

Bringing Computational Thinking to Nonengineering Students through a
Capstone Course

Keeheon Lee

Underwood International College, Yonsei University
 keeheon@yonsei.ac.kr

Younah Kang
Underwood International College, Yonsei University

 yakang@yonsei.ac.kr

Abstract

Although the concept of computational thinking has
flourished, little research has explored how to
integrate various elements of computational thinking
into an undergraduate classroom setting. Clarifying
core concepts of computational thinking and providing
empirical cases that apply computational thinking
practices into a real-world educational setting is
crucial to the success of software engineering
education. In this article, we describe the development
of a curriculum for a social innovation capstone
course, using core concepts and elements of
computational thinking. The course was designed for
undergraduate students of a liberal arts college at a
university in Korea. Students were asked to define a
social problem and introduced to the core concepts
and processes of computational thinking aided by
Arduino and Raspberry Pi programming environments.
After building a business model, they implemented a
working prototype for their proposed solution. We
document class project outcomes and student feedback
to demonstrate the effectiveness of the approach.

1. Introduction

Cuny et al. [1] defined computational thinking (CT)
as “the thought processes involved in formulating
problems and their solutions so that the solutions are
represented in a form that can be effectively carried out
by an information-processing agent.” Recently, CT has
emerged as a key skill set that can support problem
solving in many areas. Perlis [2] strongly stated that
algorithmizing would eventually happen in all fields,
emphasizing the importance of the CT approach.
Particularly in the time of increasing computing power,
researchers have argued that CT can benefit almost
everyone [3–5].

Particularly, researchers have focused on how CT
could benefit students in educational settings [6–8].
Many studies have explored how CT education
benefits K-12 students and what kinds of educational
approaches can best serve them, whereas several other

studies have focused on college students and explored
how to effectively convey CT concepts to engineering
students [9,10].

Despite the educational benefit of CT for
engineering students, little research has explored
whether the approach is effective for nonengineering
students as well, who are the broader audience of CT
education. Empirical studies that investigate the
advantages of CT for that population are even scarcer.
To prove that CT education can benefit problem
solving in diverse areas, we believe that the field needs
a better understanding of how CT education can
influence nonengineering students and how best to
teach them the core elements of CT.

In this paper, we describe the development of a
curriculum for a capstone course, using core concepts
and elements of CT. Specifically, we propose a
business model-oriented CT framework in which
students develop a business model to solve a real-
world problem and clarify their goal through CT. We
assumed that developing a business model would help
students elucidate a specific goal and the procedure to
achieve the goal. We then describe how we designed
the capstone course in detail, based on the framework,
followed by the project outcomes of the course. After
interviewing students, we report on how they perceived
their learning experience.

Our contributions include the following:
l We provide an empirical case study of a CT-

based capstone course for nonengineering
students

l We provide a detailed description of the
course with several elements that ensured
successful course outcomes

l We provide qualitative evidence of perceived
learning outcomes related to CT education

This document is organized as follows: Section 2
outlines a literature review; Section 3 provides details
about the methods we developed and applied; Section
4 summarizes the course description; Section 5
provides class project examples; and Section 6 gives
the results of student feedback on the learning
outcomes.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60206
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7681

2. Literature review

2.1. CT frameworks as problem solving

Recently, CT has been considered a fundamental
ability that is necessary for everyone in the era of
data—a skill as important as reading, writing, and
arithmetic. This ability refers to the thought processes
involved in formulating a problem and expressing its
solutions in computational steps that a computer can
solve effectively [11]. Namely, CT involves problem
formulation and problem solving [12]. Its benefits are
not only effective software and hardware artifacts, but
also an intellectual framework of thinking [3]. Thus,
the mental process of structuring a problem to draw a
computational solution is fairly important in CT [12].
In the original source of CT, Papert [13] explicitly
mentioned CT as something that should apply to our
daily lives without elaboration.

Despite the universal benefits of CT in problem
solving, no single framework to examine CT yet exists
[11,14]. Brennan and Resnick’s framework [14] for
investigating CT has three dimensions: concepts,
practices, and perspectives. CT concepts provide the
building parts required to express a problem and its
solution computationally. CT concepts are common in
many programming languages and include sequences,
loops, parallelism, events, conditionals, operators, and
data. CT practices concentrate on the process of
thinking and learning, incorporating information, being
incremental and iterative, testing and debugging,
reusing and remixing, and abstracting and
modularizing. CT practices enable people to draw an
adaptive, robust, but practical solution to complex
problems based on CT concepts. This solution is the
implementation of a solution expressed in CT
perspectives. In CT perspectives, an individual can
express an idea through CT and during this expression,
make a creative artifact by social practices.

The Computer Science Teachers Association [15]
argues that CT is composed of problem formulation for
computational solutions, logical organization and
analysis of data, abstractions, algorithmic thinking,
assessment of efficiency and correctness, and
generalization to other domains. The Computing at
School subdivision of the British Computer Society
[16] cites logical reasoning, algorithmic thinking,
decomposition, generalization, patterns, abstraction,
representation, and evaluation as CT components. The
International Society for Technology in Education’s
Standards for Students [17] states that CT consists of
leveraging the power of technological methods to
develop and test solutions, collecting and analyzing
data, representing data, decomposition, abstraction,

algorithms, automation, testing, parallelization, and
simulation.

Google [18] states that CT is “a problem solving
process that includes a number of characteristics and
dispositions.” Google defines decomposition, pattern
recognition, abstraction, and algorithm as cornerstones
of CT. Decomposition is breaking down data,
processes, or problems into smaller and manageable
parts. Pattern recognition involves observing patterns,
trends, and regularities in data. Abstraction refers to
identifying the general principles that generate these
patterns. Algorithm design is developing the step-by-
step instructions for solving this and similar problems.

2.2. CT in educational settings

Researchers have explored the application of CT in
educational settings [6–8]. Barr and Stephenson [6]
discussed what is involved in bringing CT to K-12
students and the role of the computer science education
community. Grover [7] conducted an extensive review
of academic literature and examined the current state
of discourse on CT in K-12 education, identifying gaps
in research and practice. Yadav et al. [8] implemented
and evaluated a CT module in a course for elementary
and secondary education majors. They found that
participating students’ attitudes toward computer
science became more favorable and they would be
more likely to integrate computing principles in their
future teaching.

Most studies have explored how CT education
benefits K12 students and what kinds of educational
approaches might be most effective. Several studies
have focused on college students and explored how to
effectively teach CT concepts to engineering students
[9,10]. A few researchers have also explored the effect
of CT on nonengineering students [19,20]. Adams [19]
presented a proposal for creating an interdisciplinary
computational science major within the liberal arts.
Pulimood et al. [20] described a collaboration between
computer science and journalism students and
professors at a college and a large metropolitan
newspaper. They demonstrated that when computer
scientists and journalists connect across disciplinary
boundaries, CT and collaboration can solve a real
problem and have a substantive impact on society.

Still, empirical studies that investigate the
advantages of CT for nonengineering students are rare.
In this study, we aimed to explore how CT education
can benefit social problem solving and what kind of
learning outcomes can be achieved for nonengineering
students.

Page 7682

3. Business model-oriented CT framework

For educational purposes, we propose a business
model-oriented CT framework in which students
develop a business model to solve a real-world
problem and clarify their goal to achieve it through CT
processes and practices. We assumed that developing a
business model would help students clarify their
specific goals and the procedures necessary to achieve
said goal, thereby facilitating the problem-solving
process.

3.1. A two-stage compiler for CT

CT is a conceptual framework that enables
programming [21]. We consider CT to be a compiler
that transforms a problem-solving idea into computer-
friendly logic, called an implementable idea. This
allows a person to easily develop a software product or
information technology service from a rough idea. CT
can extract important elements in an idea, decompose
an idea into small parts, recognize similar parts that
can reduce repetitive jobs, and translate an idea into
computationally executable instructions.

Software and hardware development processes act
as another compiler that allows for developing an
execution idea for a software product or service that
realizes an implementable idea. This compiler is based
on knowledge of software and hardware. The
implementable idea is transformed into an execution
idea that is specialized for specific software and
hardware. Figure 1 shows a T-diagram that illustrates
the transformation from a source idea (left of T) to a
target idea (right of T), realized via an implementation
process (inside of T) by an operator (bottom of T).
Here, operators are nonengineers who have different
levels of understanding of CT, hardware, and software.

Figure 1. Compilation of an idea for generating
a product or a service through CT.

3.2. Enhancing CT by coupling with a business
model

A business model specifies how a company creates
value for itself while delivering products or services to
customers. A business model can be decomposed into

value proposition, customer segments, channels,
customer relationship, revenue streams, key resources,
key partnership, key activities, and cost structure. The
value proposition states the problem to be solved
explicitly, which will satisfy a customer need. This
enables a problem solver to focus on the problem
rather than its solution. In many cases, however, people
tend to concentrate on the technology that is used for
the solution rather than on the problem. In business, a
problem or a need of a customer is often considered to
be more important than how to solve said problem or
how to address said need because the success of
businesses often starts from finding the right problem.
Another key element is the identification of customers.
The archetype of the customers, including their
geographic, social, and demographic features, is also
crucial in business models. Distribution channels,
customer relationship, revenue streams, key resources,
key partnership, key activities, and cost structure are
followed by customer segments to make businesses
practical.

Business models are dependent on the need or the
problem because meeting the needs of customers and
solving their problems is important [22], as previously
stated. Developing a business model helps narrow
down potential solutions. Once a business model is
ready, CT makes the model concrete in terms of
implementation and realization by specializing in
certain technologies. From the CT perspectives of
Brennan and Resnick [14], a business model conceived
as an idea can be compiled and expressed as an
implementable idea through CT. Then, the
implementable idea can be realized through CT
concepts and CT practices to become a product or a
service. Figure 2 illustrates how business models and
CT supplement each other in the context of problem
solving, transforming from a problem to an idea, from
an idea to a business model, and from a business model
to a tangible product or service via CT.

Page 7683

Figure 2. Our framework for problem solving
by combining business model development
and CT.

4. Course description

In this section, we describe the course curriculum
we developed based on the framework explained in the
previous section. The course was conducted for 14
weeks during fall 2017. One of the authors of this
paper taught the course, and its participants included
2nd-, 3rd-, and 4th-year undergraduate students from
the Humanities, Arts, and Social Sciences Division of
Underwood International College at Yonsei University.

The course, called the Social Innovation Capstone
Project, was designed to encourage students to build
business models for tackling social problems. The
students implemented the models by developing
software on computing devices such as Arduino and
Raspberry Pi. To do so, the students learned about
business model development and CT by tinkering with
Python, Arduino, Raspberry Pi, sensors, and actuators.

4.1. Preworkshop

To help students with no technical background, we
held a 5-day workshop that covered the basics of
computer programming—using Python, Arduino,
Raspberry Pi, sensors, and actuators—and business
model development before the semester started. During
the workshop, students learned how to read code
written in the C and Python programming languages so
that they could read and manipulate existing code.

Students reviewed several examples of Python,
Arduino, and Raspberry Pi code to learn CT concepts
such as loops, conditionals, operators, and data. For
instance, students learned how to connect a humidity
sensor to an Arduino and monitor the numbers
generated by the sensor. They also learned that analog
sensors work similarly to the humidity sensor. The
students had the opportunity to conceptualize each
example as a unit module that could be used as a
building block for a more complex solution.

4.2. Team organization

Because most students did not have a technical
background, such as software engineering and
programming, we decided to employ a tutoring model
and organized teams accordingly. The teams were
formed by the instructor and each team had three or
four members, one of whom assumed the role of a
leader (i.e., tutor) who could help their teammates
understand the course materials aside from help from
the instructor. Owing to the intense course schedule
and the difficulty of learning a programming language
in a short time, it seemed daunting for a course
instructor to effectively deliver learning materials to
the entire class. Each team leader had experience in
programming of approximately 12 months and had also
completed 2 weeks of programming training before the
course with the instructor. Throughout the semester,
the leader helped the other team members understand
technical concepts and implement the product. This
pyramid scheme for learning, as shown in Figure 3,
enables the initial learners to acquire CT through
intimate face-to-face tutoring, which has proven to be
effective for learning concepts [23], as stated by
Brennan and Resnick [14]. Besides, the leaders who
played the tutoring roles learned CT more effectively
by preparing to teach [24] and by teaching [25,26].

Figure 3. Pyramid scheme for tutoring

Page 7684

4.3. Key learning objectives

Throughout the capstone course, we had four key
learning objectives—learning hardware, learning
software, developing a business model, and building an
internet of things (IoT) solution.

4.3.1. Learning hardware. Students learned how
to use sensors and actuators. For example, sensors for
temperature, humidity, and pressure and actuators for
motion and sound were covered. Additionally, students
learned how to control a camera. Because sensors and
actuators require computing units to be controlled,
students also learned how to use the Raspberry Pi and
Arduino platforms. By doing this, students became
aware of the connections between functions that may
require physical actions and the relevant hardware that
can carry out such functions.

4.3.2. Learning software. In addition, students
learned how to communicate with the hardware
computing units via a computer programming language,
such as Python and C. While working in the Linux
operating system, students could employ useful
example code, such as image recognition, text-to-
speech, and speech-to-text programs from OpenCV,
TensorFlow, Google API, and other open-source
projects. The students learned the necessary functions
that could be implemented in software.

4.3.3. Developing a business model. After

determining what functions could be realized using
hardware and software via CT, the students developed
a business model to solve a social problem. Then they
compiled the business model via CT to transform it to
an idea implementable on hardware and software. The
social problem was decomposed into small problems
that were a manageable size while focusing on the
essence of the problem. Moreover, the students built
their business models using building blocks that were
conceptualized as functional units in the previous steps.
Business models were developed using the business
model canvas proposed by Osterwalder and Pigneur
[27]. The examples dealt with in Steps 1 and 2 may not
be sufficient to ensure the idea would be realized. Thus,
through CT, the students learned how to use additional
hardware and software as needed.

4.3.4. Building a social IoT solution. Once their
business model was ready, the students implemented
the relevant functions that constituted the business
model using the building blocks of hardware and
software they had learned. This enabled them to build
an IoT solution for a social problem. An IoT solution is
an artifact that can be evaluated. By considering not

only the tangible solution itself but also the process
required to reach the solution, we measured pre-
experience, overall learning experience, team
collaboration, and learning outcomes, including
creativity and self-efficacy.

4.4. Deliverables and assessment

Throughout the course, students were required to
provide (a) a proposal for a team project, (b) a poster to
summarize the team project when the project was
completed, (c) a prototype of the product or service, (d)
an oral presentation, and (e) a final report to illustrate
the team project. These deliverables were planned to
enable students to set their own goals and illustrate
how they envisioned achieving those goals in detail.

The main assessment criteria included the
simplicity of the goal of a project and the alignment
between functions and hardware and software
components to achieve the goal. The delivery
effectiveness was also evaluated.

5. Capstone project outcomes

During the semester, the course yielded five IoT
services for social problems and all teams created a
working prototype using various technologies. We
present them with detailed description here.

5.1. Canary: a smart guide clip for people with
visual impairment

The team focused on deteriorated or missing tactile
pavement around the university’s campus that makes it
difficult for people with visual impairment to walk.
Through interviews with potential users, the team came
up with an IoT product called Canary, which is a smart
guide clip for visually impaired individuals. It has three
main functions: (a) detecting and classifying the type
of nearby pavement blocks and aurally notifying the
user; (b) detecting and classifying vertical
transportation, including stairs, escalators, and
elevators; and (c) collecting service request data from
the Canary device and transferring this data to city
officials. Using Canary, users can safely walk around
and easily report problems if needed. Moreover, they
no longer require standard white canes anymore,
enhancing their mobility.

As for the technologies used, the team employed
Open CV for distance estimation, TensorFlow for deep
learning, Google Maps API for location detection, and
Cloud storage for big data storage.

Page 7685

5.2. PPUCHA: a prenatal public chair for
expecting mothers in subways

PPUCHA (which stands for Prenatal PUblic
CHAir) was developed to help alleviate some of the
struggles pregnant women face in the public sphere,
particularly on subways. Many argue that the current
priority seats are inefficient because they prevent
people from sitting down when there are no pregnant
women on board. To address these concerns, the
developers of PPUCHA set out to design a system that
allows nonpregnant individuals to use those seats yet
induces them to yield their seat when a pregnant
woman boards the train. PPUCHA uses the KakaoTalk
Chatbot/Plus Friend system and barcode scanners to
ensure that expecting mothers have a place to sit. The
media content that plays in the back “socially shames”
nonpregnant users to give up their seats when a

pregnant user scans their codes. In addition, the
development team of PPUCHA created a website
(www.ppucha.herokuapp.com), which can be accessed
via a QR code, to share information on health care,
laws, and social benefits in place for pregnant women.

5.3. URO-TICTOC: a service for seniors
experiencing nocturia

URO-TICTOC aims to provide a solution for
seniors experiencing nocturia. Nocturia is a frequent
need to arise during the night to urinate.
Approximately 70% to 80% of the population aged 65
or older have severe symptoms or the potential of
experiencing this disease. Nocturia often results in
sleep deprivation, impaired cognitive functions,
depression, additional accidents, and secondary impact
on family members. Nocturia is caused by numerous
factors, and urologists focus on measuring the patient’s

Figure 4. Canary key functions

Figure 5. Canary prototype

Figure 6. PPUCHA prototype and key functions

1. Add ‘PPUCHA’
as a friend on
KakaoTalk, a
chatting app

2. Get barcode
vis the app

3. Scan barcode
on the scanner
next to the door

4. Sit down on
PPUCHA

5. Scan QR
code onto
mobile device

6. Enjoy your
ride on PPUCHA

1. Detecting and classifying the type of
nearby pavement blocks, and aurally
notifying the user

2. Detecting and classifying the vertical
transportation, including stairs, escalators,
and elevators

3. Detecting the service request data from
the users’ Canary and transferring this data
to the city council

Page 7686

volume of urine and frequency of nighttime visits to
the bathroom. URO-TICTOC automatically calculates
these factors for seniors who face difficulty taking
those measurements during the night, ensuring they
can provide accurate medical information to doctors
more conveniently.

5.5. Hangu: an American Sign Language
learning device for children

Hangu is an American Sign Language learning
device for children. It is connectable to computers and
electronic devices, making it portable and accessible.
Users can practice alphabets in sign language, form
words with alphabets learned, review learning
materials, and test learning materials.

Hangu is unique in that its users can have fun
playing with 3D-motion programs, develop bilinguality
and creativity, and easily carry it around.

5.6. Ga-UI: an augmented mirror for family
communication

Ga-UI is an augmented form of a common mirror,
with practical functions that can bring family members
closer and restore a family relationship. The primary
functions of the mirror include allowing access to each
family member’s personal schedule and sending text
messages and external links to family members via a
chat service installed in the mirror. The schedule
information is shared via iCal, the API of which is
installed in the Ga-UI. Family members can check one
another’s schedule displayed on the mirror screen and
develop a better idea of their daily lives. Other
functions include weather and temperature alarms and
indicators. By providing weather, temperature, and
humidity information imported from a national weather
service API, the system allows users to obtain useful
information before leaving the home.

6. Evaluation

6.1. Methods

To examine the learning experiences from the
learners’ point of view, we conducted in-depth
interviews with 13 students who participated in the
course. All interviews were conducted face-to-face and
each session lasted approximately 45–60 minutes.
Although these were semistructured interviews, we
developed planned questions to make sure to cover
important topics, such as (a) how they perceived the
overall learning experience, (b) what kind of learning
outcomes they achieved, (c) what features they liked
about the course, and (d) how the course can be
improved.

In addition to interviewers taking some notes
during the interview sessions, all conversations were
audio recorded for further analysis if permission was
granted by the participants. The interviews were
transcribed and analyzed using a general qualitative
analysis technique [28], borrowing techniques from
grounded theory [29,30]. This approach relies on
detailed readings of raw data to derive themes relevant
to the objectives. After skimming through the
transcribed texts, we determined the initial coding
schemes (i.e., core themes). We then carefully
examined the transcript to find data fitting each coding
scheme. Because the interview guide already had core
concepts and themes, we focused more on
disentangling the phenomena and relationships behind
the users’ experience with the capstone course. Once
we went through the first round of analysis, we
modified the coding schemes and repeated the process
again.

6.2. Results: how did the students perceive
their learning experience?

Although we did not systematically evaluate the
learning outcomes of students in a quantitative manner,
students reported their learning experiences, focusing
on the skills they learned. Overall, students perceived
that they acquired numerous technical and
implementation skills through the course. Creativity
and awareness of broad applicability of computing
were also mentioned.

6.2.1. Technical skills. Most students stated that
they acquired a lot of technical skills throughout the
course, mainly because they had little knowledge of
technical skills prior to class. Students mentioned that
they gained technical knowledge mostly from the
workshop, in which they had an opportunity to learn
about different IoT technologies. Then, by applying

Figure 7. UROTICTOC prototype

Page 7687

those technologies to their own project, they were able
to refine their knowledge.

Interestingly, even when students did not actively
participate in technical tasks, they still said that their
skills had improved simply because they became
familiar with the concepts and their emotional barrier
to learning had been lowered. Moreover, leaders
seemed to have learned a great deal of technical skills
by teaching and mentoring team members.

“I didn’t make huge progress, but in other
programming classes, I used to be scared when I saw
lines of code and couldn’t do anything. But this time I
think I’ve become more confident. You know, those
who are good at programming do a Google search
when they’re stuck. I was like, ‘Wow, how could he do
that?’ But now I think I can do that. Because I didn’t
take charge of technical stuff, I couldn’t develop my
skills that much, but I can do that at least.”

“The reason why I wasn’t scared? Maybe because
we used real devices and actually made something with
them. It was real, not imaginary or virtual. You could
touch it, and it felt so different. It’s like when you
calculate using fingers, not mentally. You can easily
see it, experiment it, and then it gets familiar.”

“At the workshop I learned how to code and it was
my first time. To be honest, I didn’t understand
everything, although I followed all the steps without
difficulty. Rather than understanding the basics first
and applying it, it was more like learning by doing.
Although I didn’t understand the full lines of code, I
learned what kind of modules are needed for this kind
of code.”

6.2.2. Implementation skills. One of the skills
most acquired in the course involved implementation,
which is the ability to combine various technologies
and turn them into a working product. Even though the
students’ knowledge was still limited and imperfect,
they mentioned that they at least got to know where to
start their research if they wanted to build something.
That is, even when they are not sure of how to connect
the dots, they might know what the dots represent and
start from there.

“My implementation skills were improved a lot. At
each decision point, we had lots of discussions and
refined our prototype over and over again. Now I can
imagine how to make something in my head. Now I
know where to start researching, at least.”

“I guess I learned that part. For example, we
decided what sensor to use after a group discussion—
what would be good to use, where we want to use a
specific sensor, etc. Although I don’t know every detail
of each sensor, I know what to study further if I need
something later.”

6.2.3. Creativity. Some may argue that students
may feel limited when they have to narrow down the
scope of their project in the pattern-matching stage. In
our study, however, it turned out that a CT-based
capstone course could possibly enhance learners’
perceived creativity level. For example, many students
commented that they practiced creativity throughout
this course, training themselves to be more creative.
They defined creativity as “changes in perspective”
rather than as “new and different,” the latter of which
is the classic definition of creativity.

“You may directly go to the solution using different
tools, but I kept thinking, ‘How can I make this
differently even if I take the long way?’ And I like that,
because that’s my definition of creativity—exploring
various ways to go from A to B. If there’s the only one
answer, there would be only one way. But this project
didn’t have any right or wrong answer, so I had to
practice my creativity all the time.”

“Well, you may think it’s limiting because you
actually have to make it and need to be practical. You
have limited resources. But I believe creativity is
creating the best outcome in a given situation, isn’t it?”

“Definitely I learned lots of creativity skills
because we made something out of nothing [laugh]. To
come up with ideas, I had to think in a different way all
the time and that was an eye-opening experience. Now,
in everyday life, I always observe things more
carefully. What are the problems? Why do they exist?
How can we improve that? I somehow got to know
how to think for creativity.”

6.2.4. Awareness of broad applicability of
computing. According to the Association for
Computing Machinery curriculum guidelines for
undergraduate computer science programs, computer
science graduates are expected to have awareness of
the broad applicability of computing [31]. That is,
students need to understand that computer applications
affect nearly every aspect of our lives and many
opportunities are available in computing. Students who
participated in the CT capstone course stated that they
began to truly understand that computing could be
applied everywhere by exploring the various
possibilities for a solution and also by observing the
work of other teams.

“To me, before this class, a device was just a device.
I’ve never thought about what kinds of things are
possible using a certain device. After I saw that all
types of different applications were made using the
same device, I realized how a simple technology can
make changes in my everyday life. In a word, my
perspective has changed.”

“Making is very, very different from listening or
seeing. Once you go through the making process and

Page 7688

understand the process, you get to know what is
possible. Your thinking, your perspective becomes
broader.”

“I’ve heard about the internet of things, Alphago,
but I’ve never thought about how those things are
relevant to my everyday life. Through this course, I
learned how technologies can be applied to our daily
lives and that was impressive. I would never have
realized that if I had heard about it through news
articles or lectures.”

6.3. Discussion: why does this approach work?

In addition to the students’ testimonials on their
learning experiences, the teams’ final work was
presented at an exhibition and received lots of attention
and positive feedback. In particular, people were
surprised by the fact that the prototypes were created
by nonengineering students.

Several factors facilitated successful
implementation of this course. The first is our
interdisciplinary approach that combined a business
model and CT. By encouraging students to think about
the problem and solution and its stakeholders before
creating a prototyping, the curriculum allowed students
to clearly identify each step to realize the solution,
thereby supporting the prototyping stage in turn. The
second is our learning-by-doing approach, in which
every team was forced to create a working prototype as
a final deliverable. Although nonengineering students
often worry about technical difficulties, the experience
of making some form of working prototype helped
students overcome that initial barrier and obtain the
greatest learning benefit out of the course. The third
ingredient for success is the pyramid team structure,
using a tutoring model. Without leaders’ help, it would
have been difficult for teams to complete the project
because one instructor likely could not have delivered
all the required knowledge, given that most students
did not have a basic technical background. By having
tutors receive pretraining and help the rest of team
members with technical implementation, the learning
outcomes were maximized, although the degree of
skills acquired might vary across individuals.

7. Conclusions

In this paper, we described the development of a
curriculum for a social innovation capstone course,
designed for undergraduate students of a liberal arts
college at a university in Korea. We combined a
business model and CT in this course to take a holistic
approach to problem-solving education. Using various
technologies including Raspberry Pi and Arduino,
students defined a social problem, came up with a

solution, built a business model, and implemented a
working prototype. Class project outcomes proved the
effectiveness of our approach and students positively
perceived the learning outcome of the course.

Our study had several limitations. First, we
observed only the specific case of a CT capstone
course with a relatively small number of students. Thus,
it might be hard to generalize the results of our study.
The course, although conducted in English, took place
in a particular cultural context that might have affected
our results. Possible future research includes a
carefully designed experimental approach that uses a
larger sample size with different variables, such as age,
gender, level of technical background, and quantified
learning outcomes. Moreover, it might be interesting to
see how different learning contexts, including team
formation, evaluation criteria, and resource
accessibility, affect learning experiences.

8. Acknowledgement

 This research was supported by Korea Institute for
Advancement of Technology(KIAT) grant funded by
the Korea Government (MOTIE)
(N0001436, The Competency Development Program
for Industry Specialist).

9. References

[1] Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying
computational thinking for non-computer scientists.
Unpublished manuscript in progress, referenced in
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWin
g.pdf.

[2] Perlis, A. J., & Thornton, C. (1960). Symbol
manipulation by threaded lists. Communications of the ACM,
3(4), 195-204.

[3] Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

[4] Wing, J. (2011). Research notebook: Computational
thinking—What and why? The Link Magazine, Spring.

[5] Wing, J. M. (2016). Computational thinking, 10 years
later. Microsoft Research Blog.
https://www.microsoft.com/en-
us/research/blog/computational-thinking-10-years-later.

[6] Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: What is involved and what
is the role of the computer science education community?
Acm Inroads, 2(1), 48-54.

Page 7689

[7] Grover, S., & Pea, R. (2013). Computational thinking in
K–12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

[8] Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., &
Korb, J. T. (2011, March). Introducing computational
thinking in education courses. In Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education
(pp. 465-470). ACM.

[9] Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., &
Hosking, A. L. (2009). A multidisciplinary approach towards
computational thinking for science majors. ACM SIGCSE
Bulletin, 41(1), 183-187.

[10] Shell, D. F., Hazley, M. P., Soh, L. K., Miller, L. D.,
Chiriacescu, V., & Ingraham, E. (2014, October). Improving
learning of computational thinking using computational
creativity exercises in a college CSI computer science course
for engineers. In Frontiers in Education Conference, 2014
IEEE (pp. 1-7). IEEE.

[11] Denning, P. J. (2017). Remaining trouble spots with
computational thinking. Communications of the ACM, 60(6),
33-39.

[12] Wing, J. (2014). Computational thinking benefits society.
40th Anniversary Blog of Social Issues in Computing, 2014.

[13] Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. Basic Books.

[14] Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 Annual
Meeting of the American Educational Research Association,
Vancouver, Canada (pp. 1-25).

[15] Computer Science Teachers Association. (2016).
Operational definition of computational thinking.

[16] Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S.,
Ng, T., Selby, C., & Woollard, J. (2015). Computational
thinking: A guide for teachers. Google Scholar.

[17] Computer Science Teachers Association. (2011).
Operational definition of computational thinking for k-12
education.

[18] Google. (2018). Exploring computational thinking.
https://edu.google.com.ph/resources/programs/exploring-
computational-thinking/

[19] Adams, J. B. (2008). Computational science as a twenty-
first century discipline in the liberal arts. Journal of
Computing Sciences in Colleges, 23(5), 15-23.

[20] Pulimood, S. M., Shaw, D., & Lounsberry, E. (2011,
March). Gumshoe: A model for undergraduate computational
journalism education. In Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education (pp.
529-534). ACM.

[21] Denning, P. J. (2017). Remaining trouble spots with
computational thinking. Communications of the ACM, 60(6),
33-39.

[22] Dorst, K., & Cross, N. (2001). Creativity in the design
process: Co-evolution of problem–solution. Design Studies,
22(5), 425-437.

[23] Williams, L., Kessler, R. R., Cunningham, W., &
Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), 19-25.

[24] Muis, K. R., Psaradellis, C., Chevrier, M., Di Leo, I., &
Lajoie, S. P. (2016). Learning by preparing to teach:
Fostering self-regulatory processes and achievement during
complex mathematics problem solving. Journal of
Educational Psychology, 108(4), 474-492.

[25] Bargh, J. A., & Schul, Y. (1980). On the cognitive
benefits of teaching. Journal of Educational Psychology,
72(5), 593.

[26] Hollingsworth, S. (1989). Prior beliefs and cognitive
change in learning to teach. American Educational Research
Journal, 26(2), 160-189.

[27] Osterwalder, A., & Pigneur, Y. (2010). Business model
generation: A handbook for visionaries, game changers, and
challengers. John Wiley & Sons.

[28] Thomas, D. R. (2006). A general inductive approach for
analyzing qualitative evaluation data. American Journal of
Evaluation, 27(2), 237-246.

[29] Charmaz, K., & Belgrave, L. (2012). Qualitative
interviewing and grounded theory analysis. In The SAGE
Handbook of Interview Research: The Complexity of the
Craft (Vol. 2, pp. 347-365).

[30] Strauss, A., & Corbin, J. (1998). Basics of Qualitative
Research Techniques. Sage.

[31] Association for Computing Machinery. (2018).
Curricula recommendations.
https://www.acm.org/education/curricula-recommendations

Page 7690

