
Methodological Aspects of Software Engineering,
Assurance, Quality, and Reliability Engineering (MAS/AQR) 2019

Welcome from the Minitrack Co-Chairs

Bastian Tenbergen
Department of Computer Science

State University of New York at Oswego, USA
bastian.tenbergen@oswego.edu

Benoît Ries
University of Luxembourg, Esch-sur-Alzette,

Luxembourg
benoit.ries@uni.lu

1. Description of the Minitrack

It is increasingly often the case that in contemporary
products, innovation and value-added benefit is
achieved due to software features, rather than novel
ways to implement hardware. For example, while years
ago, engine throttle in a car was achieved by a physical
cord running from the gas pedal to the engine, in
contemporary automobiles, throttle is achieved
digitally, by reading the gas pedal position and
transmitting it to a control unit. The significance of
software is increasing, not only with regard to modern
products, but also with regard to the skills and required
knowledge of software engineers. Software engineers
must be concerned with more than just DevOps. They
must also be concerned with the related disciplines (e.g.,
electrical engineering), product quality, system
reliability, and safety. Moreover, software engineers
must be able to successfully communicate their
findings, work products, engineering choices, and
produce suitable assurance documents.

Instructing the knowledge and skills necessary to
successfully do so requires carefully designed
instructional methods, novel approaches, as well as
established best practices. This is the aim of the
MAS/AQR 2019 minitrack. We sought thought-
provoking and highly constructive discussions among a
broad audience and presenters to jointly identify
promising educational approaches, explore challenges,
share experiences, ideas, and new impulses regarding
methodological aspects of software engineering. In
particular, we placed emphasis on Software Assurance
(e.g., safety, security, or privacy assurance), Software
Quality (e.g., user testing, formal verification, and code
refactoring), as well as Reliability Engineering. This
minitrack therefore shall serve as a platform to facilitate
collaboration between researchers and educators, both
in industry as well as in academia.

2. Program Committee and Review Process

Each paper submitted to the MAS/AQR underwent
thorough review, by at least four experts in the field. To
ensure comparable high-quality reviews each paper has
been reviewed by experts from conceptual modeling as
well as experts in the field of software engineering
education. Furthermore, each paper was reviewed in a
double-blind fashion, strictly controlling for conflicts of
interest (see Principle 1.3 in https://www.acm.org/code-
of-ethics). The following individuals served as the
program committee:

Mark Ardis
Dan Bagert Benedictine College (USA)
Fabio Binder

Pontifícia Univ. Católica do Paraná (Brazil)
Jennifer Brings

Univ. of Duisburg-Essen (Germany)
Christopher Bull Brown Univ. (USA)
Y C Cheng Taipei Tech (Taiwan)
Steve Chenoweth

Rose-Hulman Institute of Tech (USA)
Tayana Conte

Univ. Federal do Amazonas (Brazil)
Marian Daun

Univ. of Duisburg-Essen (Germany)
Supannika Koolmanojwong

Univ. of Southern California (USA)
Dieter Landes HS Coburg (Germany)
Patrick Letouze

Univ. Federal do Tocantins (Brazil)
Yihao Li Univ. of Texas at Dallas (USA)
Maíra Marques Univ. de Chile
Nancy Mead Carnegie Mellon Univ. (USA)
Jürgen Mottok OTH Regensburg (Germany)
Rory O'Connor Dublin City Univ. (Ireland)
Mark Paulk Univ. of Texas at Dallas (USA)

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

Page 7612

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Y. Raghu Reddy IIIT Hyderabad (India)
Benoît Ries

Univ. of Luxembourg (Luxembourg)
Daniel Schlegel

State Univ. of New York at Oswego (USA)
Marcelo Schots

Rio de Janeiro State Univ. (Brazil)
Yvonne Sedelmaier HS Coburg (Germany)
Mauricio Souza

Federal Univ. of Minas Gerais (Brazil)
Bastian Tenbergen

State Univ. of New York at Oswego (USA)
Naoyasu Ubayashi Kyushu University (Japan)
Norha M. Villegas Univ. ICESI (Colombia)
Charles Wallace Michigan Tech Univ. (USA)
Daniela Zehetmeier FH München (Germany)

3. Minitrack Program

This year, Methodological Aspects of Software
Engineering, Assurance, Quality, and Reliability
Engineering (MAS/AQR) emerged from joining two
minitracks co-located at the 52nd Hawaii International
Conference on System Sciences 2019 (HICSS-52) as
part of the Invited Track “Software Engineering
Education and Training.” This track has a long,
successful history as a standalone conference known as
CSEE&T and took place for the first time as part of the
HICSS conference. From more than 50 contributions
submitted to all Software Engineering Education and
Training minitracks, five submissions were accepted to
MAS/AQR.

In [1], Roberto Flores describes the design of and
experiences with a software engineering fundamentals
course for 2nd year baccalaureate level students. In
particular, the course design emphasized UML patterns
as well as usability concerns and overall project quality.
It is particularly interesting that the author made a strong
and conscientious choice to provide open educational
resources in their course design, which invites others to
adopt the course design and share their findings.

In [2], Petri Inhatola and Andrew Petersen
investigate more than 800 student-produced software
solutions to introductory python assignments in CS1-
level programming courses. Their aim was to ascertain if
traditional complexity metrics (such as cyclomatic
complexity) correlates with student learning outcomes.
Results show that no such correlation could be found,

suggesting that for novice programmers, established
complexity metrics may not be a useful way to ascertain
source code evolution.

Marian Daun and Bastian Tenbergen follow up on
their previous research on teaching requirements
engineering to undergraduate students using industry-
realistic case examples in [3]. Specifically, the authors
improved a course design for graduate and
undergraduate courses in Germany to an undergraduate
setting in the US. They summarize quantifiable results
and experiences with both application in the US as well
as in Germany.

A particularly daunting task for many software
engineering educators is to teach computational thinking
to non-engineering students. In [4], Keeheon Lee and
Youn Ah Khang tackle this issue by making clever use
of embedded systems-type consumer electronics and
encourage students to think from a business perspective
about the solutions to be engineered into the product.

Thorsten Haendel proposes a combined approach
using design patterns and gamification to instruct
software refactoring needs, strategies, and techniques in
[5]. By competing against other student teams and/or
benchmark scores, students can learn to anticipate the
need for refactoring, avoid bad design patterns
proactively, and incrementally build experience in such
matters over time.

We hope that these minitrack contributions find
wide-spread use in the software engineering education
community.

References

[1] Flores, R., “The Quest for a Practical Sophomore-Level
Software Engineering Course.”

[2] Inhatola, P., Petersen, A., “Code Complexity in
Introductory Programming Courses.”

[3] Tenbergen, B., Daun, M., “Industry Projects in
Requirements Engineering Education: Application in a
University Course in the US and Comparison with Germany.”

[4] Lee, K., Kang, Y. A., “Bringing Computational Thinking
to Nonengineering Students through a Capstone Course.”

[5] Haendler, T., Neumann, G., “Serious Refactoring Games.”

Page 7613

