.
Results show that albeit student modelers only use a
small feature set of the UML language, and semantic
errors are frequent, the benefit of conceptual models for
the own development team is high.

Future work is concerned with ongoing
investigation of students’ model quality and shall lead
towards improvement of our course curricula to
maximize learning benefit, especially with regard to
diagram semantics. In the interest of full disclosure, we
make scoring scheme and raw data available (see
Appendix). We seek collaboration in this regard.

References

[1] Alperowitz, L., J. Johanssen, D. Dzvonyar, B. Bruegge,
“Modeling in Agile Project Courses”, Proc. Educators’ Symp
at MoDELS, 2017.

[2] Boehm, B., “Software Engineering Economics,” Prentice-
Hall, 1981.

[3] Booch, G., J. Rumbaugh, I. Jacobson, “Unified Modeling
Language,” 2nd Ed. Addison-Wesley, 2005.

[4] Broy, M., W. Damm, S. Henkler, K. Pohl, A. Vogelsang,
T. Weyer, “Introduction to the SPES Modeling Framework,”
In Model-Based Eng of Embedded Systems. Springer, 2012.

[5] Daun, M., A. Salmon, T. Weyer, K. Pohl, B. Tenbergen,
“Project-Based Learning with Examples from Industry in
University Courses,” Proc. IEEE 29th Intl. Conf. SE, 2016.

[6] Daun, M., B. Tenbergen, T. Weyer, “Requirements
Viewpoint,” In Model-Based Eng of Embedded Systems.
Springer, 2012.

[7] Engels, G., J. Hausmann, M. Lohmann, S. Sauer,
“Teaching UML Is Teaching Software Engineering Is
Teaching Abstraction,” In Proc. MoDELS Sat. Events, 2005.

[8] Glaser, B., A. Strauss, “The Discovery of Grounded
Theory,” Transaction Publishers, 1967.

[9] Gorp, P., H. Schippers, S. Demeyer, “Students can get
excited about Formal Methods,” Proc. Educators’ Symp at
MoDELS, 2007.

[10] Karasneh, B., D. Stikkolorum, E. Larios, M. Chaudron,
“Quality Assessment of UML Class Diagrams,” Proc.
Educators’ Symp at MoDELS, 2015.

[11] Kayama, M., S. Ogata, D.K. Asano, M. Hashimoto,
“Quantitative Conceptual Model Analysis for Evaluating
Simple Class Diagrams made by Novices,”Joint Proc.
EduSymp 2016 and OSS4MDE 2016, 2016.

[12] Kruchten, P., “The 4+1 View Model of architecture,”
IEEE Softw 12(6), 1995.

[13] Kuzniarz, L., M. Staron, “Best Practices for Teaching
UML Based Software Development,” Proc. EduSymp at
MoDELS, 2005.

[14] Laplante, P., C. Neill, C. Jacobs, “Software
requirements practices: some real data,” Proc. 27th Annual
NASA Goddard/IEEE Soft Eng WS, 2002.

[15] Lethbridge, T., R. Laganière, “Object-oriented Software
Engineering: Practical Software Development Using UML
and Java,” McGraw-Hill, 2005.

[16] Lethbridge, T., G. Mussbacher, A. Forward, O.
Badreddin, “Teaching UML using Umple: Applying model-
oriented programming in the classroom,” Proc. 24th IEEE
Conf. Soft. Eng. Education & Training, 2011.

[17] Lindland, O., G. Sindre, A. Solvberg, “Understanding
quality in conceptual modeling,” IEEE Softw 11(2), 1994.

[18] Lubars, M., C. Potts, C. Richter, “A review of the state
of the practice in requirements modeling,” Proc. IEEE Intl.
Symp. RE, 1993.

[19] Neill, C., P. Laplante, “Requirements engineering: the
state of the practice,” IEEE Softw 20(6), 2003.

[20] Schramm, J., S. Strickroth, N.-T. Le, N. Pinkwart,
“Teaching UML Skills to Novice Programmers Using a
Sample Solution Based Intelligent Tutoring System,” Proc.
Intl. Conf. Florida Art. Intelligence Research Society, 2012.

[21] Siau, K., P.-P. Loo, “Identifying Difficulties in Learning
UML,” Info Sys Mgmt 23(3), 2006.

[22] Sikora, E., B. Tenbergen, K. Pohl, “Industry needs and
research directions in requirements engineering for
embedded systems”, Requirements Engineering 17(1), 2012.

[23] Stikkolorum, D., T. Ho-Quang, B. Karashneh, M.
Chaudron, “Uncovering Students’ Common Difficulties and
Strategies During a Class Diagram Design Process: An
Online Experiment,” Proc. EduSymp at MoDELS, 2015.

[24] Stol, K., P. Ralph, B. Fitzgerald, “Grounded Theory in
Software Engineering Research: A Critical Review and
Guidelines”, Proc. 38th IEEE/ACM Intl Conf. SE, 2016.

Appendix

The scoring schema for RQ2 can be found
at https://bit.ly/2Joumvz . The raw data can be found at
https://bit.ly/2Nfr4vX .

Page 7720

