
DeepCause: Hypothesis Extraction from Information Systems Papers with
Deep Learning for Theory Ontology Learning

Abstract

This paper applies different deep learning

architectures for sequence labelling to extract causes,
effects, moderators, and mediators from hypotheses of
information systems papers for theory ontology
learning. We compared a variety of recurrent neural
networks (RNN) architectures, like long short-term
memory (LSTM), bidirectional LSTM (BiLSTM), simple
RNNs, and gated recurrent units (GRU). We analyzed
GloVe word embedding, character level vector
representation of words, and part-of-speech (POS) tags.
Furthermore, we evaluated various hyperparameters
and architectures to achieve the highest performance
scores. The prototype was evaluated on hypotheses from
the AIS basket of eight. The F1 result for the sequence
labelling task of causal variables on a chunk level was
80%, with a precision of 80% and a recall of 80%.

1. Introduction

There is an exponentially increasing number of

published papers in journals and conferences [4, 22].
This makes it more and more difficult to get an
integrated view of the different theories and their
relationships [30].

Figure 1 shows the traditional way of scientific
publication at the bottom of the diagram and the
potential role of theory ontologies and theory ontology
learning at the top of the diagram. In the traditional
scientific publishing system, an author would describe
his or her mental model or theory in 5 to 30 pages of
text, and the reader would have to reconstruct the mental
model when reading the paper. For a few papers this is
feasible but becomes nearly impossible with thousands
of papers from different scientific disciplines. Literature
databases support the reader only with full-text search
and co-citation analysis. Theory ontologies might offer
further, more effective ways for the reader to reconstruct
the mental models of other authors. Theory ontologies
might be used for creating internomological networks

[25], inter-theory relationships with theory evolution
graphs [30], or theory-data maps [31]. Theory
ontologies can be manually created by authors, readers,
and editors or semi-automatically by analyzing
scientific texts through natural language processing
methods in a theory ontology learning step. In the
behavioral sciences in general, and for information
systems in particular, theory ontology learning is
suggested to overcome the lack of theory integration
[21, 32].

Figure 1. Role of theory ontology learning for

theory meta-analysis

One example of a system for theory ontology
learning is presented by Mueller and Huettemann [32].
They introduced the prototype CauseMiner for causal
relationship extraction from hypotheses and
propositions of information systems papers.
CauseMiner used a number of natural language
processing rules and cues for extracting causes, effects,
signs, mediators, moderators, conditions, and
interaction signs from hypotheses (see Figure 2).
However, they did not use any machine learning
approach for extracting the different elements of a
hypothesis [32]. With this paper we want to build upon
these finding and analyze the efficacy of machine
learning, especially deep learning methods, for the

Scientific
Papers

writes

Traditional
R

econstruction

are read by

Theory Ontology
is described
by

Ontology-based
ReconstructionMental

Model

C
onstruction

Reconstruction Methods
based on Ontology like
1) Theory Relationships
2) Possible Explanations
3) Possible Predictions
4) Empirical Consequences
5) Theory-Data Maps

describe
m

anually

de
sc

rib
es

 m
an

ua
lly

Author Reader

Authors / Readers / Editors

is extracted
autom

atically

Mental
Model

Theory
Ontology
Learning

Roland M. Mueller
Berlin School of Economics and Law

roland.mueller@hwr-berlin.de

Sardor Abdullaev
Berlin School of Economics and Law

sardorabdullaev91@gmail.com

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60059
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 6250

cause-effect extraction task. We present a deep learning-
based prototype called DeepCause for theory-ontology
learning.

Figure 2. Example of a hypothesis [8] and the

extracted parts [32]

Consequently, this paper tries to answer the following
research questions:
RQ 1: Are deep learning methods for sequence

labelling capable to extract cause–effect
relationships for theory ontology leaning?

RQ 2: What are the most effective deep learning
architectures for the cause–effect extraction
tasks?

The next chapter will discuss relevant related
literature. The developed DeepCause artifact will be
discussed in Chapter 3. Here, we also elucidate the
experiment setups and the design rationale behind the
design decisions. Chapter 4 explains the evaluation
criteria, metrics, and the results of the experiments.
Finally, the conclusion illustrates the results of the work,
answers the research questions, and discusses the
limitations of this study and the possibilities for future
work.

2. Related work

The existing literature about the automatic
extraction of causal relationships from natural language
can be classified into rule-based methods and machine
learning-based methods [1]. Except for CauseMiner
[32], no other system tries to identify additional
elements to cause and effect, like moderating variables,
mediating variables, or conditions. Also, no paper is
using deep neural networks for causal relationship
extraction, yet [1:8]. However, Asghar [1:8] suggested
this might be effective because of the feature abstraction
capabilities of deep learning. This paper tries to fill this
research gap by examining the possibilities of deep
learning for causal relationship extraction.

Deep learning describes neural network
architectures with multiple hidden layers [23]. Besides
dense networks that connect all neurons from one layer
to all other neurons of the next layer, also other special
deep learning architectures were developed.
Convolutional neural networks (CNN) [23] try to better

learn translation invariant features by using a shared
moving 1-dimensional (for text) or 2-dimensional (for
images) window (also called stride). Recurrent neural
networks (RNN) are used for analyzing sequential data
like the sequence of words in natural language. An RNN
processes the input sequence one token at a time but also
maintains a kind of hidden state that captures parts of
the history of the past elements. However, a simple
RNN has problems to learn long-term dependencies in
the sequences because it suffers from the so-called
vanishing gradient problem. Long short-term memory
(LSTM) networks [15] are special RNNs that use forget
gates to learn how long past elements of the sequence
are relevant and therefore are better in learning long-
term dependencies in sequences. In written text, the
meaning of a word is not just dependent on the
preceding words but also on the succeeding words.
Bidirectional LSTMs (BiLSTMs) split the neurons of a
regular LSTM into forward states that are connected
with past states (positive time direction) and backward
states that are connected with future states (negative
time direction).

Word embedding improved the performance of
many NLP tasks. In word embedding, individual words
are represented as a vector of, for example 300
dimensions, that are learned in an unsupervised manner
on a large corpus [29]. These word-embedding vectors
capture the semantics of words and can be used to
calculate the similarity of words. Popular word
embedding methods, which have also pretrained models
that are trained on billions of tokens, are word2vec [29],
GloVe [35] and fastText [3].

A deep learning model can have different possible
outputs [23]. In a simple classification task, like
sentiment mining, a sequence of words would be
classified as a whole into one class (e.g., as positive or
negative sentiment). In sequence labelling, for each
input token an output label is generated. Hence, the
output has the same length as the input. Typical
sequence labelling tasks are part-of-speech (POS)
tagging or named entity recognition (NER). We want to
use sequence labelling for the extraction of the parts in
a sentence that constitutes a cause, effect, moderator, or
mediator. For sequence labelling, conditional random
fields (CRF) are often used. CRFs are discriminative
undirected probabilistic graphical models that take the
neighboring input into account [27].

For finding best practices for deep learning-based
sequence labelling, we looked at recent studies on the
topic (see Table 1). The studies in Table 1 were analyzed
according to the extent a method is suitable for our
problem and whether the selected method is state-of-
the-art for the time being.

Hypothesis 4: In the context of purchasing custom goods, the
positive relationship between e‐procurement and the
number of suppliers is negatively moderated by
buyer–supplier systems integration.

Condition

Moderator

CauseEffect
Sign

Hypothesis
Number

Interaction
Sign

Page 6251

Table 1. Related studies of sequence
labelling and LSTM

Task	/	Paper	
Methods	

Setting	
Data	Inputs	

End-to-end	
sequence	
labelling	via	
bidirectional	
LSTM-CNNs-CRF	
[27]			

CNN	for	character-level	
representation,	BiLSTM,	
CRF	

Stanford’s	publicly	
available	GloVe	100-
dimensional	embedding	

Penn	Treebank	WSJ	
corpus	(for	POS	tagging),	
CoNLL	2003	corpus	

Natural	language	
processing	
(almost)	from	
scratch.	Part-of-
speech	tagging,	
chunking,	named	
entity	recognition	
and	semantic	role	
labelling	[7]	

CNN	and	SLNN	
(sentence-level	
likelihood	neural	nets)	
with	CRF	with	unary	
potential	(conditional	
tag	path	probability).	
CNN	for	the	whole	
sentence	and	for	the	
window,	convex	setup	

Substring	features,	word	
features,	and	gazetteer	
features	

Wikipedia,	Brown	
cluster,	CoNLL	2003	
Reuters,	Wall	Street	
Journal	

Bidirectional	
LSTM-CRF	
models	for	
sequence	tagging	
[17]	

LSTM,	BiLSTM,	CRF,	
LSTM-CRF	and	
BiLSTM-CRF	

SENNA	embedding,	
gazetteer	features,	spelling	
features,	context	features,	
batch	size	of	100,	BIO2	
tagging	schema,	learning	
rate	of	0.1,	hidden	layer	
size	of	300	

CoNLL2000,	CoNLL2003	

Named	entity	
recognition	with	
bidirectional	
LSTM-CNNs	[5]	

Hybrid	BiLSTM	and	CNN	
architecture.	CNN	for	
character	level	repre-
sentation	

Character	features	using	a	
convolutional	neural	
network,	50-dimensional	
word	embedding	(50	
Dims.)	based	on	Wikipedia	
and	the	Reuters	RCV-1	
corpus,	GloVe	and	
word2vec	on	Google	News,	
additional	word	and	
character	features	

CoNLL-2003,	OntoNotes	
5.0	

Effect	of	non-
linear	deep	
architecture	in	
sequence	(named	
entity	recognition	
and	syntactic	
chunking)	[40]		

CRF	and	SLNN	models	 L-BFGS	optimization	
algorithm,	L2-
regularization,	word	
embedding	trained	over	
Wikipedia	text,	BIO2	
tagging	

CoNLL-2003,	MUC,	ACE	

Empower	
sequence	
labelling	with	
task-aware	
neural	language	
model	(chunking	
and	POS	tagging)	
[26]	

LM-LSTM-CRF	
(multitask	learning	with	
highway	layers)	

Pre-trained	word	
embedding	(GloVe	100-
dimension	pre-trained),	
hidden	state	size	of	LSTM	
300,	mini-batch,	depth	of	
highway	layer	is	1	

CoNLL	2003,	CoNLL	
2000,	Wall	Street	Journal	

Neural	
architectures	for	
named	entity	
recognition	[20]	

LSTM,	CRF	and	a	
transition-based	
approach	inspired	by	
shift-reduce	parsers	
(stack	LSTM)	

Character-based	word	
representations	learned	
from	the	supervised	corpus	
and	unsupervised	word	
representations	learned	
from	unannotated	corpora,	
IOBES	tagging	schema,	
character-based	features,	
pre-trained	embedding,	
LSTM-CRF	model	with	a	
single	LSTM	layer	

CoNLL-2002,	CoNLL-	
2003	

Optimal	
hyperparameters	
for	deep	LSTM-

LSTM,	BiLSTM-CRF,	
BiLSTM-CNN-CRF,	
BiLSTM-LSTM-CRF		

Experiments	with	more	
than	50,000	combinations	
of	hyperparameters	for	

networks	for	
sequence	
labelling	tasks	
[36]	

CoNLL	2003,	Reuters,	
Wall	Street	Journal,	ACE	
2005,	TempEval3	

Sequence	labelling	tasks	
were	conducted	to	
estimate	the	influence	of	
each	hyperparameter	

Unified	DL	
architecture	for	
NLP	with	
multitask	
learning	(SRL,	
NER,	POS)	[6]		

Time-delay	neural	
networks	(TDNNs	
similar	to	CNN)		

Word	embedding,	word	
and	sentence	level	features	

English	Wikipedia	

Deep	semantic	
role	labelling:	
what	works	and	
what’s	next	[13]		

Deep	highway	BiLSTM	
architecture	with	
constrained	decoding,	
ensemble	model	

8	BiLSTM	layers	(4	
forward	LSTMs	and	4	
reversed	LSTMs)	with	300-
dimensional	hidden	units,	
and	a	softmax	layer,	
orthonormal	initialized	
weight	matrices,	GloVe	
embedding	(100	dim)	pre-
trained,	updated	during	
training	

CoNLL	2005,	CoNLL	
2012	

Named	entity	
recognition	with	
long	short-term	
memory	[12]	

LSTM	with	2	passes	 Each	sentence	is	presented	
word	by	word	in	two	
passes;	first	pass	to	
accumulate	information	for	
disambiguation	in	second	
pass;	in	second	pass	
network	is	trained	to	
output	vector	
representation	of	relevant	
output	tag.	no	momentum	
and	direct	connections	
from	input	to	output	layers	
for	100	iterations.	

Reuters	corpus,	English	
language,	volume	1,	and	
European	corpus	
initiative	multilingual	
corpus	1	

Multi-task	cross-
lingual	sequence	
tagging	from	
scratch	[41]		

GRU,	word-level	GRU,	
CRF,	character-level	
GRU,	hierarchical	GRU		

One-hot	gazetteer	features,	
pre-trained	word	
embedding	(SENNA	
embedding	trained	on	
Wikipedia),	polyglot	
embedding	with	fine-
tuning,	hidden	state	
dimensions	to	be	300	for	
the	word-level	GRU,	BIOES.	

Penn	Treebank	(PTB),	
POS	tagging,	CoNLL	
2000	chunking,	CoNLL	
2003	

Table 2. Best practices for LSTM and

sequence labelling

1	 Optimizer	 Clip	the	gradients	of	LSTM	weights	so	that	their	norm	is	bounded	by	value	1.0		[34]	

2	 Bias	

Adding	a	bias	of	1	to	the	forget	gate	of	LSTM	closes	the	
gap	between	LSTM	and	GRU.	LSTM	with	the	large	forget	
bias	outperformed	both	LSTM	and	GRU	on	almost	all	
tasks	[18]	

3	 Dropout	
Regularizing	using	dropout	is	ineffective	for	RNN	
networks	and	[42]	shows	the	ways	to	avoid	it;	similar	
but	more	advanced	solution	utilized	in	[10]	

4	 Neural	Network	 Implement	dense	concatenation	through	the	layers	[16]	

Sequence	Labelling	Best	Practices	

5	 Neural	Network	
Adding	an	extra	dense	layer	between	BiLSTM	and	
output	layers	[20]	

6	 Neural	Network	
Connect	some	features	directly	to	an	output	layer,	
skipping	RNN	layers	[17]	

7	 Neural	Network	
For	the	initialization	of	the	matrix	weight	parameters	in	
the	neural	network	use	“Xavier”	initialization	[11]	

8	 Optimizer	 Use	Nesterov	momentum	with	Adam	optimizer	[9]	

9	 Neural	Network	 Use	two	BiLSTM	layers	[36]	

Page 6252

Based on the studies (Table 1), the following design
decisions might improve the performance of sequence
labelling tasks: use of conditional random fields (CRF)
classification, part-of-speech (POS) tags as part of
input, use of character level embedding, and use of
bidirectional LSTM models. Several additional best
practices and tweaks are summarized in Table 2.

3. DeepCause artifact

3.1. Training, development and test data

We collected propositions and hypotheses from

information system papers from the AIS basket of eight.
For each hypothesis we labelled causes, effects,
moderators, and mediators. Table 3 shows the training
and test data. All datasets have a tabular structure with
the columns Hypotheses, Cause, Effect, Moderator, and
Mediator. Each row represents a sentence. Dataset 1 is
manually constructed. In contrast, Dataset 2 (pseudo
labelled training data) contains pseudo-labelled data
produced by CauseMiner [32]. Lee [24] suggested that
pseudo-labelled data might improve results.

Table 3. Datasets
Dataset Explanation Source Rows
Dataset 1
(training/test)

Manually
labelled
sentences

Information System
papers from the AIS
basket of eight

1975

Dataset 2
(pseudo
labelled
training data)

Automatically
labelled
sentences

Sentences labelled by
CauseMiner from
Information System
papers from the AIS
basket of eight

15179

We tested the impact of pseudo labels by creating

two different splits with three data sets each: a training
set, a development set, and a testing set.

First, for testing pseudo labels, we used 100% of
Dataset 2 (pseudo-labelled data) and 50-60% of Dataset
1 for the training set, 20-25% of Dataset 1 for the
development set, and 20-25% of Dataset 1 for the test
set. We used the development set for the hyperparameter
tuning procedure.

Second, for the experiments without pseudo labels
we used only Dataset 1: 40-50% for training, 25-28%
for development and 22-25% for testing.

The assignment to the training, development, and
test sets were randomized and hypotheses from the same
paper might not be kept in the same set.

3.2. Input features

We represented each sentence from the input dataset

with three feature types: word embedding, part-of-
speech (POS tags), and character embedding.

3.2.1. Word embedding. Before generating the
features, we cleaned the raw data by trimming extra
whitespaces and quotes. To quantify the input
sentences, we used the pre-trained word embedding of
GloVe [35], which is pre-trained on 6 billion tokens
from Wikipedia and news articles with a vocabulary size
of 400,000 words. The word embedding was not
retrained by us, which means that it was not updated
during the training. In addition, we initialized the
padding words with zeros. Padding was used to align the
input data in each batch.

3.2.2. POS tags. Khoo et al. [19] and Pakray and
Gelbukh [33] illustrated diverse use-cases for POS in
cause-effect extraction. In natural language, cause and
effect could correlate to a particular POS tag sequence.
Considering these facts, we added information about
POS tags as a feature. POS tags were generated using
the Python library spaCy [28].

3.2.3. Character embedding. Papers about POS
and NER labelling tasks often use character embedding
features because these features are good at detecting
morphologic clues in words. Huang et al. [17], Ma and
Hovy [27], Liu et al. [26], Lample et al. [20], and Chiu
and Nichols [5] demonstrated significant improvements
of their results. However, Reimers and Gurevych [36]
stated that these features do not influence the accuracy
substantially. We decided to use character embedding
features.

For character embedding, we used the architecture
of Ma and Hovy [27]. An embedding matrix was used
so that each column corresponds to a single character.
The width of the matrix was equal to the number of
words in the dictionary and the height was a
hyperparameter which could take a value of 15 or 30. In
addition, a dropout layer was applied. The dropout rate
was also a hyperparameter. Initial values of the matrix
were drawn from the uniform distribution of the range
[-0.05; 0.05]. Moreover, our character embedding
features were trainable, in contrast to the word
embedding. Next, we used one-dimensional
convolutional layers with hyperbolic tangent as the
activation function and the number of filters and the
window size as hyperparameters. To retrieve the
compactable features, we applied pooling layers on top
of the character embedding. The max-pooling layer had
a pool size of 35 (the length of the longest word).
Finally, we stacked all three features for each word and
sorted the entire input by the length of each row to
reduce the padding during the training with minibatches.

Page 6253

3.3. Output layer

We labelled each word according to a selected
tagging schema (see Table 4). In place of padding
values, we used the ‘out’ tag ‘O’ (from BIO and IOB
tagging) labels. We used one hot encoding for CRF
classifiers and a compact encoding for softmax. These
tags are the output that the sequence labelling algorithm
should learn for each token in the input sequence.

Table 4. Used tagging schema
Tag Meaning
B-Cause Beginning of Cause Chunk
I-Cause Cause Chunk (Inner or End)
B-Effect Beginning of Effect Chunk
I-Effect Effect Chunk (Inner or End)
B-Moderator Beginning of Moderator Chunk
I-Moderator Moderator Chunk (Inner or End)
B-Mediator Beginning of Mediator Chunk
I-Mediator Mediator Chunk (Inner or End)
O Out (all other words)

3.4. Model

 We tested different deep learning architectures for
the recurrent layers: SimpleRNN, LSTM, BiLSTM, and
GRU. Depending on the tested hyperparameters, the
architectures can be modified significantly. For
example, adding an extra dropout layer, duplicating a
layer, removing a layer and partitioning of input, and so
on. Figure 3 shows the used example of a deep learning
model with a bidirectional LSTM, an extra dense layer,
and a CRF output layer.

Figure 3. Exemplary tested model

We implemented most of the best practices from
Table 2. However, we did not implement number 4
(dense concatenation through the layers) and 6 (connect
some features directly to an output layer, skipping RNN
layers) because of high implementation complexity with

the used Keras framework and the relatively low
expected impact. All other suggestions were
implemented and tested, like the Xavier initialization
[11] or adding an extra dense layer with a ReLU
activation before the output layer [20]. For the output,
we tested two different layers: a CRF classifier layer to
catch joint pairwise dependencies between adjacent
labels, and a softmax classification layer.

3.5. Hyperparameter tuning

We tested a list of values for different
hyperparameters (Table 5). Also, the type of neural
network was a hyperparameter for the model.

Table 5. List of hyperparameters
Category Parameter Values
NN model Architecture SimpleRNN,

LSTM, BiLSTM,
GRU

NN model Output layer CRF, CRF with an
extra dense layer,
Softmax

NN model Minibatch size 1, 2, 4, 8, 16
NN input Whether to use

POS tags
True, False

NN input Whether to use
char embedding

True, False

Char
embedding

Number of filters 15, 30

Char
embedding

Number of
dimensions

15, 30

Char
embedding

Dropout 0, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9

Char
embedding

Window length 3, 6

Word
embedding

Dropout 0, 0.2, 0.4, 0.6

Word
embedding

Number of
dimensions

100, 200, 300

Recurrent
layer

Number of
recurrent units

100, 300

Recurrent
layer

Number of
recurrent layers

1, 2

Recurrent
layer

Dropout 0.1, 0.2, 0.3, 0.5,
0.7, 0.9

Optimizer Learning rate
(only for SGD
optimizer)

0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1.0

Optimizer Decay 0, 1e-4, 1e-6
Optimizer Momentum 0, 0.9
Optimizer Nesterov

optimization
True, False

Optimizer Optimizer type SGD, Adam,
Nadam, RMSProp,
Adagrad, Adadelta

Optimizer Patience 4

Word
Embedding

Word
Embedding

Word
Embedding

Word
Embedding

Word
Embedding

Char
embedding

Char
embedding

Char
embedding

Char
embedding

Char
embedding

POS
tag

POS
tag

POS
tag

POS
tag

POS
tags

L S T M

L S T M

L S T M

L S T M

L S T M

LSTM

LSTM

LSTM

LSTM

LSTM

CRF

CRF

CRF

CRF

CRF

CNN for
characters of

each word

One hot
encoded
POS tags

Bi-directional
LSTM Layer

Extra dense
layer

CRF layer

GloVe word
vectors for
each word

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input

Page 6254

Grid search became impossible due to a huge
number of possible combinations. Similarly, random
search [2] and Bayesian search [37] turned out to be too
time-consuming. That is why for hyperparameter tuning
we used an approach that combined ideas from both
methods.

During the training we iterated over each group of
hyperparameters to find the value producing the highest
F1 score independently from the rest of parameters. On
each step the value of the yet untraversed group of
hyperparameters was just assigned to the first element.
We shuffled the list of hyperparameters for each
parameter several times to eliminate sticking to a local
minimum and thus adding randomization, similarly to
random search [2]. Before each shuffling, we modified
the values for the hyperparameters based on the results.

3.6. Training

For each set of tuning parameters, we trained our
model on the dataset as described in Section 3.1. The
model was trained a maximum of 200 epochs with early
stopping, if the loss function was not improving for 4
epochs (patience). One epoch is one forward and one
back propagation with all the training data. The number
of epochs before the interruption (patience) was also
used as a hyperparameter (see Table 5). We tried to
achieve balance between underfitting and overfitting, as
well as to meet performance requirements. The model
was trained with batches. We forward propagated the
input over the hidden layers, calculated the gradients,
back propagated errors, and updated the weights of the
neural network. As an output layer, we tested softmax
and CRF.

4. Evaluation

4.1. Evaluation metrics

To evaluate the efficacy of our artifact and the
impact of the different deep learning architectures, we
analyzed all results and compared the performances of
our models. Each configuration is a combination of
hyperparameter values (Table 5) and is considered one
experiment. We used the following metrics to evaluate
the artifacts:
• Precision: The percentage of detected sequences

(chunks) that are correct [38, 39]. If only one token
was not correctly included or excluded to a
sequence that describes a construct, then the
sequence is not correctly detected.

• Recall: Percentage of sequences in the data that
were found by the model [38, 39].

• F1 score: Harmonic mean of precision and recall
[38, 39]. We used the F1 score to find the best
hyperparameters because it incorporates both recall
and precision.

4.2. Results of hyperparameter testing

4.2.1. Pseudo labels. Figure 4 shows a swarm plot
of all experiments with and without pseudo labels. The
output layer is color coded. We see that pseudo labels
are not improving the results.

Figure 4. F1 scores with and without pseudo

labels (color=output layer)

4.2.2. RNN architecture. Figure 5 shows the best
performing experiments without pseudo labels for the
different RNN architectures (Bidirectional LSTM,
LSTM, GRU, SimpleRNN) and the different output
layers. It shows that the best development F1 score was
by bidirectional LSTM.

Figure 5. Best F1 score by RNN type and output

layer (without pseudo labels)

4.2.3 Output layer. Figure 4 shows a swarm plot of
all experiment with the output layer (CRF with extra
dense layer, CRF, and softmax) encoded in the color.
Figure 5 shows the impact of the output layers on the
best accuracy. Both figures show that CRFs are
beneficial. CRF without an extra dense layer showed
slightly better results.

Page 6255

4.2.4. Optimization algorithm. Figure 6 shows the
performance by the used optimization algorithm (SGD,
Adam, Adagrad, Rmsprop, Nadam) and the RNN
architectures. Figure 7 shows the performance of the
used optimization algorithm and the used output layer.
SGD performed worse than the other optimizers. The
Adam algorithm outperforms the others. Unfortunately,
we were not able to conduct a deeper investigation on
all optimizers, especially Nadam, because our
hyperparameter optimization algorithm did not include
enough experiments with all optimizers.

Figure 6. F1 score by optimization algorithm and

RNN types

Figure 7. F1 score by optimization algorithm and

output layer classifier

4.2.5. POS tags. Figure 8 shows the kernel density
distribution (KDE) of all experiments with their F1 test
scores for the experiments with POS tags (With) and
without POS tags (Without). The data suggests that
using POS tags can improve the model. However, we
are not claiming that this effect is significant, because,
as stated before, data may not be balanced enough.

Figure 8. Influence of POS tags (With=with POS

Tags) on F1 score

4.2.6. Character embedding. Figure 9 shows the
kernel density distribution (KDE) of the F1 test score
with character embedding (With) and without character
embedding (Without). We observe a performance
improvement with character embedding. However, the
impact is smaller than for the POS tags.

Figure 9. Influence of character embedding

(With=with character embedding) on F1 score

4.2.7. Tagging scheme. The distributions of the F1

score for each tagging schema (Figure 10) suggest that
the choice between BIO and IOB had no significant
effect on the performance of the model.

Figure 10. Influence of tagging schema

(BIO2 or IOB) on F1 score

4.2.8. Patience. We used an early stopping rule so if
the loss function was not improving for a number of
epochs (patience), we would stop the learning process.
A patience of 3 and 4 seemed to perform better but the
impact was not very strong. We achieved the best results
with a patience of 4.

4.2.9. Minibatch size. Smaller batch sizes (1, 2, and

4) seemed to perform better than larger batch sizes, but
the influence was not very strong. We achieved the best
results with a batch size of 1.

Page 6256

4.3. Results

Table 6 shows the top three results based on the F1
score of the development set with the used
hyperparameters. All of the top three results did not use
pseudo labelling. For the results without pseudo labelled
data, the training set size was 987 sentences and the
development and training set size was 494 sentences.

The best F1 score was approximately 80.2% with
precision of 80.3% and recall of 80.0%. The confusion
matrices of cause and effect chunks are depicted in
Table 7 and Table 8 (based on the best result). Because
the total number of chunks of moderators and mediators
were only around 30, we did not include a confusion
matrix for these tags.

Table 7. Confusion matrix for cause on a

chunk level
 Predicted
 Cause chunks Not cause

chunks

Actual
Cause chunks 291 61

Not cause
chunks 65 -

Table 8. Confusion matrix for effect on a
chunk level

 Predicted
 Effect chunks Not effect

chunks

Actual
Effect chunks 288 86

Not effect
chunks 82 -

5. Conclusion

Table 9 shows the design science process and
contributions of our paper, structured based on the
design science guidelines of Hevner et al. [14].

Research Question 1 asked if deep learning methods
for sequence labelling were capable to extract cause-
effect extraction. The best model achieved a F1 score of
80% on the chunk level. Table 10 shows the results of
the rule-based system CauseMiner [32] for cause and
effect tested on 564 sentences. When we compare the
performances of DeepCause and CauseMiner, we see

that the F1 score of CauseMiner is slightly smaller (79%
on a chunk level).

Rule-based systems like CauseMiner and machine
learning-based systems like DeepCause have both their
benefits and drawbacks for cause-effect extraction.
Rule-based systems are often brittle, they need a huge
effort and special domain knowledge to be built, they
are optimized only for a specific use case, and they are
not leveraging the possibilities of more training data.
However, they do not need so much training data and
complex patterns can be described by the rules. By
contrast, machine learning systems need a lot of
annotated data and even for end-to-end models like deep
learning, complex feature engineering steps are
necessary. However, with more data their performance
will improve up to certain a point. Moreover, the same
architecture can also handle slightly different annotation
tasks.

Table 9. Design science contributions
Guideline [14] Contribution
Design as an
Artifact

The research outcomes:
1. DeepCause artifact for extracting elements
of a hypothesis
2. Influence of different model parameters on
the performance

Problem
Relevance

Because of the exponentially increasing
number of scientific papers, we need methods
for extracting causal claims for theory
ontology learning

Design
Evaluation

Evaluation of the artifact based on a test set,
measured on F1 score, accuracy, precision,
and recall

Research
Contributions

Compared to the rule-based CauseMiner tool,
this paper shows the potential of deep learning
for hypothesis extraction

Research Rigor Creating a gold standard, split of the data into
training, development, and test sets

Design as a
Search Process

Extensive test of different hyperparameters

Communication
of Research

Detailed information of the best deep learning
architectures

Table 10. Performance of CauseMiner [32]

Variable Prec. Recall F1 Acc.
Cause 0.79 0.79 0.79 0.66
Effect 0.77 0.81 0.79 0.66

Table 6. Top three best results with the different configurations
Dev. Set Test set Archi-

tecture
Output
Layer

Embedding
dim.

Optimizer RNN
dropout

Number of
recurrent

layers

Tagging
schema

Pseudo
labels

POS
tags

char. CNN
embedding

F1 Precision Recall F1

79.15 80.32 80.0 80.16 BiLSTM CRF 300 Adam 0.3 2 BIO2 FALSE TRUE TRUE

78.49 78.42 79.79 79.1 BiLSTM CRF 100 Adam 0.4 1 BIO2 FALSE TRUE TRUE

76.85 80.14 79.58 78.86 BiLSTM CRF 100 Adam 0.0 1 BIO2 FALSE TRUE TRUE

Page 6257

Research Question 2 asked for the most effective
deep learning architectures for the cause-effect
extraction task. From an extensive literature review we
distilled best practices in the field and carried out a
range of experiments with possible deep learning
configurations.

We found that pseudo labelling did not improve the
results. One reason is that pseudo-labelled data is error-
prone as Table 10 shows, so that DeepCause also learns
partially wrong patterns when using pseudo labels.

We found a bidirectional LSTM (BiLSTM) as the
most effective RNN-architecture. For the output layer
we found conditional random fields (CRF) without an
extra dense layer as most promising. Also, using POS
tags and character embedding improved the results. We
used pre-trained GloVe word embedding vectors.

One of the limitations of the study is the size of the
dataset which comprised of only 1,975 manually
labelled sentences and 15,179 pseudo labelled
sentences. Therefore, in future work we will improve
the quantity and quality of our data.

We did not analyze if the publication year of the
hypotheses would have an influence on the accuracy of
the model. However, we do not expect that the way
hypotheses are phrased in English language changed
dramatically over the years. Therefore, we would not
expect a big influence of the publishing year.

Deep learning models involve a lot of parameters
and analyzing all of them was an intractable task for this
paper. For example, stacked bidirectional LSTM models
with CRF classifiers require high processing power. We
could not test all combinations of the hyperparameters
and used a special hyperparameter tuning approach
instead.

There are multiple opportunities for further research.
An interesting possible solution regarding the layer
connections are highway networks [43] that
demonstrated to be beneficial for sequence modelling
tasks. Also, we might try multitask learning [6] to
extract cause, effect, moderator, and mediator, as well
as word level features as different tasks. Also, a trained
word embedding on a large number of information
systems papers might be promising. The effect of
dropout should be studied more detailed to regularize
the models properly.

One problem of our artifact was the muddling of
cause and effect chunks. A possible solution would be
to use sequence labelling just for construct chunk
extraction and an additional classifier to predict which
of the different chunks are cause, effect, etc. An
ensemble-based system that combines the rule-based
method of CauseMiner and the machine-learning
method of DeepCause might be an opportunity to
increase accuracy even further.

6. References

[1] Asghar, N., “Automatic Extraction of Causal Relations
from Natural Language Texts: A Comprehensive Survey”,
arXiv preprint arXiv:1605.07895, 2016.

[2] Bergstra, J., and Y. Bengio, “Random search for hyper-
parameter optimization”, Journal of Machine Learning
Research 13(Feb), 2012, pp. 281–305.

[3] Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information”, arXiv
preprint arXiv:1607.04606, 2016.

[4] Bornmann, L., and R. Mutz, “Growth rates of modern
science: A bibliometric analysis based on the number of
publications and cited references”, Journal of the Association
for Information Science and Technology 66(11), 2015, pp.
2215–2222.

[5] Chiu, J.P., and E. Nichols, “Named entity recognition
with bidirectional LSTM-CNNs”, arXiv preprint
arXiv:1511.08308, 2015.

[6] Collobert, R., and J. Weston, “A unified architecture for
natural language processing: Deep neural networks with
multitask learning”, Proceedings of the 25th international
conference on Machine learning, ACM (2008), 160–167.

[7] Collobert, R., J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa, “Natural language processing
(almost) from scratch”, Journal of Machine Learning
Research 12(Aug), 2011, pp. 2493–2537.

[8] Dedrick, J., S.X. Xu, and K.X. Zhu, “How Does
Information Technology Shape Supply-Chain Structure?
Evidence on the Number of Suppliers”, Journal of
Management Information Systems 25(2), 2008, pp. 41–72.

[9] Dozat, T., “Incorporating nesterov momentum into
adam”, ICLR Workshop, (2016).

[10] Gal, Y., and Z. Ghahramani, “A theoretically grounded
application of dropout in recurrent neural networks”,
Advances in Neural Information Processing Systems 29,
(2016), 1019–1027.

[11] Glorot, X., and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks”, Proceedings
of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), (2010), 249–256.

[12] Hammerton, J., “Named entity recognition with long
short-term memory”, Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-Volume
4, Association for Computational Linguistics (2003), 172–
175.

[13] He, L., K. Lee, M. Lewis, and L. Zettlemoyer, “Deep
semantic role labeling: What works and what’s next”,
Proceedings of the Annual Meeting of the Association for
Computational Linguistics, (2017).

[14] Hevner, A.R., S.T. March, J. Park, and S. Ram, “Design
science in information systems research”, MIS Quarterly
28(1), 2004, pp. 75–105.

Page 6258

[15] Hochreiter, S., and J. Schmidhuber, “Long short-term
memory”, Neural computation 9(8), 1997, pp. 1735–1780.

[16] Huang, G., Z. Liu, K.Q. Weinberger, and L. van der
Maaten, “Densely connected convolutional networks”,
Proceedings of the IEEE conference on computer vision and
pattern recognition, (2017), 3.

[17] Huang, Z., W. Xu, and K. Yu, “Bidirectional LSTM-
CRF models for sequence tagging”, arXiv preprint
arXiv:1508.01991, 2015.

[18] Jozefowicz, R., W. Zaremba, and I. Sutskever, “An
empirical exploration of recurrent network architectures”,
International Conference on Machine Learning, (2015),
2342–2350.

[19] Khoo, C.S., J. Kornfilt, R.N. Oddy, and S.H. Myaeng,
“Automatic extraction of cause-effect information from
newspaper text without knowledge-based inferencing”,
Literary and Linguistic Computing 13(4), 1998, pp. 177–186.

[20] Lample, G., M. Ballesteros, S. Subramanian, K.
Kawakami, and C. Dyer, “Neural architectures for named
entity recognition”, arXiv preprint arXiv:1603.01360, 2016.

[21] Larsen, K.R., S. Michie, E.B. Hekler, et al., “Behavior
change interventions: the potential of ontologies for
advancing science and practice”, Journal of Behavioral
Medicine 40(1), 2017, pp. 6–22.

[22] Larsen, P.O., and M. von Ins, “The rate of growth in
scientific publication and the decline in coverage provided by
Science Citation Index”, Scientometrics 84(3), 2010, pp.
575–603.

[23] LeCun, Y., Y. Bengio, and G. Hinton, “Deep learning”,
Nature 521(7553), 2015, pp. 436–444.

[24] Lee, D.-H., “Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks”,
Workshop on Challenges in Representation Learning, ICML,
(2013), 2.

[25] Li, J., and K. Larsen, “Establishing Nomological
Networks for Behavioral Science: a Natural Language
Processing Based Approach”, ICIS 2011 Proceedings, 2011.

[26] Liu, L., J. Shang, F. Xu, et al., “Empower Sequence
Labeling with Task-Aware Neural Language Model”, arXiv
preprint arXiv:1709.04109, 2017.

[27] Ma, X., and E. Hovy, “End-to-end sequence labeling via
bi-directional lstm-cnns-crf”, arXiv preprint
arXiv:1603.01354, 2016.

[28] Matthew, H., “Website - spaCy: Industrial-Strength
Natural Language Processing”, 2017. https://spacy.io

[29] Mikolov, T., I. Sutskever, K. Chen, G.S. Corrado, and J.
Dean, “Distributed representations of words and phrases and
their compositionality”, Advances in neural information
processing systems, (2013), 3111–3119.

[30] Mueller, R.M., “A Meta-Model for Inferring Inter-
Theory Relationships of Causal Theories”, 48th Hawaii
International Conference on System Science (HICSS), IEEE
(2015), 4908–4917.

[31] Mueller, R.M., “Theory-Data Maps: A Meta-Model and
Methods for Inferring and Visualizing Relationships between
Causal Theories and Empirical Evidences”, 49th Hawaii
International Conference on System Sciences (HICSS),
(2016), 5288–5297.

[32] Mueller, R.M., and S. Huettemann, “Extracting Causal
Claims from Information Systems Papers with Natural
Language Processing for Theory Ontology Learning”,
Proceedings of the 51st Hawaii International Conference on
System Sciences, (2018), 5295–5304.

[33] Pakray, P., and A. Gelbukh, “An open-domain cause-
effect relation detection from paired nominals”, Mexican
International Conference on Artificial Intelligence, Springer
(2014), 263–271.

[34] Pascanu, R., T. Mikolov, and Y. Bengio, “On the
difficulty of training Recurrent Neural Networks”,
arXiv:1211.5063 [cs], 2012.

[35] Pennington, J., R. Socher, and C. Manning, “GloVe:
Global vectors for word representation”, Proceedings of the
2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), (2014), 1532–1543.

[36] Reimers, N., and I. Gurevych, “Optimal
Hyperparameters for Deep LSTM-Networks for Sequence
Labeling Tasks”, arXiv preprint arXiv:1707.06799, 2017.

[37] Snoek, J., H. Larochelle, and R.P. Adams, “Practical
bayesian optimization of machine learning algorithms”,
Advances in neural information processing systems, (2012),
2951–2959.

[38] Tjong Kim Sang, E.F., and S. Buchholz, “Introduction
to the CoNLL-2000 shared task: Chunking”, Proceedings of
the 2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning-
Volume 7, Association for Computational Linguistics (2000),
127–132.

[39] Tjong Kim Sang, E.F., and F. De Meulder, “Introduction
to the CoNLL-2003 shared task: Language-independent
named entity recognition”, Proceedings of the seventh
conference on Natural language learning at HLT-NAACL
2003-Volume 4, Association for Computational Linguistics
(2003), 142–147.

[40] Wang, M., and C.D. Manning, “Effect of non-linear
deep architecture in sequence labeling”, Proceedings of the
Sixth International Joint Conference on Natural Language
Processing, (2013), 1285–1291.

[41] Yang, Z., R. Salakhutdinov, and W. Cohen, “Multi-task
cross-lingual sequence tagging from scratch”, arXiv preprint
arXiv:1603.06270, 2016.

[42] Zaremba, W., I. Sutskever, and O. Vinyals, “Recurrent
neural network regularization”, arXiv preprint
arXiv:1409.2329, 2014.

[43] Zilly, J.G., R.K. Srivastava, J. Koutnı ́k, and J.
Schmidhuber, “Recurrent Highway Networks”, International
Conference on Machine Learning, (2017), 4189–4198.

Page 6259

