
The Quest for a Practical Sophomore-Level Software Engineering Course

Roberto A. Flores
Department of Physics, Computer Science & Engineering

Christopher Newport University
roberto.flores@cnu.edu

Abstract

This paper describes our efforts starting since 2014

when we began developing a practical introductory
sophomore-level software engineering course. The aim
is to guide students into the fundamental theory and
practice of building reliable software, with an emphasis
on agile and object-oriented practices. Course topics
revolve around three main themes: 1) managing
complexity (how to model and scale software), 2)
achieving quality (how to minimize defects) and 3)
supporting usability (how to deliver user functionality).
Students are exposed to theoretical and practical
aspects of software production, such as software life-
cycle models, strong-typing, testing, documentation,
graphical user interfaces, UML, design patterns,
version control systems and software deployment. The
course is in constant evolution: near-future plans
include adding build automation tools and DevOps
concepts. We made the early decision to use reference
materials available to our students at no cost; therefore,
all reference materials are accessed online through
resources afforded by our library.

1. Introduction

Traditional software engineering textbooks (such as
Sommerville [1], Schach [2], Pressman [3] and Bruegge
and Dutoit [4]) have existed for years in senior level or
graduate student classes in computer science. These
books offer comprehensive and thorough studies along
with references to in-depth material. Their abstraction
and reach, however, makes their content difficult for
sophomore students who are starting their computer
science studies and who need understanding of basic
software engineering concepts in a practical setting.

Seeking a hands-on approach and relying on sources
that bear no-cost to our students, we began developing a
software engineering course to expose the practical
aspects of (mostly agile) software engineering without
neglecting theoretical concepts. We began offering this
course in 2014 as a required course in our computer
science curriculum. Its contents were inspired by our

experiences teaching a major elective course (cross
listed with our graduate program), which at the time was
our only course exposing software engineering to our
students (this course used Schach [2] and Bruegge and
Dutoit [4] as textbook references). Our quest should not
be misconstrued as quarreling against traditional
textbooks (thanks to their unparalleled wisdom we now
stand on the shoulders of giants) but as an empirical
attempt to bridge students’ passion for programming
(which attracted many of us to computer science in the
first place) with the broader study of software
engineering. Our hope is that exposing students to
techniques and practices readily relatable to their
programming expertise will entice them to pursue
deeper software engineering coursework.

The sophomore level course we designed is centered
around three themes: 1) managing complexity (how to
model and scale software), 2) achieving quality (how to
minimize defects) and 3) supporting usability (how to
deliver user functionality).

This paper is structured as follows: Section 2 gives a
glimpse into the background of students taking the
course and its place in our curriculum. Section 3
introduces the topics we cover in the course and how
they fit within the complexity/quality/usability themes;
and section 4 finishes the paper with conclusions and
outlook.

2. Students background and curriculum

The intended audience of the course is second-year
computer science majors, who typically have just ended
a two-semester introduction to programming sequence
(also known as CS1 and CS2). In these courses our
students become familiarized with object-oriented
programming in Java (using a procedural as opposed to
an objects-first approach). They have not yet taken (but
may take concurrently with software engineering) a data
structures course. In particular, our students have prior
knowledge on control statements (selection and iterative
statements), arrays and lists, string handling and
formatting, inheritance and polymorphism, exception
handling, text file I/O, and the basics of socket
programming, stacks, queues and linked lists.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60203
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7654

The software engineering course is placed right at
the point in which these programming concepts can be
finessed, and their place highlighted within a production
framework; and it provides a foundation for subsequent
senior-level courses on open source development,
design patterns, and mobile computing, which are part
of the electives our students can take as part of their
major requirements (other non-software engineering
elective courses available include robotics,
cryptography, databases and artificial intelligence). Due
to our academic mandate, we teach this course in small-
to-medium sized classes (usually 15 to 40 students per
section) in computer-equipped classrooms (where each
student/seat has a desktop computer). These settings
allows us to use a mixed lecture-practicum approach,
where we present theory in brief intervals combined
with hands-on in-class exercises when appropriate.

3. Course topics

Figure 1 shows a concept map with the topics we
cover in our introductory software engineering course.
Different concepts are depicted as clear squares, and
their practical components (if any) as black squares. For
example, the concept of strong typing (shown in the
lower right corner of the figure) uses enumerated and
generic types as its practical components.

Moreover, the figure suggests how these topics are
clustered across our three themes: from a bird’s-eye
view, complexity (#1) encompasses topics clustered on
the lower third of the figure; quality (#2) by topics on
the upper half; and usability (#3) by topics on the
middle-right. To further exemplify this clustering, we
can take the topic “Writing source code”–which
supports complexity (#1) and is located in the lower part
of the figure—can be handled by writing and reusing
(object-oriented) source code that relies on strong
typing, and tools to manage incremental versions, its
deployment and documentation.

We proceed to describe below each of the three
themes and their corresponding topics.

3.1. Supporting quality

Supporting quality deals with the issue of how to
build software while minimizing its defects. More
formally, Philip Crosby (as described in [5], p. 211, and
in [6]) defined quality as conformance to specifications
while preventing errors and having zero defects; or (in
colloquial terms), quality software does what it is
supposed to do (i.e., validation: finished product meets
users’ needs) and does it well (i.e., verification: the
software being developed complies with specifications).

Figure 1. Concept map of course topics, their relationship and their distribution across themes:

1) managing complexity, 2) supporting quality and 3) supporting usability.

Software
development

phases

used in

Software
development

methodologies

Requirements &
Analysis

Design Implementation

Testingwhich are

Deployment

Code coverage

supported by

Static analysis

Unit testing

relies on

Modeling
techniques

done by

Functional testing

coverage

findbugs

junit

gooey

ant jar

psp0

2

design patterns1 uml

Waterfall

Rapid Prototyping

Spiral

Agile

such
as

GUI

validates

Writing source code
java

Documentation
javadoc

1

Version Control
git

described stored

reuse

Libraries

Frameworks feature

Inversion
of controlsuch as

swing

released

used in
guided by

Use cases
crc

controlled

Strong Typing
enumeration generics

event
handling

3

1

Page 7655

In terms of the course, we begin by describing

prevailing software development phases (requirements
& analysis, design, implementation and testing) as they
are applied to sample software development
methodologies (waterfall, rapid prototyping, spiral and
agile) using [5] as main reference. It is worth
mentioning that throughout the course we use the
storyline “Today is your first day at an agile software
engineering firm and you’re asked to help with…” to
highlight the relevance of topics and entice students to
relate to course material. Following this line of thought,
we challenge students (for example) to think not only on
what program to write to satisfy user needs (functional
requirements) but also on other constraints that may
exist by use of computational media (non-functional
requirements).

It is not uncommon of students that have just taken
CS1/CS2 to see programming assignments mostly in
terms of implementation: they are rarely given room for
introspection in terms of development phases. This is a
natural perspective given that their experience (in prior
courses) was short programming assignments assessing
expertise in programming constructs and library use.

To raise awareness of development phases and the
actions students pursue when building software, we
introduce Watts Humphrey’s PSP0 [7] and provide a
programming assignment as context to fill PSP0 forms.
This is a multipronged exercise with two other goals in
mind: foremost to engrain the importance of debugging
and less so to reinforce practicing version control. On
the one hand, we build on expertise from our CS1/CS2
courses, which require source code submission using
GitLab [8] (we host our own servers to prevent public
access to student work) to also require it in this course.
On the other hand, we design this assignment to promote
the use of visual debugging (a valuable yet underused
tool) while minimizing the use of print out statements
(an often abused and limited debugging technique). To
this end, we provide students with JUnit tests that
capture console output (of both out and error streams)
and distribute them in an obfuscated JAR file (we use
ProGuard [9] to inhibit disassembling with tools such as
JD-GUI [10]). Although this arrangement is not
bulletproof (e.g., students can still collect test data
within tested classes and transcribe this data into a main
method for separate testing) it creates a high enough
burden that makes the alternative more appealing: using
(and for a few student learning to use) a visual debugger.
It is worth pointing out that this is the only assignment
that dwells with PSP0, since students report that these
forms tend to be tedious to handle when repeated in
multiple projects.

As a cornerstone supporting quality coding, we place
a particular emphasis on testing. The theoretical

fundamentals we present include test types (glass vs
black box testing), scope (e.g., unit, functional), purpose
(e.g., acceptance, performance) and approaches
(exhaustive, boundary, path analysis). Practical aspects
of testing include code coverage, static analysis, and
unit and functional testing, which we cover in
assignments using EclEmma [11], Findbugs [12] (as a
complement to Eclipse’s compile settings), JUnit [13]
and Gooey [14], respectively. As a side note, Gooey is
an experimental homegrown JUnit-based tool that we
developed to support functional testing of Java Swing
applications (Thornton, et al., [15] offers a wider
perspective on similar tools available to educators).

The second and third assignments in the course are
designed with the intent of exposing students to writing
comprehensive tests (alongside with a solution) to a
given problem. The second assignment deals with
object testing when abiding to equivalence relations on
equality and comparability (including reflexivity,
symmetry and, for the latter, transitivity). Together with
the assignment description, students receive obfuscated
instructor-made JUnit tests, which play the role of
acceptance tests. A subsequent third assignment (later
described in the section on supporting usability) deals
with writing graphical user interfaces and their
functional testing.

3.2. Managing complexity

Managing complexity deals with the issue of how to
model and scale software as it is being developed. We
divide this theme in two camps: analysis/design
techniques, and implementation techniques and tools.
3.2.1. Analysis techniques. Analysis techniques act as
a bridge to generate information conducive to an object-
oriented design. As such we cover class-responsibility-
collaboration (CRC) cards [16], which provide the
initial understanding of actors and their relationships in
the system, and use cases & user stories [17, 18], which
detail interactions among actors in the process to
achieve tangible results. This coverage is given within
the framework of agile methodologies, using [18] as the
basic reference. Modelling techniques are covered
initially through abstraction, modularity and
encapsulation concepts before introducing main UML
diagrams (i.e., class, interaction and state diagrams)
using [19] as reference. Subsequently, we cover a subset
of design patterns [20, 21] that includes singleton,
builder, abstract factory, command, decorator and
iterator. The fifth (and last) assignment in the course
revolves around an application implementing
commands and redo & undo functionality with stacks;
and depending on the topic it may contain an additional

Page 7656

design pattern, such as iterator (to parse content or
generate infinite data sequences) or builder (to assemble
an object at various stages).
3.2.2. Implementation techniques and tools.
Implementation techniques and tools have a dual
purpose: 1) to round up student programming expertise
by introducing strong-typing techniques in the form of
enumerated and generic types (which we cover beyond
the basics: in the case of enumerated types by involving
enumerated type fields; and in the case of generics by
covering generics in classes and methods, in addition to
inheritance wildcards); and 2) to present software
development as a social activity supported by an
integrated framework where documentation (to
communicate usage and purpose), version control (to
record incremental codebase evolution), and automated
deployment (using Ant [22] and JAR files) offer a
cohesive solution.

Out of the different topics we have chosen for the
course, these (implementation techniques and tools) are
the ones we are most eager to improve. We intend to
include, expand, or outright replace build tool coverage
(e.g., Gradle [23]), and continuous integration and
delivery tools (e.g., Jenkins [24]) and concepts (e.g.,
DevOps [25]). As of today, we are still learning and
planning which (and how) tools and practices can be
adapted best to a classroom environment.

3.3. Supporting usability

Supporting usability deals with the issue of how to
deliver user functionality. In its simplest form we
introduce usability when discussing prototyping as a
technique to address user interface design. We discuss
usability primarily by exposing students to graphical
user interfaces (GUI) programming, but we would like
to explore this topic more broadly. A few references we
might use to expand our understanding span from the
technology agnostic [26], to the humorous [27] and
pragmatic [28].

Our course uses Java Swing as the framework to
program GUI programs. We did not arrive at this choice
without controversy, since Swing does not fare well
against the flair of web interfaces and rich client
application frameworks. With the idea of remaining
within the Java realm (students taking this course have
a Java background) we explored JavaFX [29] as an
alternative; however, its learning curve is substantially
higher than with Swing and it can be dicey to teach to
students who are yet to be exposed to any sort of event-
driven and property-binding programming.

Our initial foray into this topic highlights the
difference between libraries—which students are
acquainted with (e.g., math, array list) and where user

code retains the thread of execution between method
calls—and frameworks—which use implicit invocation
(also known as inversion of control) and where events
are announced to those components registered for the
event [30, p. 9].

We then divide our GUI coverage in two parts:
structural (how to build a GUI using components,
containers and layout managers) and behavioral (how to
react to user actions using event-driven programming).
The former includes basic containers (frames, dialogs
and panels), components (buttons, labels, text fields,
combo boxes and menus) and layouts (flow, grid and
border). The latter introduces listeners (for components
and windows) and anonymous classes. This initial
coverage is supplemented with functional testing
(Gooey), after which students are given their third
assignment, in which they write a program and
functionally test it based on provided use cases.

GUI coverage continues with a more eclectic set of
functions (drawing shapes and fonts, displaying images,
playing sound files, using timers and handling keyboard
and mouse events) which build up to a fourth
assignment on programming a 2D-based video game.
As a side note: prior to releasing the assignment we ask
students for their preference on a game to implement:
out of the several game designs we have created in the
past—which include minesweeper, pong and (a socket-
based) battleship—students have strongly preferred
space invaders. As such, we developed a sample
program as guidance to students.

Figure 2. X-Wing program.

Figure 2 shows a snapshot of this sample program,
which is coded in the classroom. The figure shows a
window displaying a Star Wars X-Wing image, which
reacts to keyboard arrows to move laterally, vertically
and diagonally, and shoots (i.e., plays a shooting sound
and displays a white rectangle representing a) photon
torpedo when the space bar is pressed.

Page 7657

Figure 3. X-Wing UML class diagram.

Figure 3 shows the UML class diagram (drawn with

an online tool [31]) used in the implementation of the X-
Wing program. Execution of the program begins in the
class XWingFrame, which displays a frame containing
a panel that captures events from the keyboard (to
receive input from the user) and timer (to drive the
autonomy of the program) and holds a reference to an
X-Wing object that manages a fired missile object.
Figure 4 shows the UML class diagram of the space
invaders program (a snapshot of which is shown in
Figure 5). Comparing these diagrams helps students
identify similarities between the sample program they
wrote in class and the more complex program in the
assignment. For example, both programs have a frame
containing a panel with a timer; and both implement a
common parent class (Drawable) from where all

drawable (and movable) objects descend. However,
even though the number of classes in both diagrams do
not differ significantly (10 vs 16), the number of
displayable objects between both is substantially higher
(2 in X-Wing vs 57 in space invaders) and their
interaction is more complex: on the one hand, the X-
Wing program only requires tracking the missile while
it travels within the frame’s boundaries (at which point
it gets reset); on the other hand, the space invaders
program requires tracking missiles from both the base
and invaders (up to four simultaneously), identifying
intersects between missiles and targets (which signals a
hit), alternating invaders images, and randomly
generating the mystery ship and invader missiles,
among others.

Figure 4. Space Invaders UML class diagram.

Page 7658

This assignment has proven to be more complex than

any students have faced before, since it requires a
sustained effort and attention to detail (as a side note:
given its graphically-based nature, this assignment is the
only one for which automated test cases do not exist).

Figure 5. Space Invaders program.

3.4. Course schedule

We would be remiss if we were not to provide some
guidance on how we approach the course topics through
a time line; in this case under a 13-week period session
(i.e., a 14-week semester with one week for exams). As
such Table 1 presents the approximate weekly order
(solely based on our experience) in which topics are
covered.

Table 1. Course topics under a weekly schedule.

Weeks Theme Topic

1-3 Complexity

Software development phases,
PSP0, Software development
processes, Agile
methodologies (CRC, use
cases), Java Documentation
(Javadoc), Version control (git)

4-5 Quality

Testing principles (types,
scope, purpose, approaches),
Enumerated types, Generics,
Unit testing (JUnit), Coverage
(EclEmma), Static analysis
(FindBugs)

6-7 Usability

GUI components (Swing),
Event handling (anonymous
classes, component & window
listeners)

8-11 Quality Functional testing (Gooey)

Usability GUI drawing, Event handling
(mouse, keyboard, timer)

Complexity Software deployment (Ant)

12-13 Complexity UML diagrams, Design
patterns

4. Conclusions and future work

As famously remarked by Frederick Brooks in The
Mythical Man Month [32] (no software engineering
course worth its chops would omit at least a passing
mention of this classic book): there is no silver bullet.

In this paper we provide a glimpse on our empirical
attempts to design and build a pragmatic and engaging
sophomore-level introductory software engineering
course (skewed towards agile techniques). To this end,
we used three themes (namely managing complexity,
supporting quality and supporting usability) around
which we build our course topics. We concur that our
efforts can be improved in several ways not only by
keeping up with technological advances but also by
covering topics which we have neglected due to both
time constraints within a semester and the limits of our
own understanding and expertise. We pointed out some
of these deficiencies throughout the paper, such as the
need to improve coverage on build tools and continuous
integration. Also, there are other topics we do not
emphasize enough, such as working in teams (as a side
note, students can opt-in to work with partners in
assignments but most refrain citing conflicting
schedules) or outright miss, such as project planning.
Likewise, we have yet to do formal evaluation of the
course’s outcomes and mostly become aware of its
impact on student education through anecdotal evidence
from former students as they pursue summer internships
or join the workforce upon graduation.

Nevertheless, by writing our experience in this paper
we are aiming at engaging with the software engineering
academic community to learn from their experiences
and contribute (when possible) to identify pedagogical
practices to better serve our students.

As a parting thought, we point out that all references
used throughout the course (except for those we mention
in Section 1) are accessed online by our students at no
cost (an additional goal of our course design effort),
either openly on the web or through our university
library (using Safari books online [33]).

5. Acknowledgements

We are deeply grateful to the anonymous reviewers,
whose thoughtful comments greatly helped us improve
our paper. They made us aware of recent initiatives,

Page 7659

such as Software Engineering Methods and Theory
(SEMAT) [34], which work to identify and share best
practices with the software engineering community. We
are also very grateful to Lynn Lambert, Mohammad
Almalag and Ricardo Flores for their timely and helpful
feedback to improve this paper.

6. References

[1] I. Sommerville, Software Engineering, 9th edition, Pearson,
2010.

[2] S.R. Schach, Object-Oriented and Classical Software
Engineering, 8th edition, McGraw-Hill, 2011.

[3] R.S. Pressman, and B.R. Maxim, Software Engineering: A
Practitioner’s Approach, 8th edition, McGraw-Hill, 2014.

[4] B. Bruegge, and A.H. Dutoit, Object-Oriented Software
Engineering: Using UML, Patterns and Java, 3rd edition,
Prentice Hall, 2009.

[5] F. Tsui, O. Karam, and B. Bernal, Essentials of Software
Engineering, 4th edition, Jones & Bartlett Learning, 2017.

[6] P.B. Crosby, “Crosby’s 14 Steps to Improvement”, Quality
Progress, American Society for Quality, December 2005, pp.
60-64.

[7] W.S. Humphrey, PSP: A Self-Improvement Process for
Software Engineers, Addison-Wesley, 2005.

[8] GitLab. URL: http://gitlab.com

[9] Guardsquare, “ProGuard: The open source optimizer for
Java bytecode”. URL: https://guardsquare.com/en/products/
proguard

[10] JD-GUI, “Java Decompiler: Yet another fast Java
decompiler”. URL: http://jd.benow.ca

[11] EclEmma, “Java Code Coverage for Eclipse”. URL:
https://www.eclemma.org

[12] FindBugs, “FindBugs: Find Bugs in Java Programs”.
URL: http://findbugs.sourceforge.net

[13] JUnit. URL: https://junit.org/

[14] Gooey, “Lean JUnit testing library for Java Swing
applications.”. URL: https://github.com/robertoaflores/Gooey

[15] M. Thornton, S.H. Edwards, R.P. Tan, and M.A. Pérez-
Quiñones, “Supporting student-written tests of GUI
programs”, Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE), ACM
Press, Portland OR, 2008, pp. 537-541.

[16] K. Beck, and W. Cunningham, “A laboratory for teaching
object-oriented thinking”, Proceedings of the conference on

object-oriented programming systems, languages and
applications (OOPSLA), New Orleans LA, 1989, pp. 1-6.

[17] I. Jacobson, “Object-oriented development in an
industrial environment”, Proceedings of the conference on
object-oriented programming systems, languages and
applications (OOPSLA), Orlando FL, 1987, pp. 183-191.

[18] K. Beck, and C. Andres, Extreme Programming
Explained: Embracing Change, 2nd edition, Addison-Wesley,
2005.

[19] M. Fowler, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd edition, Addison-Wesley,
2003.

[20] E. Gamma, and R. Helm, and R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

[21] E. Freeman, and E. Robson, and B. Bates, and K. Sierra,
Head First Design Patterns, 3rd edition, O'Reilly Media, Inc.,
2004.

[22] S. Holzner, Ant: The Definitive Guide, 2nd edition,
O'Reilly Media, Inc., 2005.

[23] T. Berglund, and M. McCullough, Building and Testing
with Gradle, O'Reilly Media, Inc., 2011.

[24] B. Laster, Jenkins 2: Up and Running, O'Reilly Media,
Inc., 2018.

[25] J. Humble, and G. Kim, and N. Forsgren, Accelerate, IT
Revolution Press, 2018.

[26] W. Lidwell, and K. Holden, and J Butler, Universal
Principles of Design, Revised and Updated: 125 Ways to
Enhance Usability, Influence Perception, Increase Appeal,
Make Better Design Decisions, and Teach through Design,
Rockport Publishers, 2010.

[27] S. Krug, Don’t Make Me Think, Revisited: A Common-
Sense Approach to Web Usability, 3rd edition, New Riders,
2013.

[28] J. Rubin, and D. Chisnell, and J. Spool, Handbook of
Usability Testing: How to Plan, Design, and Conduct Effective
Tests, John Wiley & Sons, 2008.

[29] OpenJDK, “OpenJFX Project”. URL:
http://openjdk.java.net/projects/openjfx/

[30] D. Garlan, and M. Shaw, “An Introduction to Software
Architecture,” Advances in Software Engineering and
Knowledge Engineering, Volume I, V.Ambriola and
G.Tortora (editors), World Scientific Publishing Company,
New Jersey, 1993. URL: http://www.cs.cmu.edu/afs/cs/
project/able/ftp/intro_softarch/intro_softarch.pdf

[31] JGraph Ltd., “draw.io”. URL: https://draw.io

Page 7660

[32] F.P. Brooks, The Mythical Man-Month: Essays on
Software Engineering, Anniversary edition, Addison-Wesley
Professional, 1995.

[33] O’Reilly, “Safari”. URL: https://safaribooksonline.com

[34] Software Engineering Methods and Theory, “Welcome -
SEMAT”. URL: http://semat.org/

Page 7661

