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Abstract 
 
This paper applies different deep learning 

architectures for sequence labelling to extract causes, 
effects, moderators, and mediators from hypotheses of 
information systems papers for theory ontology 
learning. We compared a variety of recurrent neural 
networks (RNN) architectures, like long short-term 
memory (LSTM), bidirectional LSTM (BiLSTM), simple 
RNNs, and gated recurrent units (GRU). We analyzed 
GloVe word embedding, character level vector 
representation of words, and part-of-speech (POS) tags. 
Furthermore, we evaluated various hyperparameters 
and architectures to achieve the highest performance 
scores. The prototype was evaluated on hypotheses from 
the AIS basket of eight. The F1 result for the sequence 
labelling task of causal variables on a chunk level was 
80%, with a precision of 80% and a recall of 80%. 

 
 

1. Introduction 
 
There is an exponentially increasing number of 

published papers in journals and conferences [4, 22]. 
This makes it more and more difficult to get an 
integrated view of the different theories and their 
relationships [30].  

Figure 1 shows the traditional way of scientific 
publication at the bottom of the diagram and the 
potential role of theory ontologies and theory ontology 
learning at the top of the diagram. In the traditional 
scientific publishing system, an author would describe 
his or her mental model or theory in 5 to 30 pages of 
text, and the reader would have to reconstruct the mental 
model when reading the paper. For a few papers this is 
feasible but becomes nearly impossible with thousands 
of papers from different scientific disciplines. Literature 
databases support the reader only with full-text search 
and co-citation analysis. Theory ontologies might offer 
further, more effective ways for the reader to reconstruct 
the mental models of other authors. Theory ontologies 
might be used for creating internomological networks 

[25], inter-theory relationships with theory evolution 
graphs [30], or theory-data maps [31]. Theory 
ontologies can be manually created by authors, readers, 
and editors or semi-automatically by analyzing 
scientific texts through natural language processing 
methods in a theory ontology learning step. In the 
behavioral sciences in general, and for information 
systems in particular, theory ontology learning is 
suggested to overcome the lack of theory integration 
[21, 32].  

 
Figure 1. Role of theory ontology learning for 

theory meta-analysis 
 

One example of a system for theory ontology 
learning is presented by Mueller and Huettemann [32]. 
They introduced the prototype CauseMiner for causal 
relationship extraction from hypotheses and 
propositions of information systems papers. 
CauseMiner used a number of natural language 
processing rules and cues for extracting causes, effects, 
signs, mediators, moderators, conditions, and 
interaction signs from hypotheses (see Figure 2). 
However, they did not use any machine learning 
approach for extracting the different elements of a 
hypothesis [32]. With this paper we want to build upon 
these finding and analyze the efficacy of machine 
learning, especially deep learning methods, for the 
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cause-effect extraction task. We present a deep learning-
based prototype called DeepCause for theory-ontology 
learning. 
 

 
Figure 2. Example of a hypothesis [8] and the 

extracted parts [32] 
 

Consequently, this paper tries to answer the following 
research questions: 
RQ 1:  Are deep learning methods for sequence 

labelling capable to extract cause–effect 
relationships for theory ontology leaning? 

RQ 2:  What are the most effective deep learning 
architectures for the cause–effect extraction 
tasks? 

The next chapter will discuss relevant related 
literature. The developed DeepCause artifact will be 
discussed in Chapter 3. Here, we also elucidate the 
experiment setups and the design rationale behind the 
design decisions. Chapter 4 explains the evaluation 
criteria, metrics, and the results of the experiments. 
Finally, the conclusion illustrates the results of the work, 
answers the research questions, and discusses the 
limitations of this study and the possibilities for future 
work. 

 
2. Related work 
 

The existing literature about the automatic 
extraction of causal relationships from natural language 
can be classified into rule-based methods and machine 
learning-based methods [1]. Except for CauseMiner 
[32], no other system tries to identify additional 
elements to cause and effect, like moderating variables, 
mediating variables, or conditions. Also, no paper is 
using deep neural networks for causal relationship 
extraction, yet [1:8]. However, Asghar [1:8] suggested 
this might be effective because of the feature abstraction 
capabilities of deep learning. This paper tries to fill this 
research gap by examining the possibilities of deep 
learning for causal relationship extraction. 

Deep learning describes neural network 
architectures with multiple hidden layers [23]. Besides 
dense networks that connect all neurons from one layer 
to all other neurons of the next layer, also other special 
deep learning architectures were developed. 
Convolutional neural networks (CNN) [23] try to better 

learn translation invariant features by using a shared 
moving 1-dimensional (for text) or 2-dimensional (for 
images) window (also called stride). Recurrent neural 
networks (RNN) are used for analyzing sequential data 
like the sequence of words in natural language. An RNN 
processes the input sequence one token at a time but also 
maintains a kind of hidden state that captures parts of 
the history of the past elements. However, a simple 
RNN has problems to learn long-term dependencies in 
the sequences because it suffers from the so-called 
vanishing gradient problem. Long short-term memory 
(LSTM) networks [15] are special RNNs that use forget 
gates to learn how long past elements of the sequence 
are relevant and therefore are better in learning long-
term dependencies in sequences. In written text, the 
meaning of a word is not just dependent on the 
preceding words but also on the succeeding words. 
Bidirectional LSTMs (BiLSTMs) split the neurons of a 
regular LSTM into forward states that are connected 
with past states (positive time direction) and backward 
states that are connected with future states (negative 
time direction).  

Word embedding improved the performance of 
many NLP tasks. In word embedding, individual words 
are represented as a vector of, for example 300 
dimensions, that are learned in an unsupervised manner 
on a large corpus [29]. These word-embedding vectors 
capture the semantics of words and can be used to 
calculate the similarity of words. Popular word 
embedding methods, which have also pretrained models 
that are trained on billions of tokens, are word2vec [29], 
GloVe [35] and fastText [3].  

A deep learning model can have different possible 
outputs [23]. In a simple classification task, like 
sentiment mining, a sequence of words would be 
classified as a whole into one class (e.g., as positive or 
negative sentiment). In sequence labelling, for each 
input token an output label is generated. Hence, the 
output has the same length as the input. Typical 
sequence labelling tasks are part-of-speech (POS) 
tagging or named entity recognition (NER). We want to 
use sequence labelling for the extraction of the parts in 
a sentence that constitutes a cause, effect, moderator, or 
mediator. For sequence labelling, conditional random 
fields (CRF) are often used. CRFs are discriminative 
undirected probabilistic graphical models that take the 
neighboring input into account [27].  

For finding best practices for deep learning-based 
sequence labelling, we looked at recent studies on the 
topic (see Table 1). The studies in Table 1 were analyzed 
according to the extent a method is suitable for our 
problem and whether the selected method is state-of-
the-art for the time being.  
 
 

Hypothesis 4: In the context of purchasing custom goods, the 
positive relationship between e‐procurement and the 
number of suppliers is negatively moderated by 
buyer–supplier systems integration.

Condition

Moderator

CauseEffect
Sign

Hypothesis 
Number

Interaction
Sign
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Table 1. Related studies of sequence  
labelling and LSTM 

Task	/	Paper	
Methods	

Setting	
Data	Inputs	

End-to-end	
sequence	
labelling	via	
bidirectional	
LSTM-CNNs-CRF	
[27]			

CNN	for	character-level	
representation,	BiLSTM,	
CRF	

Stanford’s	publicly	
available	GloVe	100-
dimensional	embedding	

Penn	Treebank	WSJ	
corpus	(for	POS	tagging),	
CoNLL	2003	corpus	

Natural	language	
processing	
(almost)	from	
scratch.	Part-of-
speech	tagging,	
chunking,	named	
entity	recognition	
and	semantic	role	
labelling	[7]	

CNN	and	SLNN	
(sentence-level	
likelihood	neural	nets)	
with	CRF	with	unary	
potential	(conditional	
tag	path	probability).	
CNN	for	the	whole	
sentence	and	for	the	
window,	convex	setup	

Substring	features,	word	
features,	and	gazetteer	
features	

Wikipedia,	Brown	
cluster,	CoNLL	2003	
Reuters,	Wall	Street	
Journal	

Bidirectional	
LSTM-CRF	
models	for	
sequence	tagging	
[17]	

LSTM,	BiLSTM,	CRF,	
LSTM-CRF	and	
BiLSTM-CRF	

SENNA	embedding,	
gazetteer	features,	spelling	
features,	context	features,	
batch	size	of	100,	BIO2	
tagging	schema,	learning	
rate	of	0.1,	hidden	layer	
size	of	300	

CoNLL2000,	CoNLL2003	

Named	entity	
recognition	with	
bidirectional	
LSTM-CNNs	[5]	

Hybrid	BiLSTM	and	CNN	
architecture.	CNN	for	
character	level	repre-
sentation	

Character	features	using	a	
convolutional	neural	
network,	50-dimensional	
word	embedding	(50	
Dims.)	based	on	Wikipedia	
and	the	Reuters	RCV-1	
corpus,	GloVe	and	
word2vec	on	Google	News,	
additional	word	and	
character	features	

CoNLL-2003,	OntoNotes	
5.0	

Effect	of	non-
linear	deep	
architecture	in	
sequence	(named	
entity	recognition	
and	syntactic	
chunking)	[40]		

CRF	and	SLNN	models	 L-BFGS	optimization	
algorithm,	L2-
regularization,	word	
embedding	trained	over	
Wikipedia	text,	BIO2	
tagging	

CoNLL-2003,	MUC,	ACE	

Empower	
sequence	
labelling	with	
task-aware	
neural	language	
model	(chunking	
and	POS	tagging)	
[26]	

LM-LSTM-CRF	
(multitask	learning	with	
highway	layers)	

Pre-trained	word	
embedding	(GloVe	100-
dimension	pre-trained),	
hidden	state	size	of	LSTM	
300,	mini-batch,	depth	of	
highway	layer	is	1	

CoNLL	2003,	CoNLL	
2000,	Wall	Street	Journal	

Neural	
architectures	for	
named	entity	
recognition	[20]	

LSTM,	CRF	and	a	
transition-based	
approach	inspired	by	
shift-reduce	parsers	
(stack	LSTM)	

Character-based	word	
representations	learned	
from	the	supervised	corpus	
and	unsupervised	word	
representations	learned	
from	unannotated	corpora,	
IOBES	tagging	schema,	
character-based	features,	
pre-trained	embedding,	
LSTM-CRF	model	with	a	
single	LSTM	layer	

CoNLL-2002,	CoNLL-	
2003	

Optimal	
hyperparameters	
for	deep	LSTM-

LSTM,	BiLSTM-CRF,	
BiLSTM-CNN-CRF,	
BiLSTM-LSTM-CRF		

Experiments	with	more	
than	50,000	combinations	
of	hyperparameters	for	

networks	for	
sequence	
labelling	tasks	
[36]	

CoNLL	2003,	Reuters,	
Wall	Street	Journal,	ACE	
2005,	TempEval3	

Sequence	labelling	tasks	
were	conducted	to	
estimate	the	influence	of	
each	hyperparameter	

Unified	DL	
architecture	for	
NLP	with	
multitask	
learning	(SRL,	
NER,	POS)	[6]		

Time-delay	neural	
networks	(TDNNs	
similar	to	CNN)		

Word	embedding,	word	
and	sentence	level	features	

English	Wikipedia	

Deep	semantic	
role	labelling:	
what	works	and	
what’s	next	[13]		

Deep	highway	BiLSTM	
architecture	with	
constrained	decoding,	
ensemble	model	

8	BiLSTM	layers	(4	
forward	LSTMs	and	4	
reversed	LSTMs)	with	300-
dimensional	hidden	units,	
and	a	softmax	layer,	
orthonormal	initialized	
weight	matrices,	GloVe	
embedding	(100	dim)	pre-
trained,	updated	during	
training	

CoNLL	2005,	CoNLL	
2012	

Named	entity	
recognition	with	
long	short-term	
memory	[12]	

LSTM	with	2	passes	 Each	sentence	is	presented	
word	by	word	in	two	
passes;	first	pass	to	
accumulate	information	for	
disambiguation	in	second	
pass;	in	second	pass	
network	is	trained	to	
output	vector	
representation	of	relevant	
output	tag.	no	momentum	
and	direct	connections	
from	input	to	output	layers	
for	100	iterations.	

Reuters	corpus,	English	
language,	volume	1,	and	
European	corpus	
initiative	multilingual	
corpus	1	

Multi-task	cross-
lingual	sequence	
tagging	from	
scratch	[41]		

GRU,	word-level	GRU,	
CRF,	character-level	
GRU,	hierarchical	GRU		

One-hot	gazetteer	features,	
pre-trained	word	
embedding	(SENNA	
embedding	trained	on	
Wikipedia),	polyglot	
embedding	with	fine-
tuning,	hidden	state	
dimensions	to	be	300	for	
the	word-level	GRU,	BIOES.	

Penn	Treebank	(PTB),	
POS	tagging,	CoNLL	
2000	chunking,	CoNLL	
2003	

 
Table 2. Best practices for LSTM and  

sequence labelling 

1	 Optimizer	 Clip	the	gradients	of	LSTM	weights	so	that	their	norm	is	bounded	by	value	1.0		[34]	

2	 Bias	

Adding	a	bias	of	1	to	the	forget	gate	of	LSTM	closes	the	
gap	between	LSTM	and	GRU.	LSTM	with	the	large	forget	
bias	outperformed	both	LSTM	and	GRU	on	almost	all	
tasks	[18]	

3	 Dropout	
Regularizing	using	dropout	is	ineffective	for	RNN	
networks	and	[42]	shows	the	ways	to	avoid	it;	similar	
but	more	advanced	solution	utilized	in	[10]	

4	 Neural	Network	 Implement	dense	concatenation	through	the	layers	[16]	

Sequence	Labelling	Best	Practices	

5	 Neural	Network	
Adding	an	extra	dense	layer	between	BiLSTM	and	
output	layers	[20]	

6	 Neural	Network	
Connect	some	features	directly	to	an	output	layer,	
skipping	RNN	layers	[17]	

7	 Neural	Network	
For	the	initialization	of	the	matrix	weight	parameters	in	
the	neural	network	use	“Xavier”	initialization	[11]	

8	 Optimizer	 Use	Nesterov	momentum	with	Adam	optimizer	[9]	

9	 Neural	Network	 Use	two	BiLSTM	layers	[36]	
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Based on the studies (Table 1), the following design 
decisions might improve the performance of sequence 
labelling tasks: use of conditional random fields (CRF) 
classification, part-of-speech (POS) tags as part of 
input, use of character level embedding, and use of 
bidirectional LSTM models. Several additional best 
practices and tweaks are summarized in Table 2. 
 
3. DeepCause artifact 

 
3.1. Training, development and test data 

 
We collected propositions and hypotheses from 

information system papers from the AIS basket of eight. 
For each hypothesis we labelled causes, effects, 
moderators, and mediators. Table 3 shows the training 
and test data. All datasets have a tabular structure with 
the columns Hypotheses, Cause, Effect, Moderator, and 
Mediator. Each row represents a sentence. Dataset 1 is 
manually constructed. In contrast, Dataset 2 (pseudo 
labelled training data) contains pseudo-labelled data 
produced by CauseMiner [32]. Lee [24] suggested that 
pseudo-labelled data might improve results.  

 

Table 3. Datasets 
Dataset Explanation Source Rows 
Dataset 1 
(training/test) 

Manually 
labelled 
sentences  

Information System 
papers from the AIS 
basket of eight  

1975 

Dataset 2 
(pseudo 
labelled 
training data)  

 

Automatically 
labelled 
sentences  

Sentences labelled by 
CauseMiner from 
Information System 
papers from the AIS 
basket of eight 

15179 

 
We tested the impact of pseudo labels by creating 

two different splits with three data sets each: a training 
set, a development set, and a testing set. 

First, for testing pseudo labels, we used 100% of 
Dataset 2 (pseudo-labelled data) and 50-60% of Dataset 
1 for the training set, 20-25% of Dataset 1 for the 
development set, and 20-25% of Dataset 1 for the test 
set. We used the development set for the hyperparameter 
tuning procedure.  

Second, for the experiments without pseudo labels 
we used only Dataset 1: 40-50% for training, 25-28% 
for development and 22-25% for testing.  

The assignment to the training, development, and 
test sets were randomized and hypotheses from the same 
paper might not be kept in the same set. 
 
 
 
 

3.2. Input features 
 
We represented each sentence from the input dataset 

with three feature types: word embedding, part-of-
speech (POS tags), and character embedding. 

3.2.1. Word embedding. Before generating the 
features, we cleaned the raw data by trimming extra 
whitespaces and quotes. To quantify the input 
sentences, we used the pre-trained word embedding of 
GloVe [35], which is pre-trained on 6 billion tokens 
from Wikipedia and news articles with a vocabulary size 
of 400,000 words. The word embedding was not 
retrained by us, which means that it was not updated 
during the training. In addition, we initialized the 
padding words with zeros. Padding was used to align the 
input data in each batch. 

3.2.2. POS tags. Khoo et al. [19] and Pakray and 
Gelbukh [33] illustrated diverse use-cases for POS in 
cause-effect extraction. In natural language, cause and 
effect could correlate to a particular POS tag sequence. 
Considering these facts, we added information about 
POS tags as a feature. POS tags were generated using 
the Python library spaCy [28].  

3.2.3. Character embedding. Papers about POS 
and NER labelling tasks often use character embedding 
features because these features are good at detecting 
morphologic clues in words. Huang et al. [17], Ma and 
Hovy [27], Liu et al. [26], Lample et al. [20], and Chiu 
and Nichols [5] demonstrated significant improvements 
of their results. However, Reimers and Gurevych [36] 
stated that these features do not influence the accuracy 
substantially. We decided to use character embedding 
features. 

For character embedding, we used the architecture 
of Ma and Hovy [27]. An embedding matrix was used 
so that each column corresponds to a single character. 
The width of the matrix was equal to the number of 
words in the dictionary and the height was a 
hyperparameter which could take a value of 15 or 30. In 
addition, a dropout layer was applied. The dropout rate 
was also a hyperparameter. Initial values of the matrix 
were drawn from the uniform distribution of the range 
[-0.05; 0.05]. Moreover, our character embedding 
features were trainable, in contrast to the word 
embedding. Next, we used one-dimensional 
convolutional layers with hyperbolic tangent as the 
activation function and the number of filters and the 
window size as hyperparameters. To retrieve the 
compactable features, we applied pooling layers on top 
of the character embedding. The max-pooling layer had 
a pool size of 35 (the length of the longest word). 
Finally, we stacked all three features for each word and 
sorted the entire input by the length of each row to 
reduce the padding during the training with minibatches. 
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3.3. Output layer 
 

We labelled each word according to a selected 
tagging schema (see Table 4). In place of padding 
values, we used the ‘out’ tag ‘O’ (from BIO and IOB 
tagging) labels. We used one hot encoding for CRF 
classifiers and a compact encoding for softmax. These 
tags are the output that the sequence labelling algorithm 
should learn for each token in the input sequence. 

 

Table 4. Used tagging schema 
Tag Meaning 
B-Cause Beginning of Cause Chunk 
I-Cause Cause Chunk (Inner or End) 
B-Effect Beginning of Effect Chunk 
I-Effect Effect Chunk (Inner or End) 
B-Moderator Beginning of Moderator Chunk 
I-Moderator Moderator Chunk (Inner or End) 
B-Mediator Beginning of Mediator Chunk 
I-Mediator Mediator Chunk (Inner or End) 
O Out (all other words) 

 
3.4. Model 
 

 We tested different deep learning architectures for 
the recurrent layers: SimpleRNN, LSTM, BiLSTM, and 
GRU. Depending on the tested hyperparameters, the 
architectures can be modified significantly. For 
example, adding an extra dropout layer, duplicating a 
layer, removing a layer and partitioning of input, and so 
on. Figure 3 shows the used example of a deep learning 
model with a bidirectional LSTM, an extra dense layer, 
and a CRF output layer.  

 

 
Figure 3. Exemplary tested model 

We implemented most of the best practices from 
Table 2. However, we did not implement number 4 
(dense concatenation through the layers) and 6 (connect 
some features directly to an output layer, skipping RNN 
layers) because of high implementation complexity with 

the used Keras framework and the relatively low 
expected impact. All other suggestions were 
implemented and tested, like the Xavier initialization 
[11] or adding an extra dense layer with a ReLU 
activation before the output layer [20]. For the output, 
we tested two different layers: a CRF classifier layer to 
catch joint pairwise dependencies between adjacent 
labels, and a softmax classification layer.  

 
3.5. Hyperparameter tuning 
 

We tested a list of values for different 
hyperparameters (Table 5). Also, the type of neural 
network was a hyperparameter for the model. 

 

Table 5. List of hyperparameters 
Category Parameter Values 
NN model Architecture SimpleRNN, 

LSTM, BiLSTM, 
GRU 

NN model Output layer CRF, CRF with an 
extra dense layer, 
Softmax 

NN model Minibatch size 1, 2, 4, 8, 16 
NN input Whether to use 

POS tags 
True, False 

NN input Whether to use 
char embedding 

True, False 

Char 
embedding 

Number of filters 15, 30 

Char 
embedding 

Number of 
dimensions 

15, 30 

Char 
embedding 

Dropout 0, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 

Char 
embedding 

Window length 3, 6 

Word 
embedding 

Dropout 0, 0.2, 0.4, 0.6 

Word 
embedding 

Number of 
dimensions 

100, 200, 300 

Recurrent 
layer 

Number of 
recurrent units 

100, 300 

Recurrent 
layer 

Number of 
recurrent layers 

1, 2 

Recurrent 
layer 

Dropout 0.1, 0.2, 0.3, 0.5, 
0.7, 0.9 

Optimizer Learning rate 
(only for SGD 
optimizer)  

0.001, 0.005, 0.01, 
0.05, 0.1, 0.5, 1.0  

Optimizer Decay 0, 1e-4, 1e-6 
Optimizer Momentum 0, 0.9 
Optimizer Nesterov 

optimization 
True, False 

Optimizer Optimizer type SGD, Adam, 
Nadam, RMSProp, 
Adagrad, Adadelta 

Optimizer Patience 4 

Word 
Embedding

Word 
Embedding

Word 
Embedding

Word 
Embedding

Word 
Embedding

Char 
embedding

Char 
embedding

Char 
embedding

Char 
embedding

Char 
embedding

POS 
tag

POS 
tag

POS 
tag

POS 
tag

POS 
tags

L S T M

L S T M

L S T M

L S T M

L S T M

LSTM

LSTM

LSTM

LSTM

LSTM

CRF

CRF

CRF

CRF

CRF

CNN for 
characters of 

each word

One hot 
encoded 
POS tags

Bi-directional 
LSTM Layer

Extra dense 
layer

CRF layer

GloVe word 
vectors for 
each word

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input
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Grid search became impossible due to a huge 
number of possible combinations. Similarly, random 
search [2] and Bayesian search [37] turned out to be too 
time-consuming. That is why for hyperparameter tuning 
we used an approach that combined ideas from both 
methods.  

During the training we iterated over each group of 
hyperparameters to find the value producing the highest 
F1 score independently from the rest of parameters. On 
each step the value of the yet untraversed group of 
hyperparameters was just assigned to the first element. 
We shuffled the list of hyperparameters for each 
parameter several times to eliminate sticking to a local 
minimum and thus adding randomization, similarly to 
random search [2]. Before each shuffling, we modified 
the values for the hyperparameters based on the results.  

 
3.6. Training 
 

For each set of tuning parameters, we trained our 
model on the dataset as described in Section 3.1. The 
model was trained a maximum of 200 epochs with early 
stopping, if the loss function was not improving for 4 
epochs (patience). One epoch is one forward and one 
back propagation with all the training data. The number 
of epochs before the interruption (patience) was also 
used as a hyperparameter (see Table 5). We tried to 
achieve balance between underfitting and overfitting, as 
well as to meet performance requirements. The model 
was trained with batches. We forward propagated the 
input over the hidden layers, calculated the gradients, 
back propagated errors, and updated the weights of the 
neural network. As an output layer, we tested softmax 
and CRF.  
 
4. Evaluation  

 
4.1. Evaluation metrics 
 

To evaluate the efficacy of our artifact and the 
impact of the different deep learning architectures, we 
analyzed all results and compared the performances of 
our models. Each configuration is a combination of 
hyperparameter values (Table 5) and is considered one 
experiment. We used the following metrics to evaluate 
the artifacts: 
• Precision: The percentage of detected sequences 

(chunks) that are correct [38, 39]. If only one token 
was not correctly included or excluded to a 
sequence that describes a construct, then the 
sequence is not correctly detected. 

• Recall: Percentage of sequences in the data that 
were found by the model [38, 39].  

• F1 score: Harmonic mean of precision and recall 
[38, 39]. We used the F1 score to find the best 
hyperparameters because it incorporates both recall 
and precision.  

 
4.2. Results of hyperparameter testing 
 

4.2.1. Pseudo labels. Figure 4 shows a swarm plot 
of all experiments with and without pseudo labels. The 
output layer is color coded. We see that pseudo labels 
are not improving the results. 
 

 
Figure 4. F1 scores with and without pseudo 

labels (color=output layer) 
 

4.2.2. RNN architecture. Figure 5 shows the best 
performing experiments without pseudo labels for the 
different RNN architectures (Bidirectional LSTM, 
LSTM, GRU, SimpleRNN) and the different output 
layers. It shows that the best development F1 score was 
by bidirectional LSTM. 
 

 
Figure 5. Best F1 score by RNN type and output 

layer (without pseudo labels) 
 

4.2.3 Output layer. Figure 4 shows a swarm plot of 
all experiment with the output layer (CRF with extra 
dense layer, CRF, and softmax) encoded in the color. 
Figure 5 shows the impact of the output layers on the 
best accuracy. Both figures show that CRFs are 
beneficial. CRF without an extra dense layer showed 
slightly better results.  
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4.2.4. Optimization algorithm. Figure 6 shows the 
performance by the used optimization algorithm (SGD, 
Adam, Adagrad, Rmsprop, Nadam) and the RNN 
architectures. Figure 7 shows the performance of the 
used optimization algorithm and the used output layer. 
SGD performed worse than the other optimizers. The 
Adam algorithm outperforms the others. Unfortunately, 
we were not able to conduct a deeper investigation on 
all optimizers, especially Nadam, because our 
hyperparameter optimization algorithm did not include 
enough experiments with all optimizers. 

 

 
Figure 6. F1 score by optimization algorithm and 

RNN types  
 

 
Figure 7. F1 score by optimization algorithm and 

output layer classifier 
 

4.2.5. POS tags. Figure 8 shows the kernel density 
distribution (KDE) of all experiments with their F1 test 
scores for the experiments with POS tags (With) and 
without POS tags (Without). The data suggests that 
using POS tags can improve the model. However, we 
are not claiming that this effect is significant, because, 
as stated before, data may not be balanced enough. 

 

 
Figure 8. Influence of POS tags (With=with POS 

Tags) on F1 score  

4.2.6. Character embedding. Figure 9 shows the 
kernel density distribution (KDE) of the F1 test score 
with character embedding (With) and without character 
embedding (Without). We observe a performance 
improvement with character embedding. However, the 
impact is smaller than for the POS tags.  

 

 
Figure 9. Influence of character embedding 

(With=with character embedding) on F1 score 
 
4.2.7. Tagging scheme. The distributions of the F1 

score for each tagging schema (Figure 10) suggest that 
the choice between BIO and IOB had no significant 
effect on the performance of the model.  

 

 
Figure 10. Influence of tagging schema  

(BIO2 or IOB) on F1 score  
 

4.2.8. Patience. We used an early stopping rule so if 
the loss function was not improving for a number of 
epochs (patience), we would stop the learning process. 
A patience of 3 and 4 seemed to perform better but the 
impact was not very strong. We achieved the best results 
with a patience of 4. 

 
4.2.9. Minibatch size. Smaller batch sizes (1, 2, and 

4) seemed to perform better than larger batch sizes, but 
the influence was not very strong. We achieved the best 
results with a batch size of 1. 
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4.3. Results 
 

Table 6 shows the top three results based on the F1 
score of the development set with the used 
hyperparameters. All of the top three results did not use 
pseudo labelling. For the results without pseudo labelled 
data, the training set size was 987 sentences and the 
development and training set size was 494 sentences.  

The best F1 score was approximately 80.2% with 
precision of 80.3% and recall of 80.0%. The confusion 
matrices of cause and effect chunks are depicted in 
Table 7 and Table 8 (based on the best result). Because 
the total number of chunks of moderators and mediators 
were only around 30, we did not include a confusion 
matrix for these tags.  

 
Table 7. Confusion matrix for cause on a  

chunk level 
  Predicted 
  Cause chunks Not cause 

chunks 

Actual 
Cause chunks 291 61 

Not cause 
chunks 65 - 

 

Table 8. Confusion matrix for effect on a  
chunk level 

  Predicted 
  Effect chunks Not effect 

chunks 

Actual 
Effect chunks 288 86 

Not effect 
chunks 82 - 

 
5. Conclusion  
 

Table 9 shows the design science process and 
contributions of our paper, structured based on the 
design science guidelines of Hevner et al. [14]. 

Research Question 1 asked if deep learning methods 
for sequence labelling were capable to extract cause-
effect extraction. The best model achieved a F1 score of 
80% on the chunk level. Table 10 shows the results of 
the rule-based system CauseMiner [32] for cause and 
effect tested on 564 sentences. When we compare the 
performances of DeepCause and CauseMiner, we see 

that the F1 score of CauseMiner is slightly smaller (79% 
on a chunk level).  

Rule-based systems like CauseMiner and machine 
learning-based systems like DeepCause have both their 
benefits and drawbacks for cause-effect extraction. 
Rule-based systems are often brittle, they need a huge 
effort and special domain knowledge to be built, they 
are optimized only for a specific use case, and they are 
not leveraging the possibilities of more training data. 
However, they do not need so much training data and 
complex patterns can be described by the rules. By 
contrast, machine learning systems need a lot of 
annotated data and even for end-to-end models like deep 
learning, complex feature engineering steps are 
necessary. However, with more data their performance 
will improve up to certain a point. Moreover, the same 
architecture can also handle slightly different annotation 
tasks.  

 

Table 9. Design science contributions 
Guideline [14] Contribution 
Design as an 
Artifact 

The research outcomes: 
1. DeepCause artifact for extracting elements 
of a hypothesis 
2. Influence of different model parameters on 
the performance 

Problem 
Relevance 

Because of the exponentially increasing 
number of scientific papers, we need methods 
for extracting causal claims for theory 
ontology learning 

Design 
Evaluation 

Evaluation of the artifact based on a test set, 
measured on F1 score, accuracy, precision, 
and recall 

Research 
Contributions 

Compared to the rule-based CauseMiner tool, 
this paper shows the potential of deep learning 
for hypothesis extraction 

Research Rigor Creating a gold standard, split of the data into 
training, development, and test sets  

Design as a 
Search Process 

Extensive test of different hyperparameters 

Communication 
of Research 

Detailed information of the best deep learning 
architectures 

 
Table 10. Performance of CauseMiner [32] 

Variable Prec. Recall F1 Acc. 
Cause 0.79 0.79 0.79 0.66 
Effect 0.77 0.81 0.79 0.66 

 

Table 6. Top three best results with the different configurations 
Dev. Set Test set Archi-

tecture 
Output 
Layer 

Embedding  
dim. 

Optimizer RNN 
dropout 

Number of 
recurrent 

layers 

Tagging 
schema 

Pseudo 
labels 

POS 
tags 

char. CNN 
embedding 

F1  Precision Recall F1 

79.15 80.32 80.0 80.16 BiLSTM CRF 300 Adam 0.3 2 BIO2 FALSE TRUE TRUE 

78.49 78.42 79.79 79.1 BiLSTM CRF 100 Adam 0.4 1 BIO2 FALSE TRUE TRUE 

76.85 80.14 79.58 78.86 BiLSTM CRF 100 Adam 0.0 1 BIO2 FALSE TRUE TRUE 
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Research Question 2 asked for the most effective 
deep learning architectures for the cause-effect 
extraction task. From an extensive literature review we 
distilled best practices in the field and carried out a 
range of experiments with possible deep learning 
configurations.  

We found that pseudo labelling did not improve the 
results. One reason is that pseudo-labelled data is error-
prone as Table 10 shows, so that DeepCause also learns 
partially wrong patterns when using pseudo labels.  

We found a bidirectional LSTM (BiLSTM) as the 
most effective RNN-architecture. For the output layer 
we found conditional random fields (CRF) without an 
extra dense layer as most promising. Also, using POS 
tags and character embedding improved the results. We 
used pre-trained GloVe word embedding vectors. 

One of the limitations of the study is the size of the 
dataset which comprised of only 1,975 manually 
labelled sentences and 15,179 pseudo labelled 
sentences. Therefore, in future work we will improve 
the quantity and quality of our data.  

We did not analyze if the publication year of the 
hypotheses would have an influence on the accuracy of 
the model. However, we do not expect that the way 
hypotheses are phrased in English language changed 
dramatically over the years. Therefore, we would not 
expect a big influence of the publishing year. 

Deep learning models involve a lot of parameters 
and analyzing all of them was an intractable task for this 
paper. For example, stacked bidirectional LSTM models 
with CRF classifiers require high processing power. We 
could not test all combinations of the hyperparameters 
and used a special hyperparameter tuning approach 
instead.  

There are multiple opportunities for further research. 
An interesting possible solution regarding the layer 
connections are highway networks [43] that 
demonstrated to be beneficial for sequence modelling 
tasks. Also, we might try multitask learning [6] to 
extract cause, effect, moderator, and mediator, as well 
as word level features as different tasks. Also, a trained 
word embedding on a large number of information 
systems papers might be promising. The effect of 
dropout should be studied more detailed to regularize 
the models properly.  

One problem of our artifact was the muddling of 
cause and effect chunks. A possible solution would be 
to use sequence labelling just for construct chunk 
extraction and an additional classifier to predict which 
of the different chunks are cause, effect, etc. An 
ensemble-based system that combines the rule-based 
method of CauseMiner and the machine-learning 
method of DeepCause might be an opportunity to 
increase accuracy even further. 
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