
Prioritizing Tasks in Code Repair: A Psychological Exploration of Computer
Code

Sarah A. Jessup
Air Force Research Laboratory

Wright Patterson AFB, OH
sarah.jessup.ctr@us.af.mil

Gene M. Alarcon
Air Force Research Laboratory

Wright Patterson AFB, OH
gene.alarcon.1@us.af.mil

Tyler J. Ryan
General Dynamics Information

Technology, Dayton, OH
tyler.ryan@gdit.com

David W. Wood
General Dynamics Information

Technology, Dayton, OH
david.wood@gdit.com

August Capiola
Air Force Research Laboratory

Wright Patterson AFB, OH
august.capiola.ctr@us.af.mil

Abstract

The current study explored the influence of task
prioritization on how computer programmers reviewed
and edited code. Forty-five programmers recruited from
Amazon Mechanical Turk downloaded and edited a
computer program in C#. Programmers were given
instructions to review the code and told to prioritize
either the reputation, transparency, or performance
aspects of the code, or were given no prioritization
instruction. Code changes and remarks about their
changes to the code were analyzed with a between-
within multivariate analysis of variance. Results
indicate prioritizing an aspect of the code leads to
increased performance on that aspect, but with deficits
to other aspects of the code. Managers may want
programmers to prioritize certain aspects of code
depending on the stage of development of the software
(i.e., testing, rollout, etc.). However, managers should
also be cognizant of the effects task prioritization has on
programmer perceptions of the code as a whole.

1. Introduction

Computer code has become an integral part of
modern society. Code relates to almost every aspect of
our lives ranging from high-risk (e.g., health care
databases, credit reporting agencies) to low-risk
contexts (e.g., online gaming, cellphone storage).
Despite the pervasiveness of code, little is known about
how software programmers evaluate the code they reuse
or repair, and the psychological processes that influence
their subsequent decisions. Recent hacks to the Office
of Personnel Management [1] and Equifax [2] illustrate
the costs of using suboptimal code, as their architectures
included bugs and security flaws. Most vulnerabilities
found in code are legacy issues from previous iterations,
indicating programmers ignored (or were not aware of)
the issue in the code despite extant literature detailing

these vulnerabilities [3]. Vulnerabilities such as
memory violations (e.g., buffer overflows), input
validation errors (e.g., SQL injection), privilege
confusion (e.g., FTP bounce), or side channel attacks
(e.g., timing attacks) are preventable assuming the code
is properly vetted. The question remains: how do
managers enable programmers to notice these
vulnerabilities in the code and repair them?
Psychological theories may help to explain why some
programmers spot vulnerabilities in code, while others
miss them altogether. Resource theories on task
prioritization, such as multiple resource theory [4], posit
that people have a limited supply of cognitive resources
that when over tasked affect subsequent performance in
tasks that are (or are not) prioritized. Prioritizing aspects
of code repair may affect repairs and subsequent
reporting of repairs.

RQ1: Does task prioritization affect the types of changes
made to code?

RQ2: Does task prioritization affect the types of remarks
about the changes to code?

1.1. Code Review

Code has become a ubiquitous aspect of society, but
this has come at a cost. Programmers are hard-pressed
to meet deadlines for large projects and must review
code quickly because of the increasing demands for
software development and updates. When software is
first released, bugs and security flaws within the
software can have large scale implications. For
example, the Heartbleed issue found in 2014 allowed
hackers to call back account information for numerous
accounts, necessitating customers change their
passwords once the vulnerability was fixed [5, 6, 7]. The
patch was a minor one [8], in that it only required a
change to one line of code. Specifically, the patch
prevented buffer over-read, and many in the industry
were surprised that they did not notice the vulnerability
beforehand [9]. However, this issue is not unique to

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60090
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 6559

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heartbleed. A recent article noted that 80-90% of
vulnerabilities in software are legacy issues [3].

Issues such as the ones detailed above have led
researchers to explore how programmers evaluate code.
Researchers in computer science have utilized eye-
tracking technologies and found that programmers who
took longer to scan the code demonstrated better defect
detection compared to programmers who took a shorter
amount of time to scan the code [10]. Albayrak and
Davenport [11] found aspects of the code such as
indentation and naming defects influence false positive
rates when inspecting code. Research on code review
has also illustrated factors such as patch size, bug
priority, and the organization itself can influence
whether patches are accepted and how long it takes for
them to be accepted [12]. However, little research to
date has explored the psychological underpinnings of
code review from the perspective of the programmer.

Psychologists have also gained an interest in the
attributes of code that lead programmers to reuse code.
Alarcon et al. [13] performed a cognitive task analysis
(CTA) and found that three factors influence
perceptions of code: reputation, transparency, and
performance. Reputation is defined as how the code is
assessed based on external data, such as the source from
which the code originates (e.g., a coworker, a website)
and the information available about the code (e.g.,
reviews, number of users, etc.) often found on external
websites. Transparency is defined as how well the user
understands the code. This can include aspects such as
the readability and organization of the code, as well as
comments throughout the code. Lastly, performance is
defined as the perceived capacity of the code.
Performance comprises aspects such as efficiency,
resiliency, and flexibility of the code. The authors also
noted the factors are not necessarily orthogonal, but
instead may have conceptual overlap. For example,
code that is efficient and concise may contribute to both
perceptions of performance and transparency. Although
Alarcon et al. [13] were focused on trust in and reuse of
code, these three factors add insight into how
programmers evaluate code. These factors, in part,
compose the psychological foundation of how
programmers perceive code and may influence how
programmers review code [14].

1.2. Task Priority

Cognitive resource theories in psychology have
posited individuals have a limited pool of cognitive
resources [4, 15]. Therefore, people must often control
their distribution of attention towards tasks they find
particularly important [16, 17, 18]. Multiple resource
theory [4] states an individual can allocate attention to
multiple tasks at a time, but at a cost to performance.

Conversely, people can focus attention on a single task,
which may result in a lack of awareness for other events
in the environment. For example, drivers may not notice
an obstacle in the road while attempting to send a text
message. Unusual stimuli in the road should normally
attract attention, but if a different task is prioritized (i.e.,
texting a friend) the shift in attention may not occur
leading the driver to crash [19]. Put simply, people have
a limited capacity of resources, necessitating
prioritization of those resources which ultimately affects
performance outcomes in the real-world.

People can be instructed to prioritize one task over
another [20]. In experimental settings, participants are
typically instructed to complete a primary task (i.e., a
task to prioritize) and a secondary task (i.e., a task that
is not prioritized) simultaneously. When the primary
task is prioritized, performance increases on this task
while secondary task performance decreases [20, 21].
Instructing a worker to prioritize one task over another
can lead to a performance tradeoff, despite no changes
in the actual tasks [20, 21, 22]. Additionally, the
degradation in secondary task performance can be used
to quantify the resources allocated towards the primary
task [23].

Concurrent tasks, requiring overlapping resource
requirements, are cognitively demanding. However, if
the resources are from different modalities, multitasking
may be possible. For example, an air traffic controller
can be expected to acknowledge vocally while still
monitoring a visual space, as each task does not demand
the same resources [4]. In contrast, a driver trying to text
and drive experiences interference as both the texting
and driving tasks require overlapping perceptual and
cognitive resources. Code review is a unique task in that
it requires both cognitive comprehension and mental
rotation for adequate performance.

1.3. Task Priority in Coding

Software programming provides a unique context to
explore task priority. Applied researchers have noted
that studies in health care (e.g., [24]) and driving (e.g.,
[25, 26]) lack ecological validity, as researchers do not
want to put a participant’s life at risk during the
experiment (e.g., driving, hospital situations). Further,
past research has not found a straightforward
relationship between task priority and performance. For
example, Waller and colleagues discussed how
contextual factors are key in making task-prioritization
more or less important for performance [27, 28].

In the code review process, programmers may be
instructed to prioritize one task over another.
Programmers can allocate specific resources to a
specific aspect of the review and increase their
performance on that aspect, but this may result in

Page 6560

programmers not noticing other aspects of the code.
Focusing on a specific aspect of code will tax cognitive
resources, as the programmer will try to find issues that
are related to those aspects they are to prioritize. This
allocation of resources towards the primary task should
increase performance on the aspect of code prioritized,
but programmers should miss other issues as working
memory is narrowed on the primary task. Consider one
piece of code given to multiple programmers: one
programmer may be instructed to look for
vulnerabilities, whereas as another programmer may be
instructed to look for functional defects. These
instructions can come from either their supervisor (e.g.,
“fix this memory leak,” “search for vulnerabilities”) or
from the job position itself (e.g., security specialist)
[12]. Therefore, it is important to consider how task
prioritization influences subsequent programmer
performance.

The software review context provides an
ecologically valid environment to investigate the
influence of task priority on performance. An
experimenter can provide a programmer with code for
review and repair much like a manager provides a task
to an employee. This allows for multiple aspects of the
code to be manipulated, and the participants can be
instructed to prioritize different tasks. The same code
can be used for all participants to determine if task
prioritization improves performance in that task. For
example, in code review there may be several different
issues such as vulnerabilities, breaks with coding
conventions, and unnecessary processes, but only
focusing on breaks in coding conventions could result in
neglecting vulnerabilities.

1.4. Amazon Mechanical Turk

Amazon Mechanical Turk [29] is an online
crowdsourcing website in which individuals (or
“workers”) can participate in research studies or
complete tasks for monetary compensation. Businesses
or individuals can post jobs or tasks, known as Human
Intelligence Tasks (HITs), that computers are currently
unable to perform [30]. MTurk has proven itself to be a
valuable resource for psychological research, allowing
access to a large diverse subject pool with little cost to
researchers compared to classical psychological studies
[31, 32, 33]. Additionally, researchers have
demonstrated data collected from MTurk offers
comparable results to classical psychological studies
[34, 35].

The majority of psychological research utilizing
MTurk has been on self-reports. Although self-reports
are a valid psychological measure of internal cognitive
states, behaviors have largely been ignored in research
conducted on MTurk, and to a larger degree psychology

[36]. The MTurk platform has the ability to request tasks
such as writing product descriptions, translating from
one language to another, and transcribing audio files.
One such task that can be performed via MTurk is code
review and repair. In a study on perceptions of code
trustworthiness, Alarcon et al. [37] were able to
replicate their main effects of code manipulations on
trustworthiness perceptions found in an in-person
sample on MTurk, indicating programmers are available
on the platform. The platform makes it possible to have
programmers review, edit, and repost code to accurately
explore behaviors via MTurk without knowing they are
in an experiment.

We utilized the factors from Alarcon et al.’s [13]
CTA to assign participants a task priority (i.e.,
reputation, transparency, or performance) when
reviewing code. This is the first study the authors are
aware of that has attempted to manipulate task
prioritization in code repair and the first to use MTurk
for such a task. We hypothesize programmers will make
more changes to the code according to the task they are
assigned to prioritize compared to tasks they have not
been assigned to prioritize.

2. Method

2.1. Stimuli

Code for an image filter was created as stimuli for
the current study. We did not utilize a previously
developed program for degradation because the
participants may have been able to find the code online
and simply upload the non-degraded version. Research
has demonstrated MTurk participants are more likely to
use the internet to find answers, even with no incentive
for correct responses [31]. As such, we wanted to ensure
participants could not find the non-degraded code online
and repost it. Participants in all conditions received the
same image filter stimuli with the same degradations.
The two main classes in the program used for analysis
totaled 442 lines of code written in the C# programming
language. C# was utilized because it was the primary
language of the programmer who created the stimuli in
the experiment. The code stimuli are available to view
online
(https://www.github.com/PerfLogistics/ImageFilter).

The code was degraded according to the three
factors described by Alarcon et al. [13], namely
reputation, transparency, and performance. Several
manipulations were guided by previous studies that also
degraded source code [37, 38]. Reputation
manipulations to the code entailed inclusion of unused
dependencies. Transparency manipulations to the code
included removal of meaningful comments, leaving in
code that is commented out, using unintuitive variable

Page 6561

names, and absent or poor use of whitespace and
indentation. Finally, performance manipulations to the
code entailed code that had no meaningful function,
poor or absent error handling, and code that
unnecessarily accessed the system’s BIOS.

2.2. Procedure

The study was posted to MTurk as a task to be
completed (a HIT). To ensure ecological validity, a fake
company name was created to ensure participants were
unaware they were participating in a psychological
experiment. Requirements for the study were that
participants know the C# programming language,
submitted code changes must compile, and participants
had to have a GitHub account or the ability to create one
so that they could access the code. Participants were
able to view the code prior to accepting the HIT by
following the link to the code on GitHub. Once
participants accepted the HIT, they had 24 hours to
complete the task of cleaning and repairing the code.

Participants completed the HIT in one of four
conditions: 1) control, 2) reputation, 3) transparency, or
4) performance. All conditions contained the following
description, “[Company Name] is looking for assistance
with completing and correcting computer code created
by one of our students. Participants will be compensated
with $20.00 for their participation. $50.00 will be
awarded to the best code presented and chosen to be
implemented within our work.” The bonus was utilized
to ensure participants were adequately incentivized to
perform the task well. A control condition was included
to compare the experimental conditions to general code
review instructions. The control condition stated, “After
clicking on the GitHub link you will find code created
by one of the students working in our office. The
program is meant to be used as an Image filter, though
we see it has several bugs. We’d like for you to review
the code and fix any errors you find in it.” No other
directions were given. Each of the conditions contained
the control condition statement.

In each experimental condition, an additional
statement focused on one of the three factors based on
the CTA by Alarcon et al. [13]. The reputation condition
included the statement, “The code seems to be using
several different references and we are unsure what they
do, and if they are completely necessary. For your task,
we need you to review the code and how it uses the
reference and remove any redundancies. In addition, if
you know of a reference online that could be used in
place of what the student used, add and implement that
into the code.” The transparency condition included the
statement, “We are having issues reading and
understanding the code that the student created. The
code isn’t completely commented and seems to be all
out of place. The code will be used for a larger project

and will be public to others in our field, so the code
should look professional. We need you to comment the
code and clean up formatting where you see needed.”
Lastly, the performance condition included the
statement, “The code is having issues running correctly.
We aren’t sure if our student used the best methods for
the image processing. In addition, the GUI is very
crowded and we’d like it condensed into a list box. We
would like for you to find any performance issues in the
code and correct them, as well as also correcting the
GUI.” Participants were instructed to review and repair
the code according to one of four conditions. For
example, if a participant was assigned to the
transparency condition, then reviewing and repairing
the transparency manipulations was their primary task
directive but they still received the control condition
message to correct and complete the code in general. It
should be noted that because the stimuli was the same in
every condition, participants could make reputation,
transparency, and performance changes and remarks,
regardless of the condition to which they were assigned.
For example, in the transparency condition participants
were asked to fix the transparently issues, but the same
performance issues in the performance condition were
also in the transparency and reputation conditions.

We posted each condition separately so that only one
condition was running on MTurk at a time. Participants
who accepted the posted HIT were excluded from
subsequent posted HITs. Participants accepted one of
four conditions (control, reputation, transparency, or
performance), depending on what was available when
they were online, and participants downloaded the code
from the GitHub website. After completing the task,
participants copied the repaired code as a text document
into a response field in MTurk. Next, participants were
given a chance to describe their changes to the code and
why we should choose their code for implementation.
Participants were not required to describe their changes
to received compensation. After completing data
collection, two experienced programmers reviewed the
code and determined the code with the best code repair
for each of the four conditions. In each condition, the
MTurk participant that cleaned and repaired the code
best was then credited with the bonus money (i.e.,
$50.00 USD) through MTurk.

2.3. Participants

A total of 106 participants were recruited from

MTurk. Participants were paid $20.00 USD to clean and
repair a piece of code (see Stimuli). The participation
cost per participant is much larger than traditional
MTurk studies. However, we felt the task justified the
pay as the task would take about an hour to complete
and the participants needed a particular skill, namely
programming. We excluded 61 participants because

Page 6562

either they did not make any changes to the code, or the
participants submitted work from another online
repository instead of changing the code as directed,
failing to follow the task instructions. This left a total of
45 participants for analyses across the four conditions
[control N = 10 (13 rejected), reputation N = 12 (13
rejected), transparency N = 11 (21 rejected),
performance N = 12 (14 rejected)]. No demographics
were collected on participants as it would allude to the
experimental nature of the study. In addition, we were
concerned that participants may inflate their experience
to get the $50 bonus. We did not verify if the participant
knew C#, as a requirement of being compensated was
that the code compiled. As such, if participants’ changes
compiled then it was assumed they had at least a
functional knowledge of programming in the C#
language. Any participant that signed up for the study
under one condition was blocked from viewing the
study using the qualifications tool regardless if they
completed the task or not. This was done to ensure we
did not collect data on the same participant several
times. The study was overseen by the Air Force
Research Laboratory institutional review board.

2.4. Data Cleaning

A researcher with a programming background used
a utility tool to calculate the changes participants made
to the code. This tool compared the differences between
the original piece of code and the augmented version,
allowing the researcher to determine what changes were
made by each participant. For clarity in explaining our
results, we refer to these changes as “Updates” in our
model. The programmer who created the stimuli
qualitatively coded the changes made by the participants
from MTurk into one of three categories. Reputation
Updates consisted of adding or removing libraries.
Transparency Updates consisted of adding comments,
removing comments, adding spaces between numbers
and signs, changing the names of variables, and
indenting. Lastly, Performance Updates consisted of
enumerating, removing methods, adding methods,
adding disposals, event handlings, switches, dictionaries
adding try/catch, and deleting lines of code. Two
additional programmers with no knowledge of the
software replicated the binning of the Updates into the
aforementioned categories. There were no changes
made to the code that were not encompassed by these
three categories. After coding the changes, the
programmer then qualitatively coded the remarks
MTurk programmers made describing their code into
one of three categories: reputation, transparency, and
performance. These Remarks served as manipulation
checks and analyses were conducted on the Remarks.
The Updates and Remarks were analyzed using
multivariate analysis of variance (MANOVA).

The Update variable consists of all reputation,
transparency, and performance changes for the
individual. The Remarks variable consists of all
reputation, transparency, and performance related
remarks an individual made about their changes to the
code. Updates and Remarks are nested within
individuals. The data were structured as a repeated
measures design. In other words, one participant had
reputation changes, transparency changes, and
performance changes as outcomes that were all part of
the Update outcome variable. We structured the data
this way to be able to account for individual differences
in the outcomes. The within-subject variable consists of
trustworthiness factors indicating the type of change
(i.e., reputation, transparency, or performance), which
we refer to as Categories of Changes.

3. Results

To address RQ1 and RQ2, a two-way mixed design
multivariate analysis of variance (MANOVA) was run
to determine the effect of Condition (between-subjects
factor) and Categories of Change (within-subjects
factor) factors on the number of Updates and Remarks
(dependent variables). We analyzed the data against a
null hypothesis that no significant differences between
Condition groups exist and no significant differences
between Categories of Change exist. Preliminary
assumption checking revealed that data was not
normally distributed, as assessed by Shapiro-Wilk test
(p < .05). After applying a square root transformation,
normality worsened. As such, we did not transform our
data. There were univariate outliers as assessed by
boxplot but no multivariate outliers, Mahalanobis
distance (p > .001); we retained all cases. A
Greenhouse-Geisser correction was applied when the
sphericity assumption was not met.

A repeated measures MANOVA was conducted to
test Condition and Category of Changes made on
Updates and Remarks. Condition had a significant
influence on both dependent variables (Updates and
Remarks) [Pillai’s V = .45, F(6, 82) = 3.91, p < .01, ηp

2
= .22, power = .99]. There was a significant difference
in the Category of Changes in the dependent variables
(Updates and Remarks) [Pillai’s V = .74, F(4, 38) =
27.64, p < .001, ηp

2 = .74, power = .99]. Additionally,
Condition moderated the effect of Categories of Change
on the dependent variables [Pillai’s V = .895, F(12, 120)
= 4.25, p < .001, ηp

2 = .30, power = .99]. Both factors
resulted in critical p-values less than the selected
significance level, indicating the Condition varied
significantly across groups and there were differences in
Categories of Change. As both research questions were
qualified by an interaction, we conducted simple effects
analyses to determine the nature of the relationship. To

Page 6563

Table 1. Estimated Means and Standard Errors of Updates and Remarks (Standard Deviations are in
Parentheses of Mean Totals)

Condition
Updates Remarks

Reputation Transparency Performance Reputation Transparency Performance
Control .90 (.41) 18.00 (4.82) 8.30 (2.21) .50 (.22) 1.20 (.76) 1.10 (.41)

Reputation 1.75 (.65) 29.08 (8.52) 2.75 (.698) 1.17 (.27) 1.92 (.58) 2.25 (.62)
Transparency 1.82 (.74) 62.09 (7.29) 4.00 (1.12) 1.55 (.62) 3.82 (.74) 2.45 (.64)
Performance 1.17 (.49) 13.42 (3.91) 9.17(1.51) .33 (.14) .83 (.37) 3.75 (.95)
Mean Total 1.42 (1.96) 30.51 (28.45) 6.00 (5.41) .89 (1.27) 1.93 (2.30) 2.44 (2.47)

determine the interactions and simple effects, univariate
ANOVA analyses were conducted. To minimize Type I
error rates, the ANOVA significance levels were
adjusted for each analysis per Cramer [39]. All
univariate main effects ANOVA analyses significance
level was adjusted to .025(.05/2).

3.1. Univariate Updates Analyses

The univariate main effect of Condition was
significant for Updates [F(3, 41) = 8.42, p < .001, ηp

2 =
.38, power = .99] indicating task prioritization
influenced participant’s Updates. The univariate main
effect of Categories of Changes was significant for
Updates [F(1.08, 44.21) = 68.38, p < .001, ηp

2 = .63,
power = .99] indicating there were significant
differences in the types of Updates the participants were
making. The results of the ANOVAs were qualified by
an interaction between the factors on Updates [F(3.24,
44.21) = 12.23, p < .001, ηp

2 = .47, power = .99]. Means
and standard errors are illustrated in Table 1. To
examine the univariate simple effects of Condition on
Updates, the one-way ANOVA analysis significance
level for simple effects was set to .006 (.025/4). We
chose to use Dunnett’s C to examine post-hoc tests.

First, we explored the influence of Condition within
each Category of Changes for Updates. There was a
significant simple effect of Condition on Transparency
Updates [F(3, 41) = 11.24, p < .001]. Participants made
more Transparency Updates in the Transparency
Condition compared to the Control Condition (Mean
difference = 44.09, SE = 8.74, p < .01) and Performance
Condition (Mean difference = 48.67, SE = 8.27, p <
.006). Also, there was a significant simple effect of
Condition on Performance Updates [F(3, 41) = 4.98, p
= .005], such that participants in the Control and
Performance Conditions made more Performance
Updates than the Reputation or Transparency
Conditions. However, due to our stringent p-value
cutoff in an effort to reduce Type 1 error, no post hoc
analyses emerged as significant for the Performance
Condition. The post-hoc tests for Reputation Updates
were not significant. Figure 1 illustrates the results of
the analyses.

Next, we explored the differences in Categories of
Changes within each Condition. We examined the
differences between the Categories of Changes in the
Updates variable, and the repeated measures ANOVA
analysis significance level was set to .008 (.025/3).
There was a significant simple effect of Categories of
Changes on Updates in the Control Condition [F(2, 18)
= 10.47, p = .001, ηp

2 = .54, power = .99] such that
participants in the Control Condition made significantly
more Transparency than Reputation Updates (Mean
difference = 17.10, SE = 4.69, p = .005) and more
Performance than Reputation Updates (Mean difference
= 7.40, SE = 2.18, p = .008). Additionally, there was a
statistically significant simple main effect of Categories
of Changes in the Transparency Condition [F(1.04,
10.37) = 66.17, p < .001, ηp

2 = .87, power = .99], such
that participants made significantly more Transparency
than Reputation Updates (Mean difference = 60.27, SE
= 6.87, p < .001), and more Transparency than
Performance Updates (Mean difference = 58.09, SE =
7.55, p < .001). The mean differences between
Categories of Changes in the Reputation and
Performance Conditions were not significant.

Figure 1. Programmer changes to code by condition.

3.2. Univariate Remarks Analyses

0

10

20

30

40

50

60

70

80

Rep Trans Perf

N
um

be
r o

f U
pd

at
es

Types of Updates

Control
Reputation
Transparency
Performance

Page 6564

The univariate main effect of Condition was not
significant for Remarks [F(3, 41) = 2.52, p = .07, ηp

2 =
.16, power = .86], indicating task prioritization did not
influence how they described the code. Means and
standard errors are illustrated in Table 1.

The univariate main effect of Categories of Changes
was significant on Remarks [F(2, 82) = 9.87, p < .001,
ηp

2 = .19, power = .92], indicating participants made
more remarks about some categories than others.
However, these main effects were qualified by a
significant interaction between Condition and
Categories of Changes [F(6, 82) = 3.97, p < .01, ηp

2 =
.23, power = .99]. As such we explored the differences
in Categories of Changes within each Condition for
Remarks. To examine univariate simple effects of
Categories of Change on Remarks, the repeated
measures ANOVA analysis significance level for
simple effects was set to .008 (.025/3). There was a
significant simple effect of Categories of Change on
Remarks in the Performance Condition [F(1.12, 12.95)
= 10.11, p = .006, ηp

2 = .48, power = .99], such that
participants in the Performance Condition made
significantly more Performance Remarks than
Reputation Remarks (Mean difference = 3.42, SE = .95,
p = .004). Results are illustrated in Figure 2. No
significant differences were observed between any other
conditions.

Figure 2. Counts of Remarks programmers made
about changes to code by Condition and Type of
Remark.

4. Discussion

Results from this study indicated task prioritization
influenced the Updates the programmers made to the
code and to a lesser degree, their subsequent Remarks
about their changes to the code. Instructing participants
to prioritize fixing a certain aspect of the code (i.e.,
reputation, transparency, or performance) had a direct

influence on the type of changes made to the code in the
transparency and performance condition. The current
study is unique in that we included a control group and
were able to compare prioritized performance
differences with a non-prioritized condition in a real-
world setting. As expected, prioritizing a task generally
led to increased performance on the task, as can be seen
in the transparency and performance changes to the
code. However, this was not the case in the reputation
condition. It may be that the reputation condition was
not conceptually accurate, or had too much overlap with
transparency. Indeed, when no other information about
the author is available, the programmers may have
assessed reputation via lack of transparency in the code.

Interestingly, there were no significant differences
between the control condition and the performance
condition on performance changes. When given no
other guidance, performance is a key aspect of the code
[37]. However, there were performance deficits when
participants were instructed to search for reputation or
transparency issues. The psychological resources
allocated towards inspecting reputation or transparency
issues may have distracted participants from finding the
performance issues. However, even when instructed to
prioritize a task, participants still conducted other
changes to the code. Researchers have discussed the
importance of context when examining the relationship
between task priority and performance in occupational
simulations [27]. These findings offer support that code
use and reuse scenarios may provide a context where
task prioritization is related to subsequent performance.

The findings in this paper are unique in that they
focused on actual task performance as well as how the
participant perceived the task. The results indicate that
programmers will act in accordance with the task they
were assigned to complete, and report doing so, as we
would expect. However, it also illustrates the problem
of task prioritization in that a supervisor asking a
programmer to prioritize a task will also lead to a deficit
in finding other deficiencies. This is particularly
problematic for the transparency and reputation
conditions in that it led to fewer performance changes.

An important aspect of the current study is inclusion
of a control condition. Previous research on task
prioritization rarely included a control condition when
comparing performance on the primary and secondary
tasks [20, 21]. We were able to compare conditions with
different task priorities to determine if any performance
increases were due to the conditions. Namely, all
participants had the same stimuli (i.e., the referent code)
and were able to make any Updates or Remarks they
chose. In addition, participants had a significant amount
of time to complete the task. Despite the abundance of
time, participants still exhibited decrements in non-
prioritized task performance when asked to prioritize
another task. Additionally, previous research has

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Rep Trans Perf

N
um

be
r o

f R
em

ar
ks

Types of Remarks

Control
Reputation
Transparency
Performance

Page 6565

focused on time limits when conducting task
prioritization research. It is interesting that task
prioritization still had an effect, to some degree, when
the participant had practically unlimited time resources
(as they had 24 hours to complete fewer than 500 lines
of code repair).

This study is the first of its kind to explore actual
behaviors in programmer’s changes to code in an
ecologically valid context. Outsourcing code repair is
becoming a popular alternative to repairing code in
house [40]. The current study utilized this trend to
collect behavioral data on the MTurk platform from
individuals. This study indicates the platform can be
used to address the call of more behavioral data in the
sciences rather than self-report [36]. Additionally, the
results should easily approximate to real-world settings
as participants were unaware it was an experiment. This
study offers a template for using MTurk, offering
researchers another avenue of using MTurk rather than
Likert-type responding to scales in mass.

4.1. Theoretical Relationships of Reputation,
Transparency, and Performance

We utilized the constructs from Alarcon et al.’s [13]
CTA. In their paper, the authors conceded the
reputation, transparency, and performance constructs
are not orthogonal. Of particular interest in the current
study is the overlap of transparency and reputation.
When participants were asked to prioritize transparency,
there was no significant difference in the number of
performance changes compared to the reputation
condition. Similarly, those in the reputation condition
performed the second most transparency changes
compared to the transparency condition. Transparency
and reputation may be two constructs that share
considerable overlap in the programming community.
Increasing the transparency of code may also increase
reputation. Code that is disorganized, uses poor naming
schemas, and is hard to read may be perceived as
suspicious, thus decreasing the reputation assessment of
the code and the programmer or source where from
which the code was obtained.

From a multiple resource theory perspective,
participants prioritized tasks which may have had
overlap with other tasks that were not prioritized. For
example, when evaluating the transparency of the code
one might still evaluate the performance to some degree
as the constructs are related and the same cognitive
resources are being utilized. Thus, participants are not
doing two things at once but rather one task has overlap
with a task the participants were not prioritized to
conduct. Wickens [4] stated tasks that tax the same
resources will lower performance and accuracy, unless
those tasks have conceptual overlap and facilitate each

other. It may be that some aspects of each of the
reputation, transparency, and performance conditions
are necessary for other aspects and that none of the
constructs exist independently, but are instead
dependent on each other, to some degree, for code
comprehension.

4.2. Limitations

The current study is not without limitations. One
limitation of the current study is the small sample size.
The current study has strong main effects of condition
on code changes and post-hoc power analyses illustrated
enough power to detect the effects found. However,
when interpreting the interactions of type of change to
the code (i.e. reputation, transparency, or performance)
and the participant’s condition, we experienced
significantly less power as much of the simple effects
were not significant given our stringent criteria to avoid
Type I errors. This sample size issue is associated with
the next limitation.

A second limitation of the current study is the use of
the C# programming language. The C# programming
language is an object-oriented programming language
that supports metaprogramming and is primarily an
interpretative language. All of these aspects may have
had an influence on the code interpretations. Different
programming languages, such as C, may be perceived
differently as they are not object oriented or
metaprogramming languages. Third, the number of
changes available for a programmer to prioritize in a
given condition may have influenced the results.
Participants in the transparency condition had the most
opportunities to make changes in their condition. In
contrast, in the reputation condition participants had the
fewest number of changes they could make according to
their condition. These differences were seen in the main
effects of the Categories of Changes on overall Updates
in the MANOVA. However, these influences were
controlled for in the RM MANOVA when exploring the
interactions. In addition, despite the ability to make
more changes in the transparency condition, there was
an effect such that when asked to prioritize the condition
participants performed significantly more changes. This
effect also occurred for performance, at least in
comparison to the transparency and reputation
conditions. Lastly, we did not collect any demographic
data about the participants. Future research may want to
collect demographic data after the code has been
uploaded to explore the influence of programmer
individual differences such as age or experience.

4.3. Implications and Conclusions

Page 6566

First, we found support for the factors found in the
CTA by Alarcon et al. [13]. This research demonstrates
the factors found in the CTA are viable aspects of code
that influence programmer’s perceptions of code,
although they are not orthogonal constructs. However,
greater care should be taken when operationalizing
reputation in the code. Second, we interpreted our
findings on prioritization in the computer sciences
through the lens of multiple resource theory [4]. That is,
prioritization can lead programmers to focus on certain
aspects of the code while neglecting other aspects. As
such, managers may want to choose their directives
carefully for subordinates. Programmers that are
reviewing code for a long-standing architecture may
want to focus on transparency to ensure the architecture
is sufficiently commented to ensure long use. In
contrast, a manager that wants the flexibility and
performance of the code to be inspected may want to
emphasize those issues, or give little guidance as those
assigned to the control condition performed relatively
the same as the performance condition.

Lastly, the current study illustrates the use MTurk
beyond self-reports. The MTurk platform can be utilized
to collect actual behaviors, with participants unaware of
the experimental nature of the task, increasing
ecological validity. Granted, a drawback of the current
study was not being able to collect background data such
as experience and personality. However, new code
allows researchers to track previous participants for
longitudinal studies [41]. This code can be used to then
follow up with self-reports to determine how the
background data (e.g. experience, personality, etc.)
relate to the performance metrics.

5. References

[1] Cybersecurity Incidents. Office of Personnel Management.
(n.d.). Retrieved from https://www.opm.gov/
cybersecurity/cybersecurity-incidents/

[2] Equifax Data Breach Affected 2.4 Million More
Consumers. Consumer Reports. (2018, March 1). Retrieved
from https://www.consumerreports.org/credit-
bureaus/equifax-data-breach-was-bigger-than-previously-
reported/

[3] L. Hautala, “Programmers are copying security flaws into
your software, researchers warn.” CNET. (2015, June 23).
Retrieved from http://www.cnet.com/news/programmers-are-
copyingsecurity-flaws-into-your-software-researchers-warn/

[4] C. D. Wickens, “Multiple resources and performance
prediction,” Theoretical Issues in Ergonomics Science, 2002,
vol. 3, pp. 159-177. doi:10.1080/14639220210123806

[5] CVE Mitre. “Heartbleed OpenSSL bug [CVE-2014-
0160],” 2014, Retrieved from https://cve.mitre.org/cgi-
bin/cvename.cgi?name=cve-2014-0160

[6] Z. Durumeric, J. Kasten, D. Adrian, A. Halderman, M.
Bailey, F. Li, … V. Paxson, V, “The matter of Heartbleed,”
Proceedings of the Internet Measurement Conference, 2014,
14, pp. 475-488. doi:10.1145/2663716.2663755

[7] B. Grubb, “Heartbleed disclosure timeline: Who knew
what and when,” Sydney Morning Herald, 2014, Retrieved
from http://www.smh.com.au/it-pro/security-it/heartbleed-
disclosure-timeline-who-knew-what-andwhen-20140414-
zqurk

[8] S. Henson, GitHub, 2014, Retrieved from
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h
=96db902

[9] E. Kreft, “Heartbleed: How the net bug that caught tech
experts by surprise affects you,” The Blaze, 2014, Retrieved
from http://www.theblaze.com/news/2014/04/09/
heartbleed-how-the-net-bug-that-caught-tech-experts-by-
surprise-affects-you/

[10] B. Sharif, M. Falcone, and J.I. Maletic, “An eye-tracking
study on the role of scan time in finding source code defects,”
Proceedings of the Symposium on Eye Tracking Research and
Applications, 2012, vol. 7, pp. 381-384.
doi:10.1145/2168556.2168642

[11] O. Albayrak, and D. Davenport, “Impact of
maintainability defects on code inspections,” Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2010, pp.
50-53.

[12] O. Baysal, O. Kononenko, R. Holmes, and M. W.
Godfrey, “The influence of non-technical factors on code
review,” Proceedings of the Reverse Engineering (WCRE)
20th Working Conference on IEEE, 2013, pp. 122-131.

[13] G. M. Alarcon, L. G. Millitello, P. Ryan, S. A. Jessup, C.
S. Calhoun, and J. B. Lyons, “A descriptive model of
computer code trustworthiness,” Journal of Cognitive
Engineering and Decision Making, 2017, vol. 11, pp. 107-121.
doi:10.1177/1555343416657236

[14] G. M. Alarcon and T. J. Ryan, “Trustworthiness
perceptions of computer code: A heuristic-systematic
processing model” Proceedings of the Hawaii International
Conference on System Sciences, 2018, pp. 5384-5393. doi:
10.24251/HICSS.2018.671

[15] D. Navon, and D. Gopher, “On the economy of the
human-processing system,” Psychological Review, 1979, vol.
86, pp. 214-255.

[16] A. Mack, and I. Rock, “Inattentional blindness:
Perception without attention”. In R. D. Wright (Ed.), Visual
Attention, 1998, pp. 55-76.

[17] U. Neisser, Cognition and reality: Principles and
implications of cognitive psychology, 1976.

Page 6567

https://www.consumerreports.org/credit-bureaus/equifax-data-breach-was-bigger-than-previously-reported/
https://www.consumerreports.org/credit-bureaus/equifax-data-breach-was-bigger-than-previously-reported/
https://www.consumerreports.org/credit-bureaus/equifax-data-breach-was-bigger-than-previously-reported/
http://www.cnet.com/news/programmers-are-copyingsecurity-flaws-into-your-software-researchers-warn/
http://www.cnet.com/news/programmers-are-copyingsecurity-flaws-into-your-software-researchers-warn/
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-andwhen-20140414-zqurk
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-andwhen-20140414-zqurk
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-andwhen-20140414-zqurk

[18] D. J. Simons, and C. F. Chabris, “Gorillas in our midst:
Sustained inattentional blindness for dynamic
events,” Perception, 1999, vol 28, pp. 1059-1074.
doi:10.1068/P281059

[19] J. K. Caird, K. Johnston, C. Willness, M. Asbridge, M.,
and P. Steel, “A meta-analysis of the effects of texting on
driving,” Accident Analysis and Prevention, 2014, vol. 71, pp.
311–318. doi:10.1016/J.AAP.2014.06.005

[20] W. J. Horrey, C. D., Wickens, and K. P. Consalus,
“Modeling drivers' visual attention allocation while
interacting with in-vehicle technologies,” Journal of
Experimental Psychology: Applied, 2016, vol. 12, pp. 67-78.
doi:10.1037/1076-898X.12.2.67

[21] G. Sperling, and M. J. Melchner, “The attention operating
characteristic: Examples from visual search,” Science, 1978
vol. 202, pp. 315-318. doi:10.1126/science.694536

[22] D. P. Brumby, N. Del Rosario, and C. P. Janssen, “When
to switch? Understanding how performance tradeoffs shape
dual-task strategy,” Proceedings of the International
Conference on Cognitive Modeling, 2010, pp. 19-24.

[23] A. Lang, and M. D. Basil, “Attention, resource allocation,
and communication research: What do secondary task reaction
times measure, anyway?” Annals of the International
Communication Association, 1998, vol. 21, pp. 443-458.
doi:10.1080/23808985.1998.11678957

[24] T. Drew, M. L. H. Võ, and J. M. Wolfe, “The invisible
gorilla strikes again: Sustained inattentional blindness in
expert observers,” Psychological Science, 2013, vol. 24, pp.
1848-1853. doi:10.1177/0956797613479386

[25] J. Levy, and H. Pashler, “Task prioritization in
multitasking during driving: Opportunity to abort a concurrent
task does not insulate responses from dual-task slowing,”
Applied Cognitive Psychology, 2008, vol. 22, pp. 507-525.
doi:10.1002/ACP.1378

[26] M. A. Regan, C. Hallett, and C. P. Gordon, “Driver
distraction and driver inattention: Definition, relationship and
taxonomy,” Accident Analysis & Prevention, 2011, vol. 43,
pp. 1771-1781. doi:10.1016/j.aap.2011.04.008

[27] M. J. Waller, “The timing of adaptive group responses to
nonroutine events,” Academy of Management Journal, 1999,
vol. 42, pp. 127-137. doi.org/10.5465/257088

[28] M. J. Waller, N. Gupta, and R. C. Giambatista, “Effects
of adaptive behaviors and shared mental models on control
crew performance,” Management Science, 2004, vol. 50, pp.
1534-1544. doi:10.1287/mnsc.1040.0210

[29] Amazon Mechanical Turk. (n.d.). Retrieved from
https://www.mturk.com/https://www.mturk.com/

[30] Amazon FAQs. Amazon Mechanical Turk. (n.d.).
Retrieved from https://www.mturk.com/mturk/
help?helpPage=overview

[31] J. K. Goodman, C. E. Cryder, and A. Cheema, “Data
collection in a flat world: The strengths and weaknesses of
Mechanical Turk samples,” Journal of Behavioral Decision
Making, 2013, vol. 26, pp.213-224. doi:10.1002/BDM.1753

[32] G. Paolacci, and J. Chandler, “Inside the Turk:
Understanding Mechanical Turk as a participant
pool,” Current Directions in Psychological Science, 2014,
vol. 23, pp.184-188. doi: 10.1177/0963721414531598

[33] H. Zhou, and A. Fishbach, “The pitfall of experimenting
on the web: How unattended selective attrition leads to
surprising (yet false) research conclusions,” Journal of
Personality and Social Psychology, 2016, vol. 111, pp. 493-
504. doi:10.1037/PSPA0000056

[34] A. J. Berinsky, G. A. Huber, and G. S. Lenz, “Evaluating
online labor markets for experimental research:
Amazon.com's Mechanical Turk,” Political Analysis, 2012,
vol. 20, pp.351-368. doi:10.1093/pan/mpr057

[35] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon's
Mechanical Turk: A new source of inexpensive, yet high-
quality, data?,” Perspectives on Psychological Science, 2011,
vol. 6, pp. 3-5. doi:10.1177/1745691610393980

[36] R. F. Baumeister, K. D. Vohs, and D. C. Funder,
“Psychology as the science of self-reports and finger
movements: Whatever happened to actual
behavior?” Perspectives on Psychological Science, 2007, vol.
2, pp. 396-403. doi:10.1111/j.1745-6916.2007.00051.x

[37] G. M. Alarcon, R. F. Gamble, T. J. Ryan, C. Walter, S.
A. Jessup, D. W. Wood, and A. Capiola, “The influence of
commenting validity, placement, and style on perceptions of
computer code trustworthiness: A heuristic-systematic
processing approach,” Applied Ergonomics, 2017, vol. 70, pp.
182-193. doi:10.1016/j.apergo.2018.02.027

[38] G. M. Alarcon, R. F. Gamble, S. A. Jessup, C. Walter, T.
J. Ryan, D. W. Wood, and C. S. Calhoun, “Application of the
heuristic-systematic model to computer code trustworthiness:
The influence of reputation and transparency,” Cogent
Psychology, 2017, Advance online publication.
doi:10.1080/23311908.2017.1389640

[39] A. O. J. Cramer, D. Ravenzwaaij, D. Matzke, H.
Steingroever, R. Wetzels, R. P. P. P. Grasman, … E.
Wagenmakers, “Hidden multiplicity in exploratory multiway
ANOVA: Prevalence and remedies,” Psychonomic Bulletin &
Review, vol. 23, pp. 640-647.

[40] R. E. Ahmed, “Software maintenance outsourcing:
Issues and strategies,” Computers and Electrical
Engineering, 2006, vol. 32, pp. 449-453.

[41] L. Litman, J. Robinson, and T. Abberbock,
“TurkPrime.com: A versatile crowdsourcing data acquisition
platform for the behavioral sciences,” Behavior Research
Methods, 2017, vol. 49, pp. 433-442. doi:10.3758/s1342

Page 6568

https://doi.org/10.5465/257088

