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Electrical & Computer Engineering

Carnegie Mellon University
cecile.peraire@sv.cmu.edu

Abstract

Objective: We present a Teaching-as-Research
project that implements a new intervention in a flipped
software engineering course over two semesters. The
short-term objective of the intervention was to improve
students’ preparedness for live sessions. The long-term
objective was to improve their knowledge retention
evaluated in time-separated high-stakes assessments.
Intervention: The intervention involved adding weekly
low-stakes just-in-time assessments to course modules
to motivate students to review assigned instructional
materials in a timely manner. The assessments consisted
of, per course module, two preparatory quizzes
embedded within off-class instructional materials and
a non-embedded in-class quiz. Method: Embedded
assessments were deployed to two subgroups of students
in an alternating manner. In-class assessments were
deployed to all students. The impact of embedded
assessments on in-class assessments and on final exam
performance was measured. Results: Embedded
assessments improved students’ preparedness for live
sessions. The effect was statistically significant, but
variable. Embedded assessments did not impact
long-term knowledge retention assessed on final exam.
We have decided to keep the intervention and deploy it
to all students in the future.

1. Introduction

Foundations of Software Engineering (FSE) is
a graduate-level course [1] in Carnegie Mellon
University’s Master in Software Engineering program
offered on the Silicon Valley campus. The instructors
designed the course in 2014 as a gateway to the program,
and it has since been taught to 50-80 students each
semester. FSE has a flipped classroom format, a
technology-assisted pedagogical method that inverts the

∗ This work was facilitated by the Teaching as Research service,
provided by CMU’s Eberly Center for Teaching Excellence and
Educational Innovation.

traditional delivery of theory and application [2].
In a traditional classroom, theory is provided during

live plenary lectures. Students apply the theory
outside the classroom through take-home assignments.
In a flipped classroom, the locations are reversed.
Students self-learn the theory outside the class through
pre-recorded lectures and other supporting materials.
During in-class, or live, sessions, they apply the theory
through supervised activities. The advantages and
disadvantages of this increasingly popular format is
well-understood in both lower and higher educational
settings. Disadvantages in particular include difficulty
in sustaining student motivation to perform both
preparatory work before live sessions and reinforcing
work after them [3].

1.1. Motivation

Although over time we have evolved FSE to a
blended-flipped format [4] to address some of the
shortcomings of flipped classroom, the course has
essentially maintained its flipped character. Like
any flipped course, FSE relies heavily on off-class
instructional materials—videos and readings—that
students are required to review each week before
attending live sessions. During live sessions, we
normally perform a team activity applying the off-class
content, often complemented by a mini lecture to
improve preparedness. While the addition of mini
lectures has helped, student motivation has remained
a primary issue, as exemplified by this excerpt from
[1]: “In a flipped classroom, students must be strongly
and repeatedly encouraged to prepare for live sessions
by viewing the assigned videos and reading the
assigned materials, as well as ask clarification and
probing questions. We are still looking for effective
non-grade-based strategies for incentivizing students to
come to class better prepared.”

We aimed for “non-grade based” strategies because
the course already had many moving parts with
rigorously graded high-stakes components. Our student
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population exhibits strong grade-oriented behavior, and
in FSE especially, they have historically reported high
stress levels and higher-than-average work loads in
faculty course evaluations. Daniels et al. argue
that students can be motivated without complicated
grade-oriented or rubric-based assessments [5].

As an additional longer-term objective and for
lasting effects, it was also desirable for any new
teaching intervention to not only improve students’
preparedness in immediate course components, but also
their knowledge retention as measured by performance
on more rigorous, time-separated assessments.

1.2. Approach

To follow up, we sought guidance from the
university’s center for teaching excellence. Based on
that guidance, in the Fall 2017 offering, we decided
to introduce low-stakes, just-in-time assessments to
each course module. The assessments are low-stakes
in that they are quick, frequent, and formative in
nature [6]. Although students get a score from each
assessment, the score does not contribute to their final
grade. Instead, they receive participation points for
completing the assessments as an incentive. The
assessments are just-in-time in that they are either
attached to off-class instructional materials (embedded),
or performed in-class right before an activity that
applies theory and concepts conveyed in the most recent
off-class content.

To be able to simultaneously evaluate the
effectiveness of this teaching intervention while
introducing it, we did not deploy it all at once,
but instead we took an experimental approach and
formulated the initiative as a Teaching-as-Research
(TAR) project [7]. The Center for the Integration of
Research, Teaching and Learning defines TAR [8]
as “the deliberate, systematic, and reflective use of
research methods to develop and implement teaching
practices that advance the learning experiences and
outcomes of students and teachers.”

This paper thus presents a TAR project for
introducing a new teaching intervention to a flipped
course, FSE, with the main goal of motivating students
to optimally prepare. The paper explains the design,
implementation, and outcomes of the project, focusing
on how we introduced, measured, and evaluated the
intervention to make an informed permanent decision.
The TAR project ran from September 2017 to May 2018
over two offerings of FSE.

2. Related Work

Several studies have examined the benefits of flipped
classroom in higher STEM and computer science
education, and reported that the format had a positive
impact on student outcomes and syllabus design [9, 10,
11].

However flipped instruction is not without
challenges, which include high initial cost for
instructors, poor reception by students, and weak
student motivation [12]. A failure case is recounted by
Towey [13], in which the instructor had great difficulty
motivating students to be active in the classroom, noting
also the role of insufficient preparation as a hindrance.

Köppe et al. presents several flipped classroom
patterns [14] to increase the odds of success. Chief
among them is the importance of timely preparation
to avoid lagging students from sabotaging their peers’
learning. They recommend controlling the pace of
the students through explicit planning and concrete
preparation activities. Giannakos et al.’s [12] lists
low-stakes quizzes outside and inside the classroom
among successfully employed strategies. Horton et
al. [11] emphasize the effectiveness of low-stakes prep
exercises with a “small-grade reward” leading to higher
participation.

Enfield [15] successfully employed low-stakes
quizzes, both in-class and off-class, to motivate students
to do the prep work and encourage them to keep
up with the course’s pace. The in-class quizzes
were created from a subset of prep quiz questions to
encourage students to review the assigned instructional
materials. Students then conducted an in-class activity
that pertained to the quiz’s topic. His approach is very
similar to our intervention. A marked reduction in
engagement and attendance was noticed after the prep
quizzes ceased. Over 80% of the students stated that
they were more likely to watch the videos because there
were quizzes. Gehringer et al. [16] also used both
prep and in-classes quizzes as an incentive with positive
results. They report that pre-quizzes forced students to
keep up with the material and the students who took the
pre-quizzes performed better. Carvalho and Machado
[17] reported that in-class quizzes motivated the students
to prepare and improved class attendance.

The use of low-stakes embedded assessment, such
as quizzes embedded to videos, are common in flipped
courses and have been reported to improve interactivity
and engagement outside the class and incentivize
students to review the instructional materials. Examples
are provided by Cummins et al. [18] and Campblell et
al. [19]. The latter authors report that in their flipped
course far more students completed the prep quizzes

Page 7633



Figure 1. Iteration structure before and after introducing low-stakes assessments.

than attended class. This observation suggests that prep
quizzes are not enough, and in-class quizzes would add
value by increasing attendance.

Iwasaki’s survey on flipped instruction [20]
conducted with the faculty supports use of both prep
and in-class assessment. The tendency of the faculty
was to augment off-class materials with quizzes or
follow-up with in-class quizzes. Only 27% used only
lecture videos without any assessment.

We haven’t encountered any work that reports
employing a preparatory pre-assessment in addition to a
post-assessment with off-class instructional materials to
evaluate students’ existing knowledge of a topic before
the materials are reviewed. In our intervention, we
included such an assessment as an integral part of the
students’ prep work, to benchmark their knowledge,
promote self-awareness, increase feedback, and evaluate
their improvement with instructional materials.

3. Pre-intervention course structure

FSE is a breadth course spread over 14 weeks,
with twice weekly 110-minute live sessions. It is
designed to require on average 12 weekly hours of
student effort, including preparation for live sessions,
contact hours, team project components, and various
assessments. Course modules align with project
iterations, each of which emphasizes a distinct software
engineering discipline, starting with Teamwork &
Technology (Iteration 0), during which students also
receive collaboration training, followed by Architecture
& Design (Iteration 1), Construction (Iteration 2),
Testing & Quality (Iteration 3), Requirements (Iteration
4), and Integration, Packaging & Presentation (Iteration
5).

Each iteration typically contains one to three theory

modules and lasts two weeks. It is structured with
the following components: (1) brief presentation of
iteration objectives; (2) concept-based live sessions
where students learn by applying the underlying
theory necessary to reach an iterations goal; and
(3) project-based live sessions where students reflect
on their teamwork or demonstrate their results.
Figure 1 shows this structure. Before the new
intervention, bold components were missing and
struck-through components were present. Live sessions
had kicked off with an informal discussion driven
by ungraded, anonymous online polls to gate-check
students’ knowledge and address questions and potential
misunderstandings of off-class content.

In both the old and new structure, an iteration
starts with a brief introduction by the instructor,
explaining the iterations theme, requirements, practices,
and deliverables. Live sessions are typically dedicated to
a team activity related to iteration objectives. Students
prepare for live session by watching the assigned video
lectures and reviewing other supporting resources on
Canvas, the Learning Management System (LMS) used
by the university. Video lectures cover modules that
last 10-25 minutes. Mini lectures or short tech talks are
occasionally added to live sessions to illustrate concrete
applications of theory using code examples or pertinent
technologies or tools.

4. Post-intervention course structure

The first change to the course was the embedding
of short, online quizzes with each weekly module.
Students take these quizzes on their own outside
the class immediately before and immediately after
reviewing the instructional content of a module. We
call these paired assessments the pre-prep quiz and the
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post-prep quiz, respectively (or collectively, embedded
assessments). The quizzes typically contain 5-12
automatically-scored questions that assess the same
knowledge items right before (“how much do I know?”)
and right after (“how much have I learned?”) the
student’s self-study of the instructional content. They
are untimed, and students can complete them at their
own pace in multiple attempts.

The second change was the replacement of the
informal discussion and polls that had typically started
a live session with a more formal online assessment,
called the in-class Q&A. The in-class Q&A involves
a deeper assessment compared to the embedded ones.
It also consists of 5-12 automatically-scored questions
and covers the same knowledge area as the preceding
embedded assessments, but using a different set of more
complex questions. The in-class Q&A grounds the live
session activity that follows it. It is timed and lasts
up to 12 minutes. Solutions are discussed immediately
afterwards in a plenary Question-and-Answer period
(hence the name).

All three kinds of assessments are administered
on Canvas, the LMS that hosts all course materials.
Students receive immediate feedback after an attempt.
The assessments are mandatory: students who skip them
lose participation points, although they are not penalized
for incorrect answers.

Table 1 illustrates the distribution of course modules
within the two-week iteration structure. For each
module, it gives the type and number of off-class
instructional materials as well as the number of
low-stakes assessment sets, where each set is a triplet
consisting of a pre-prep quiz, a post-prep quiz, and an
in-class Q&A.

5. Research questions and hypotheses

Executing a TAR project involves both “creating
objectives for student learning” and “developing
hypotheses for practices to achieve the learning
objectives.” [8]. Below we convert our objectives
to research questions and provide the corresponding
hypotheses to be tested. We only declare the alternative
hypotheses and omit the underlying null hypotheses. In
each case, the null hypothesis implicitly stipulates equal
performance between the groups tested.

Our first objective is to ascertain that embedded
assessments make sense relative to the off-class
instructional content that they assess. We expect
instructional materials to give students fresh concepts
and theory and embedded assessments to reveal this
effect. If not, there is a problem with either the
materials, assessments, or alignment between them.

This expectation leads to the first research question and
corresponding hypothesis.

RQ1: Do embedded assessments show that students
learn new theory and concepts after reviewing the
associated instructional content?

H1: Students’ post-prep quiz scores on average will
be higher than their pre-prep quiz scores.

Answering RQ1 affirmatively is a pre-requisite for
our two-part grand objective: to incentivize students
to better absorb theory and concepts with timely
preparation. This objective in turn leads to our top-level
research question that is the project’s primary driver:

RQ2: How does receiving an embedded assessment
before and after reviewing instructional content impact
students’ uptake of theory and concepts targeted in that
content in the short term and in the long term?

We break down RQ2 into two hypotheses to address
short- and long-term implications separately.

Our most central interest with the teaching
intervention was to push students to better prepare
for live sessions. If students are ill-prepared, they
forgo the benefits of in-class activities, which are a
central part of flipped instruction. If live sessions
fail, the whole purpose of flipped classroom is
ultimately defeated. Moreover, since class activities
are team-based, ill-prepared students also hamper their
teammates’ learning. The first hypothesis captures this
pivotal, immediate implication:

H2.1: Students who receive the pre- and post-prep
quizzes before and after reviewing instructional content
will score higher on a following in-class Q&A on the
same topic compared to students who do not receive the
pre- and post-quizzes.

Since the in-class Q&A evaluates theory and
concepts required in the subsequent class activity, we
assume a better Q&A score correlates with better
preparedness for the live session.

The second set of hypotheses concerns a somewhat
less urgent matter: longer-term retention of theory
and concepts. Are the benefits of timely preparation
persistent, as measured by students’ performance on a
distant high-stakes assessment? If they are, then the
following should hold:

H2.2: On the final exam, students will perform better
on questions based on topics for which they had received
prep quizzes, compared to questions based on topics for
which they had not received prep quizzes.

6. Study design

To answer RQ1, we simply compared (1) the average
gain from pre-prep to post-prep quiz scores for each
student, aggregating over all modules, and (2) on a
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Table 1. Distribution of low-stakes assessment sets to course modules within the two-week iteration structure.

Iteration Week # Module #Videos #Readings
# Low-Stakes
Assessment Sets

N/A 1 M1-Software Engineering Methods 2 0 1

0 2 M2-Agile and Lean 2 0 1
M3-Planning & Estimation 2 1 1

3 M4-Object Technology & UML 1 1 1

1

4 M5-Object-Oriented Analysis & Design 2 1 1

5
M6-Design Patterns 2 1 1
M7.1-Architecture 1 1 1M7.2-Object-Orientation in JavaScript 0 2

2 6 M8-Technical Practices 2 2 1
7 M9-Testing 2 1 1

3 8 M10-Technical Debt 0 1 1
9 M11-Achieving High Quality 2 0 1

4 10 M12-Requirements 1 1 1
11 M13-Quality Attributes 1 1 1

5 12-14 Integration, Final Presentations, Exam 0 0 0
Total 20 13 13

module-by-module basis aggregating over all students.
To answer RQ2, we deployed the embedded

assessments using a single-factor, multi-object,
repeated-measures design [21, 22]. We divided the
cohort of a course offering to two fixed, groups based
on students’ course section. At the beginning of the
semester, we randomly designated one group as the
treatment (T) and the other group as the control (C).
The T group received the intervention, the pair of
embedded assessments, corresponding to the module
covered in that week, and the C group did not. The
groups were then switched in alternating weeks. During
the first week, all students received the intervention
to get used to it. After the first week, each student
received the intervention in every other week only, six
times out of a total of the remaining 12 opportunities.
As an exception, week 5 had two sets of embedded
assessments, which we also deployed in an alternating
manner.

Unlike embedded assessments, we deployed in-class
Q&As to all students at once as a common post-test to
evaluate the short-term effectiveness of the embedded
assessments (H2.1). To do this, we compared the
average in-class Q&A performance of each student
with and without prior embedded assessments by using
group assignment (T or C) as an independent variable
and in-class Q&A score as a dependent variable. We
evaluated long-term effectiveness (H2.2) using final
exam scores in the same manner. We sectioned the
exam questions depending on their originating module
so that a student’s average score for questions for which
the student had received a prior embedded assessment

could be compared to the same student’s average score
for questions for which the student had not received a
prior embedded assessment.

6.1. Differences between course offerings

The course’s Fall 2017 (F17) offering had a total
of 53 students divided into two sections of 26 and 27
students and the Spring 2018 (S18) offering had 61
students divided, again, into two sections of 28 and 33
students. The same instructors taught all four sections.

There were no demographic differences between the
two sections of the F17 offering: all students were
incoming Master’s level students, and both sections
were local. No particular patterns were present
with respect to differences in gender, skill level, past
academic performance, and ethnicity. However, there
were notable demographic differences between the
sections of the S18 offering with respect to academic
background, ethnicity, and skill level: one section was
remote and involved two different remote locations
while the other section was local.

We effected two changes from F17 to S18. First, we
incorporated better feedback mechanisms to post-prep
quizzes so that, after completing a quiz, a student could
not only see the wrong answers, but also the correct
answers. This had not been available in F17. Second, we
incorporated additional low-cognitive-level questions,
called rapid fire questions, to the final exam resembling
the questions used in the low-stakes assessments. We
did this in the hopes of pinpointing whether time
separation or question complexity dominated, or erased,
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long-term effects.

6.2. IRB protocols and ethical considerations

Since the new teaching intervention was an integral
part of normal course work, the TAR project relied on
data sources that were readily available. We guaranteed
anonymity and confidentiality, and students only needed
to consent to their data being used in the analysis. All
students received instruction of equal value: no student
was disadvantaged by being assigned to a treatment or
control group more times than any other student. These
characteristics allowed us to use an exempt IRB protocol
applied to low-risk human studies in an educational
context.

7. Results

We first comment on drop-out rates and relate it
to incentivization. Then we test the stated hypotheses
and answer the underlying research questions. In each
case, the independent variable is group affiliation (T
or C), indicating whether a subject has participated in
the teaching intervention, and the dependent variable
is the subject’s average performance in a follow-up
assessment (post-prep quiz, in-class Q&A, or final
exam).

Sample sizes were large enough (>= 50) in
all cases. Therefore we did not have to worry
about normality. To test the underlying null
hypotheses, we used a paired-samples t-test to match the
straightforward two-factor, repeated-measures design.
To remain conservative, all tests were two-tailed
regardless of the direction of the alternative hypotheses,
with an alpha level of 0.01. Cohen’s d measured effect
size for paired samples [23].

Mortality was low in all instances (see Table 2), and
reduced the sample size only slightly in some analyses.
Overall, participation was high, and reported levels
suggest low-stakes incentivization worked as expected.

7.1. Pre-quiz to post-quiz gain

Embedded assessments were available for 12 of
13 course modules. Overall all students who took
these assessments improved significantly from the
pre-prep to the post-prep quiz. Table 3 shows average
scores, standard deviations, and t-test results separately
for both cohorts. The results were significant and
consistent across the cohorts and sections within them,
allowing us to reject the null underlying hypothesis
and support H1. For each cohort, the difference
between mean gains for the two sections were small
and statistically insignificant, suggesting the sections

had similar characteristics. Therefore, the data from
both sections could be pooled within each cohort.
The effect sizes were large in each case, being above
one standard deviation. The averages for pre-prep
quiz scores were over 50%; hence students had some
prior familiarity with the topics covered. The relative
percentage improvement from pre- to post-prep scores
in F17 and S18 were on average 33% and 22%,
respectively—evidence that instructional materials also
contained new information.

Module-by-module comparisons are charted in
Figures 2 and 3. Learning gains from pre- to
post-prep quizzes were not uniform across all modules.
Students did not improve markedly on five out of 12
modules analyzed in one cohort, and two of these
topics—Architecture & Object Orientation in JS and
Testing—were problematic in both cohorts. Thus
these modules and their associated assessments deserve
further investigation.

RQ1: Embedded assessments reveal that, overall,
students learn new theory and concepts after reviewing
assigned instructional content.

7.2. Performance on in-class Q&As

We compared the average in-class Q&A scores of
students who completed both pre- and post-prep quizzes
(treatment group T) to those of students who did not
receive the prep quizzes at all (control group C). The
results are shown in Table 4. The relative percentage
improvement with embedded assessments in F17 was
6%, and in S18, it was 16%. The effect size was
small-medium (slightly above one-third of a standard
deviation) in F17, but quite large in S18 (over 1.5 times a
standard deviation). Both results were significant. Thus
we reject the underlying null hypothesis, and supportive
of H2.1. Speculatively, the much larger effect in S18
could be due to the improved feedback mechanism
added in S18 to post-prep quizzes.

Module-by-module analysis is shown in Figures 4
and 5. Again, the improvements were non-uniform
across cohorts and modules within each cohort. Some
modules (Planning & Estimation, Object Technology
& UML, Architecture & Object Orientation in JS,
Technical Practices, and Requirements) registered
an improvement in one cohort, but not the other.
Object-Oriented Analysis & Design (OOAD) curiously
exhibited a noticeable reverse effect in F17, although
it registered an improvement in S18. OOAD was one
of the most abstract and difficult topics in the syllabus,
and unlike other modules, the majority of the questions
on its in-class Q&A addressed content that the prep
quizzes did not specifically target or targeted in a more
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Table 2. Participation and mortality in terms of percentage of students who missed a certain number of
assessments of a given type for each semester.

Sem.
Missed Embedded Assessments

(out of 24 assessments)
Missed In-class Q&As
(out of 13 assessments)

None 1-4 > 4 > 9 None 1-3 > 3 > 6

F17 48% 46% 6% 0% 46% 52% 2% 0%
S18 39% 52% 11% 0% 51% 48% 2% 0%

Figure 2. Module-by-module comparison of pre- to post-prep quiz performance for F17 cohort.

Table 3. Pre-quiz to post-quiz gain.

Semester Timing (N) Avg. (Std. Dev.)

F17
Pre (52) 53.45% (8.97%)
Post (52) 70.65% (9.08%)
t = 10.99; p < 0.001; d = 1.22

S18
Pre (58) 51.61% (10.23%)
Post (58) 65.18% (12.70%)
t = 9.32; p < 0.001; d = 1.16

superficial way. The observed reversal effect in F17
could be spurious. However, to be sure, we will
revisit instructional materials and assessment questions
for all problematic modules, upgrading their embedded
assessment questions when warranted.

RQ2 (short-term): Receiving low-stakes embedded
assessments impacts students’ learning in the
short-term, but the impact’s magnitude vary from
cohort to cohort and module to module.

Table 4. In-class Q&A performance of control (C)
and treatment (T) groups.

Semester Group (N) Avg. (Std. Dev.)

F17
T (50) 64.6% (9.54%)
C (50) 61.2% (9.95%)
t = 3.13; p = 0.003; d = 0.37

S18
T (58) 61.07% (12.41%)
C (58) 51.05% (11.09%)
t = 6.95; p < 0.001; d = 1.58

7.3. Final exam performance

For the final exam effects, we mapped each exam
question to the module of the related content. We
then tagged each student’s score on that question with
a code depending on whether or not the student was
in the control group C or the treatment group T for
that question. Computation and comparison of average
scores for C-coded questions and T-coded questions
followed next.

In F17, the final exam included 24 mixed-format
questions that included both manually-graded and
automatically-graded ones. For S18, we also added
13 automatically-graded rapid-fire questions—one for
each module—for a total of 46 questions. Final
exam questions of the two cohorts did not overlap.
We classified the rapid-fire questions as low-cognitive
(knowledge and comprehension in Bloom’s taxonomy
[24]), while the remaining questions targeted higher
cognitive levels (application, analysis, and synthesis in
Bloom’s taxonomy).

The results are given in Table 5. The differences
were not significant for either cohort: we cannot reject
the underlying null hypothesis. For S18, we also
analyzed the rapid-fire questions separately, but did
not observe a different behavior. Thus embedded
assessments did not have any discernible effect on
students’ final exam performance regardless of question
complexity. Hypothesis H2.2 was therefore not
supported.

RQ2 (long-term): Receiving a low-stakes embedded
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Figure 3. Module-by-module comparison of pre- to post-prep quiz performance for S18 cohort.

Figure 4. Module-by-module comparison of in-class Q&A performance for F17 cohort.

assessments does not impact students’ learning in the
long-term.

That all students performed in-class Q&As
following embedded assessments might have masked
embedded assessments’ impact in the long run.
This phenomenon could have further been amplified
by students’ continued application—throughout
the course, during in-class activities and course
project—of the concepts and theory targeted in
embedded assessments from the time they performed
the embedded assessments to the time they took the
final exam. Because of significant time separation,
students had ample opportunity to learn, with or without
embedded assessments, until the final exam. At this
point, we do not have a further theory to modify our
hypotheses regarding this point, and accept this lack of
long-term effect.

8. Limitations

Internal and conclusions validity. The study groups
for embedded assessments were naturally formed based
on course sections. Thus the formation of the groups
was not random. Demographic differences between
groups were notable in the S18 cohort. However the
repeated-measures, within-subjects design overcame the
potentially confounding effect of any such differences

Table 5. Final exam performance of control (C) and
treatment (T) groups.

Semester Group (N) Avg. (Std. Dev.)

F17
T (52) 58.84% (16.57%)
C (52) 59.24% (15.06%)

t = 0.142; p = .88 (n.s.)

S18
(Overall)

T (58) 67.48% (16.12%)
C (58) 63.64% (15.51%)

t = 1.65; p = 0.104 (n.s.)

S18
(Rapid Fire)

T (58) 80.76 % (19.23%)
C (58) 78.09 % (17.24%)

t = .939; p = 0.352 (n.s.)

by comparing a student’s performance under the control
condition to the same student’s performance under
the treatment condition. Thus the analysis used only
paired-sample tests. Since the repeated measures
used different objects (course modules), the resulting
multi-object design potentially introduced a different
kind of bias related to object complexity. Testing each
student on several objects of varying complexity, six
modules for each study condition for a total of 12
objects, alleviated this threat. Averaging-out affects
should kick in with this degree of object diversity, with
each student receiving the intervention for a mix of
topics ranging from easy to difficult. The differences in
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Figure 5. Module-by-module comparison of in-class Q&A performance for S18 cohort.

module-by-module results were not great or pervasive
enough to warrant concern, and possibly represent
natural variation due to object differences. Mortality
was low in all instances and did not pose a threat.

External validity. While our study was
conducted with a specific population (masters-level
computer-science students at a highly selective
university), our results suggest that embedded
assessments have the potential to improve student
preparedness for face-to-face sessions. These findings
need to be replicated in other flipped format courses
and across different institutions and settings, to test for
generalizability.

Construct validity. Our dependent constructs
were “immediate preparedness for live sessions” and
“long-term retention of theory and concepts.” Proxies,
namely the in-class Q&A performance in the former
case and final exam performance in the latter case,
measured both. The proxies are objective, but,
imperfectly capture the underlying constructs. The
low-stakes assessments sampled only a small proportion
of the knowledge covered in each module, so could not
be considered comprehensive. On the other hand, there
were a total of 12 sets, again constituting a sufficiently
diverse sample. It was not feasible to increase coverage
by using more questions due to workload concerns and
other practical reasons: the assessments were not simply
artifacts of a laboratory experiment, but an integral
part of a real course as per the TAR approach. The
possibility of students taking the embedded assessments
in an unintended order poses a process conformance
threat. However, since the assessments were low-stakes,
the students would not gain anything by such behavior,
which Canvas access logs confirmed.

9. Conclusions and future actions

The weekly embedded assessments in general
aligned well with instructional materials and showed
improvement in students’ knowledge of course topics

with high significance and large effect size. However
the effect varied from module to module, with half of
the modules falling short of expectations in at least one
cohort. Incidentally, these are the modules with which
the students historically have struggled most.

The embedded assessments overall improved
students’ preparedness for live sessions. The
improvement was consistent and statistically significant
in both cohorts, although the effect size varied greatly
from one cohort to the other. The improvement was
absent in five out of 12 modules in one cohort, but not
the other, and one module registered a reverse effect in
one cohort, warranting further investigation.

Action: Review all modules—including associated
instructional materials and low-stakes assessments—(a)
for which embedded assessments showed little
improvement in student learning or (b) in which
embedded assessments made little or no difference in
class preparedness. During their review, make sure
the instructional materials and assessments are well
aligned and the assessments target the right knowledge
elements. Give priority to modules that failed to meet
expectations for both cohorts and in both dimensions
(a) and (b).

While we met our short-term objective reasonably
well, time separation appeared to erase any immediate
positive impact of embedded assessments. In final
exam scores, we could not observe any significant
improvements attributable to embedded assessments.
Thus we could not meet our long-term objective. The
lack of impact on final exam scores can be explained by
(a) the exam’s high-stakes nature, forcing the students
to study more; and (b) the shadowing effect of students’
advancement over time through various other course
components that reinforced the theory and concepts
imparted in off-class content.

Separately, a significant majority of the students
found the low-stakes assessments helpful in an
independent course workload study, which anecdotally
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supports their added value from the students’
perspective. Given that the assessments are naturally
incorporated to the course, their impact on student work
load is marginal, and their grading is automatic, full
deployment makes sense.

Action: Fully deploy low-stakes just-in-time
assessments in course’s future offerings.

This paper demonstrated the application of a TAR
project to improve a flipped, software engineering
course using alternating, partial introduction of a
new teaching intervention and measuring the effects.
Educators can apply the approach and design in a variety
of software engineering and other STEM courses.
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