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Abstract 
 
The robot sector in many countries has thrived 

recently thanks to government supports and innovations 
in various industries. This study, using the patent 
database to define the robot sector, reconfigures IO 
(Input-Output) data to analyze the relationships among 
various sectors. In particular, we consider the internal 
description of the robot sector (mesoscopic view—the 
trees) as well as the relationship between the robot and 
the non-robot sectors (macroscopic view—the forest), so 
that we can not only understand robot ecosystems in 
various dimensions, but also develop policy insights. 
For the sake of systematic analysis of the intra- and 
inter-sector relations as well as the meso-macro links, 
this study constructs network models and employs 
several network measures. Our model and analysis 
present a good case study to understand the nature of 
the robot sector in terms of the business ecosystem. This 
novel approach also contributes to finding out a 
promising path that leverages the strengths of intra-
sector relations and spreads the impact of the robot 
sector across the macro relations. 
 
 
1. Introduction  
 

Technological progress propels economic growth 
and long-term industry changes. Despite burgeoning 
literature (e.g., [1], [11], and many), our understanding 
of how progress in one area is linked to other fields and 
spread throughout the economy is not perfect, 
particularly when new technology emerges (e.g., 
sharing economy platforms like Uber and Airbnb). 
Robots are also closely related to various economic 
activities, but our understanding of their impacts on and 
relationships with other areas is still lacking. Since 
robots, together with artificial intelligence and big data, 
are regarded as a key element in the Industry 4.0 and 
receive full supports from many governments, it is 
timely and necessary to conduct study for deeper 

                                          
1 Our research focuses on the industrial robots. Refer to Table 1 in 
section 4.1 for the definition of the robot sector. 

understanding of robot’s business ecosystem. 
The potential of robots may be inherent in its innate 

nature as general purpose technology (GPT, [10], [26]). 
GPT is characterized by a catalyst for a broad range of 
technological improvement as well as an enabler of 
nationwide innovations. As GPT, robots are expected to 
promote knowledge creation and diffusion by 
establishing strong links between firms and their users 
and suppliers. Accordingly, the robot sector creates 
value by developing more efficient processes.1 

Indeed, robotics and automation are dramatically 
reshaping the global economy and building its own 
business ecosystems around the world ([28]). With the 
proliferation of new production methods and 
innovations such as Industry 4.0, the demand for robots 
has increased significantly around the world in the last 
few years. Demand for industrial robots is expected to 
exceed at least 500,000 units by the end of 2018 ([23]), 
and this trend will lead to increased demand for service 
robots. Especially in Asian nations including China, 
Japan and South Korea, the demand for robots is 
overwhelming other regions (about 60% of the world’s 
robots are populated in those countries, [9]). For 
example, Japan has six out of the top 10 (in terms of 
sales revenue) industrial robot manufacturers. In Korea, 
the number of robots per thousand workers is 60, which 
is more than twice that of Japan and Germany (in this 
index, Korea ranks first in the world; the global average 
is less than 90). There is also a survey report 
demonstrating that robot industries are contributing 
around 3% of GDP growth in OECD countries ([9]). 
The current situations and trends suggest that, in the 
Industry 4.0 era, appropriate policies developed based 
on a more holistic and detailed understanding of the 
robot ecosystem will have a greater impact on the entire 
economy. 

In these backgrounds, the purpose of this study is to 
develop a framework for analyzing the structural 
properties of a newly emerging techno-economic sector 
like the robot sector, thereby suggesting insights into an 
effective development path. To achieve this goal, we 
first examine the robot sector from multiple angles, 
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which is expected to provide a novel way to derive the 
full potential of this sector. In particular, we analyze the 
various relationships related to the robot sector from the 
mesoscopic (the trees) as well as the macroscopic (the 
forest) perspectives. This approach will help to deeply 
understand robotic technologies and services based on 
the notion of the business ecosystem. In order to 
systematically analyze both internal (intra-sectoral) and 
external (inter-sectoral) relationships of the robot 
ecosystem, we employ network models, which are 
constructed with IO (Input-Output) data. Modelling and 
analyzing economic activities and business transactions 
based on the IO framework together with patent 
database complements the existing network measures 
that can only assess purely structural aspects, and 
enables rich analysis incorporating flows. 

The organization of the paper is as follows. The next 
section briefly reviews literature on business ecosystem, 
IO framework and network analysis in relation to this 
research. Section 3 introduces our approach and 
framework based on IO data and network models 
together with some structural measures. Section 4 
presents the analysis results from both the mesoscopic 
and macroscopic perspectives. The last sections discuss 
our findings and conclude the paper.  
 
2. Literatures and research backgrounds 
 

[20] argued that economic structure is of first-order 
importance to understand cross-country income 
differences. The economic structure, however, has been 
greatly affected by technological development and 
innovations triggered by GPT. The Industry 4.0 
leverages multiple technologies such as AI, big data, IoT, 
and robots, which eventually transform the entire 
production method. Accordingly, it is highly regarded as 
a breakthrough innovative scheme led by GPT (for this 
reason, it is also referred to as the Fourth Industrial 
Revolution). Since these changes will have large and 
lasting impacts on the whole society and economy, 
many countries are paying attention to the Industry 4.0. 
In this context, a robust ecosystem built around robots 
serves as an essential conduit for a broad and extensive 
innovation progress.  

In a similar vein to the notion of economic structure 
highlighted by Hirschman, the concept of ‘business 
ecosystem,’ which emphasizes the architectural aspects 
of economic relations, can be better applied to today’s 
Industry 4.0 economy. [21], [22]. and [30] suggested 
employing ecological concepts and approaches to 
business research in order to complement the existing 
research framework that does not catch up with the 
changing business and technology environment. With 
the spread of IT and digital convergence, industrial 
boundaries have collapsed and it is necessary to escape 

from the framework of adhering to industrial silos. The 
ecosystem framework has focused on the interactions 
among various sectors and resulting synergies. Thanks 
to the pioneering studies, the notion and framework of 
business ecosystem has been widely adopted in many 
fields: to name a few, [5], [6], [34] for mobile 
communications and [2], [3], [4], [24] for computer 
software. 

The results of the prior studies extended the existing 
popular paradigm of the-structure-lead-the-performance 
in industrial economics and enabled analysis of 
structural characteristics of various inter-sector 
interactions and their performance. For example, the 
pre-existing network structure in patent database has 
strong predictive power on future innovation ([1]). The 
ecosystem analysis also incorporate technology- or 
sector-specific data such as M&A and collaboration data 
for identifying keystones in an ecosystem: e.g., mobile 
ecosystem ([5], [6]). Finally, ecosystem studies have 
come to address a nation-wide economy or global value 
chain from a macroscopic perspective ([21]). 

In the course of such development, this study takes 
a somewhat different perspective on the notion of the 
business ecosystem. In other words, while the traditional 
notions as in [22], [30], etc. usually address the 
relationships at the firm level, the ecosystem in this 
study deals with the structural relations at the industry 
level. In fact, this perspective and approach are not new. 
Some prior studies like [34], as well as the industrial 
ecology studies, usually consider the ecosystems at the 
industry level. 

The advancement and proliferation of the ecosystem 
studies has developed more systematic methodologies 
that were limited to qualitative analysis and case studies 
in the early stage. For example, the development 
presented many ways to operationalize and quantify key 
notions (e.g., keystones and niches) and conceptual 
measures for ecosystem healthiness including 
productivity (e.g., the degree of resource or material 
outflows to inflows), spillover (e.g., the total impact on 
the whole ecosystem), and coverage (e.g., affecting and 
affected entities) ([22], [30], [31]). Furthermore, many 
prior works have incorporated network models to this 
area, opening a new window of utilizing rich theories 
and concepts developed in the social network studies. 
For example, incorporating the notion of structural hole 
([12]) makes it possible to identify entities that serve as 
bridges in ecosystems or to quantify resilience. Other 
network measures help to explore symbiotic relations 
for a more constructive understanding of the ecosystems. 
As a matter of fact, we believe that the network theory 
presents the best methodological frame for describing 
and analyzing the business or industrial ecosystems. 
Indeed, many ecosystem studies represent their 
ecosystems with various networks (e.g., [4], [5], [6], [7], 
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[24], [34], [35]). The network approach is also flexible 
enough to represent and deal with different levels of 
ecosystems (e.g., at the firm or industry level) in a 
consistent way. 

In the background and context above, this study 
considers robots, which has few prior studies from the 
ecosystem point of view. Although we observe new 
phenomena related to robots (e.g., robots with AI, robots 
for smart homes, etc.), we focus on the industrial robots. 
Thus, this sector is not in the nascent stage of its life-
cycle and is still evolving. 

While many ecosystem studies take the microscopic 
perspective at the firm level, this study addresses robots 
from both meso- and macroscopic perspectives at 
industry or sectoral level. Based on this approach, we try 
to explain the overall structure of the robot-related 
interactions and obtain a holistic view of their relations 
through analyzing them from multiple angles. Further, 
we construct network models with IO data to analyze 
the flow characteristics as well as the structural aspects 
of the interactions. IO model and analysis are 
particularly well suited with the ecosystem frame since 
IO data is able to show a detailed structure and 
interactions in the economy ([16], [17], [29], [33]). 
Therefore, employing IO model helps us to develop 
useful measures (e.g., spillover effects), in addition to 
quantitatively exploring structural properties. Through 
this approach, we examine the robot areas (largely 
unexplored and unexplained despite being in full 
operation) and address the new ecological role of the 
robot sector.  
 
3. Methodology and models  
 
3.1. IO model 
 

The IO (Input-Output or inter-industry) framework, 
developed by Leontief ([27]), describes a complete 
picture of the flows of goods and services in an economy 
for a given year. In particular, the numbers in the main 
table (see matrix ܆ , called ‘intermediate demands’) 
represent the interdependencies among various sectors. 
Thanks to its neat format and structural properties 
together with global standardization efforts (e.g., World 
IO Database, [36]) the IO model presents an effective 
frame to document sectoral interdependencies. Thus, it 
has been popular and proven useful in diverse contexts 
and application areas (e.g., [8], [13], [15], [19], [25]). 
For example, how differences in business characteristics 
across industries—as captured by IO linkages between 
sectors—affect cross-industrial gaps in outputs, value-
added, employment, etc. 

 

ܠ ൌ ૚	܆ ൅ ⑴ ܌

, where ܆ ൌ  ൣ ௜ܺ௝൧௜,௝ୀଵ⋯௡ , ૚ ൌ  ሾ1⋯1ሿ் , ܠ ൌ  ሾ ଵܺ ⋯ܺ௡ሿ்  

and ܌ ൌ ሾ݀ଵ ⋯݀௡ሿ். The sizes of column vectors are all 
n, the number of sectors. ܺ௜௝ captures the material flow 
or business transaction between sector i and j (i.e., 
supply from i to j). ܠ and ܌ represent total outputs and 
final demands, respectively. 

Each column j of ܆ ሺሾ ଵܺ௝ ⋯ ܺ௡௝ሿ்ሻ represents 
a producing sector, where the corresponding row 
elements record the amount of inputs to j. Hence, each 
row i of ܆ enumerates sector i’s output used as inputs 
to various sectors from 1 to n.  

We now define technology (or input) coefficients 
ܽ௜௝’s: that is, ܽ௜௝ ൌ ௜ܺ௝ ௝ܺ⁄ . ܽ௜௝ represents cents of i’s 
output (in row i) used per dollar output of j (in column 
j). Then, equation ⑴ can be transformed as follows. 

 

ܠ ൌ ۯ ܠ ൅ or  ሺ۷  ܌ െ ܠ	ሻۯ ൌ ⑵ ܌
, where ۯ ൌ ൣܽ௜௝൧௜,௝ୀଵ⋯௡ and ۷ is an identity matrix.  

The matrix ሺ۷ െ  ,ሻ  is called Leontief matrixۯ
whose inverse has special meaning. Since ۷ ൅ ۯ ൅
ଶۯ ൅ ⋯ ൌ ሺ۷ െ  ሻିଵ , this inverse summarizes all theۯ
intermediate effects and quantifies the intensity of 
causation among sectors. Thus, the row [column] sums 
of ሺ۷ െ -] ሻିଵ  represent the production-inducedۯ
inducing] effect of corresponding sectors based on the 
technology coefficient matrix ۯ  (called multiplier or 
spill-over effect in [18], [35]). 

[33] first developed more sophisticated metrics 
based on the multipliers and presented the notions of 
effect and response ratios. The effect ratio of sector i is 
the gap between i’s production-inducing effect and the 
overall average. The response ratio is similarly defined. 
Thus, the sector whose effect [response] ratio is bigger 
than 1 is relatively more effective in [sensitive to] 
productions of other sectors. 
 

 

Figure 1. IO analysis: back- & forward links 
 

Figure 1 depicts the effect and response ratios (or, 
backward and forward linkage effects resp.) of all the 
sectors. Here, the original 2016 IO table was modified 
and reconstructed by adding a new sector (the robot 
sector) and (accordingly) rearranging the entire flows 
(refer to our sector definition and intra-sector table—
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Table 1 and 2—in Section 4.1). The robot sector shows 
high (above average) backward effect and low (below 
average) forward effect, which means this sector 
belongs to the production resource category (e.g., 
general machinery and automotive) in the macroscopic 
perspective. 
 
3.2. Network ecosystem model with IO data 
 

Typical measures in the IO framework include 
productivity (the ratio of resource or material outflows 
to inflows), spillover (the chain effect on the whole 
ecosystem), and coverage (the size of affecting or 
affected sectors). Moore ([30], [31]) and Iansiti ([21], 
[22]) also consider similar measures for exploring 
symbiotic relations and identifying hubs or keystone 
sectors. This study employs the relevant metrics to 
examine and evaluate the robot sector in the mesoscopic 
perspective (intra-sector relations) as well as the 
macroscopic perspective (inter-sector relations). Since 
the ecological approach is more effective when applied 
to network structures, the measures are evaluated on the 
network structure derived from the intra- and inter-
sector IO matrices. We also employ other network-
oriented measures for a systematic and integrated 
understanding of the robotics sector. 

First, ignoring ܌  in ⑴ and ⑵,2  we re-define the 

following notations: ௝ܺ ൌ ∑ ௜ܺ௝௜   and ܺ௜ ൌ ∑ ௜ܺ௝௝  , 
which denote the total input into sector j and the total 
output from sector i, respectively. Incorporating full IO 
data (without introducing network structure), the 
traditional (demand-driven) Leontief technology 
coefficients (e.g., Table 2) and (supply-driven) Ghosh-
Gruver production coefficients are defined as follows: 

ܽ௜௝ ൌ ܺ௜௝ ௝ܺ⁄  and ݎ௜௝ ൌ ௜ܺ௝ ܺ௜⁄ . 

With these matrices, the input and output coefficients of 
sector i are attained by summing ܽ௜௝’s and ݎ௜௝’s in the 
respective row and column. That is, 

ܽ௜ ൌ ∑ ܽ௜௝௝  and ݎ௜ ൌ ∑ ௝௜௝ݎ . 
The productivity of sector k is then defined as follows:  

௞ߦ ൌ ௞ݎ ܽ௞⁄ . 

This is the ratio between the input and output coeff., 
which measures the rate of value creation at the sector. 

For the sake of closer examinations of structure 
characteristics of the symbiotic relationship among 
sectors, we construct networks on the basis of IO data 

                                          
2  This is to focus on sectoral inter-relations. In this sense, our 
approach is somehow different from the typical IO analysis in 
economics, and it is rather closer to utilizing the IO framework in 
ecological studies. 

and apply the following network measures. First, the 
intra- and inter-sector IO networks are derived from the 
respective IO matrices. In particular, the size of the 
multiplier effect captured in the technology coefficient 
matrix (ܽ௜௝ ) is used as the basis for establishing a 
directional relationship (i.e., arcs ሺ݅, ݆ሻ ) between the 
sectors.3  Setting the threshold at 0.01, we build two 
networks, each of which represents the macroscopic 
structure of inter-sector relations in the entire economy 
(‘macro network’ for short) and the mesoscopic 
structure inside the intra-robot sector (‘meso network’), 
respectively. 

Upon the networks constructed as above, the 
following network measures are applied to discover and 
assess their ecological characteristics. We first calculate 
traditional network metrics of degree centralities both 
on directed (  ௢௨௧ ) and on underlyingߙ ௜௡  andߙ
undirected networks (ߙ). Other classical metrics such as 
the betweenness centrality (  and the closeness ( ߚ
centrality (ߛ), and the clustering coefficient (ߠ) are also 
worked out.  

Moreover, we employ the notion of structural hole 
([12]), which represents the relationship of non-
redundancy. If a sector is directly connected to some 
sectors which simultaneously support transactions with 
each other, then the inter-dependency among these 
sectors will be high. On the other hand, so-called ‘bridge’ 
connects diverse sectors and facilitates access and 
exchange of information and knowledge. Following [12] 
and [32] (and many other prior studies), we assume that 
innovations and entrepreneurial opportunities arise from 
the structural holes. Our approach to the structural hole 
employs two traditional indices—efficiency and 
constraint—, customized to incorporate IO data. 

The efficiency of sector i measures the relative 
importance of diversity in the network based on the 
network size ( ௜ܰ) and the level of non-redundancy ( ௜ܶ). 
Our metric also utilizes transaction data (i.e., arc flows 
as weights) as well as network topology in quantifying 
the non-redundancy levels, which is different from 
typical approach solely relying on unweighted graph. 
For this purpose, we define the following two terms: 

௜௤ߩ ൌ
௑೔೜ା௑೜೔
௑೔ା௑೔

 and ߬௜௤ ൌ
௑೔೜ା௑೜೔

୫ୟ୶ ሺ௑೔ೖା௑ೖ೔ሻೖ
, 

where ߩ௜௤ and ߬௜௤ represent the importance of direct 
link between i and q (or the relative strength of the tie) 
and the marginal intensity of sector i in relation with q, 
respectively. That is, ߩ௜௤ means the proportion of direct 
i-q transaction relative to total economic relations 

3 Since this multiplier effect depends to a large extent on the number 
of sectors to which a given sector is connected (cf. outdegree) and the 
intensity (cf. input coefficient) with which its output is used as an input 
by the other sectors, some prior studies ([14], [35]) built networks 
upon the technology coefficient matrix. 
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established by i, whereas ߬௜௤  means the relative 
strength of i-q relation to the biggest one that sector i 
holds. Following [12], the efficiency factor is then 
defined as follows: 

߳௜ ൌ ௜ܶ ௜ܰ⁄ , 
where ௜ܶ ൌ ௜ܰ െ ∑ ܴ௜௝௝   and ܴ௜௝ ൌ ∑ ௜௤௤ߩ ௝߬௤ . Here, 
ܴ௜௝ represents the level of redundancy in i-j relation and 

௜ܶ the degree of non-redundancy of sector i. That is, ௜ܶ 
captures the effective degree of sector i through non-
redundant connections. ߳௜ , the normalization of ௜ܶ , 
represents the diversity of sector i in the network and 
takes values between 0 and 1 (1 for the maximum 
efficiency).  

However, a high-efficiency sector may strongly 
depend on other sectors, which can limit the realization 
of efficiency. Therefore, [12] also suggested another 
metric called ‘constraint index’ to complement the 
efficiency index. The constraint index ߱௜ represents i’s 
sectoral dependency and reflects i’s efforts or 
investments to reach other contacts. 

߱௜ ൌ ∑ ௜௝௝ݓ , 

where ݓ௜௝ ൌ ൫ݎ௜௝ ൅ ∑ ௜௤௤ݎ ௤௝൯ݎ
ଶ
  with ݎ௜௝  defined 

above (i.e., the production coefficient, which is 
calculated with IO matrix on the corresponding 
network). The higher the average of ߱௜’s, the fewer the 
structural holes in the overall network. 

In sum, the structural indices measure local (at the 
level of (sub-)sector k) and global (in the entire network 
scale) characteristics of (sub-)sectoral inter-
relationships to figure out the role of the robot sector for 
our economy in the macro- as well as mesoscopic 
perspectives. The following indices are employed here 
for both macro and meso networks. 

 

 productivity (ߦ௞) 

 degree centralities: in- and out-degree centralities 
 on di-graph as well as total degree (௜௢௨௧ߙ ௜௜௡ andߙ)
centrality (ߙ௜) on underlying undirected network 

 betweenness centrality (ߚ௜)  

 closedness centrality (ߛ௜)  

 clustering coefficient (ߠ௜)  

 efficiency factor (߳௜)  

 constraint factor (߱௜)  

 
 
4. Data and analysis 
 

                                          
4 We intentionally used the 2016 database (not the most recent one) 
in order to maintain consistency with the IO data. The most recent IO 

4.1. Data and IO reconfiguration 
 

The robot sector spans several sectors in the typical 
IO frame, including general machinery and computer 
software (the typical IO frame does not have a 
classification code for the robot sector). We first define 
the robot sector by selecting the most relevant sectors 
(in terms of the standard industry classification (SIC) 
that follows mostly the OECD classification system) 
based on the patent records. Although the SIC systems 
of the patent database and the IO database are generally 
different, the two systems in Korea are very similar. 
Moreover, the minor differences (not many of these 
cases) can be easily mapped. In short, when a mismatch 
occurred, we have further refined (i.e., one step down) 
or aggregated (i.e., one step up) the classifications of 
one database to match both. For example, ‘Agriculture 
(code: A01A),’ ‘Livestock (A01B),’ ‘Forestry (A01C),’ 
and ‘Fishery (A01D)’ in the patent database were 
aggregated into A01, which corresponds to ‘Agriculture, 
Forestry, and Fishery (code: 01)’ in the SIC system.  

We searched 2016 Korean patent database and 
specified 17 sectors (in terms of SIC) ranging from 
plastic manufacturing to software and IT services (refer 
to Table 1 and 2). 4  The selection criterion is the 
percentage of patents related with design, production, 
and application of robot. That is, a sector whose patents 
pertaining to these categories accounts for more than 10% 
of its total patents is assumed to fall into the robot sector. 
 

Table 1. Robot sector definition 

Sector code Description 

023  Plastic manufacturing and products 

024  Rubber manufacturing and products 

031  Metal manufacturing and products 

032  General machinery 

033  Special purpose machinery 

034  Electrical equipment 

035  Semiconductor 

036  Electrical display and devices 

037  Miscellaneous electronic components 

038  Computers and peripherals 

039 
Communications, broadcasting, video & sound 
equipment 

040  Household electrical appliances 

041  Precision machinery and equipment 

042  Automobile 

045  Miscellaneous manufacturing & toll processing

061  IT services 

062  Computer software development 

 

data was published by the Bank of Korea in 2017 (the official 
extension of 2015 IO data), which counted transactions in 2016. 
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The original IO table is composed of 82 sectors (the 
intermediate level of classification). As the new sector 
(code 100 is assigned for the sake of easy recognition) 
is added, the entire original input-output flows need to 
be newly reconfigured. For doing this, we first assume 
that the data in the patent database accurately reflects 
the actual transactions across the entire economy. In 
other words, the proportion of robot-related patents in a 
sector is assumed to properly reflect the fraction of the 
robot-related output in its total output.5 Then, the ratio 
of patents for the industrial robots in all industry 
standard codes are used for the reconfiguration as 
follows: that is, the original input to the other sectors 
from a specific sector is subtracted by this ratio (note 

that the underlying structure of the IO table can be seen 
as a representation of a bipartite directed network). This 
arrangement is carried out row by row on the original IO 
table. Lastly, adding the subtractions of the respective 
sectors constructs the transactions from the robot sector 
to all other sectors, which eventually fills in the new row 
(index: 100) for the robot sector in the newly rearranged 
IO table. This accomplishes not only the macroscopic 
composition of the inter-sector relations but also the 
mesoscopic composition of the intra-sector relations. 
For example, Table 2 shows the mesoscopic technology 
coefficient matrix calculated from the input-output 
flows among the sectors that constitute the robot sector. 

 
Table 2. Intra-robot sector flows: technology coefficients 

 023 024 031 032 033 034 035 036 037 038 039 040 041 042 045 061 062
023 0.000 0.000 0.005 0.016 0.019 0.034 0.000 0.000 0.000 0.023 0.010 0.075 0.109 0.023 0.038 0.003 0.001
024 0.000 0.000 0.001 0.007 0.010 0.005 0.000 0.000 0.000 0.002 0.001 0.008 0.008 0.008 0.004 0.000 0.000
031 0.001 0.010 0.084 0.059 0.124 0.029 0.002 0.004 0.022 0.014 0.010 0.064 0.082 0.033 0.056 0.006 0.002
032 0.002 0.012 0.022 0.203 0.095 0.015 0.003 0.005 0.012 0.004 0.002 0.070 0.008 0.036 0.026 0.020 0.007
033 0.941 0.969 0.802 0.565 0.510 0.409 0.889 0.115 0.557 0.008 0.075 0.098 0.019 0.232 0.478 0.000 0.006
034 0.001 0.001 0.008 0.044 0.058 0.310 0.007 0.029 0.089 0.107 0.066 0.069 0.066 0.033 0.025 0.053 0.006
035 0.000 0.000 0.000 0.002 0.008 0.014 0.000 0.000 0.000 0.141 0.069 0.021 0.060 0.003 0.002 0.008 0.009
036 0.000 0.000 0.000 0.006 0.011 0.002 0.000 0.000 0.000 0.228 0.108 0.015 0.109 0.001 0.004 0.000 0.000
037 0.000 0.000 0.000 0.004 0.011 0.015 0.000 0.000 0.000 0.077 0.028 0.023 0.076 0.002 0.003 0.025 0.006
038 0.000 0.000 0.000 0.003 0.001 0.001 0.002 0.011 0.007 0.288 0.007 0.000 0.004 0.002 0.003 0.295 0.639
039 0.000 0.000 0.001 0.001 0.003 0.001 0.001 0.005 0.020 0.030 0.336 0.006 0.013 0.010 0.005 0.077 0.010
040 0.001 0.000 0.002 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.445 0.000 0.001 0.003 0.003 0.001
041 0.046 0.004 0.049 0.066 0.069 0.137 0.083 0.763 0.252 0.016 0.254 0.090 0.396 0.120 0.099 0.147 0.043
042 0.001 0.000 0.003 0.003 0.021 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.464 0.006 0.003 0.006
045 0.006 0.004 0.018 0.017 0.058 0.026 0.010 0.025 0.036 0.023 0.018 0.014 0.045 0.028 0.230 0.008 0.004
061 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.002 0.046 0.042
062 0.002 0.000 0.001 0.001 0.002 0.001 0.002 0.039 0.004 0.037 0.016 0.001 0.003 0.003 0.016 0.307 0.219

 
 

4.2. Results 
 

In macro and meso networks, the vertices represent 
sectors and the directed arcs imply relatively strong 
technological relationships. Similar to the approach of 
[34] and [35], we also set the cutoff value to 0.01. Thus, 
a directed arc ሺ݅, ݆ሻ between sector i and j is established 
when the corresponding technology coefficient (ܽ௜௝) is 
greater than this cut-off. The primary goal of 
constructing the network based on the IO data is to 
minimize the loss of information and to reveal the 
essential structure of the transaction flow throughout the 
ecosystem. To achieve this goal, we tried several cut-
offs between 0.005 and 0.05 and found that 0.01 would 
be the most appropriate level of the cut-off. Around the 

                                          
5  It is rather a strong assumption since innovation activity and 
production activity do not coincide. This gap will also vary by sector, 
depending on sector characteristics and developmental levels. This 
inconsistency is inevitable, however, since it is not possible to 
consistently obtain or process all the necessary information from a 

cut-off of 0.01 (between 0.008 and 0.018), the amount 
of transaction loss was in between 5% and 10% (in the 
macro network) or less than 2% (in the meso network). 
Both macro and meso networks are depicted below. 

single database. Nonetheless, linking the patent data and the IO data 
in this way seems to be a less defective method and could be accepted 
in the perspective of operationalization in social science. We 
acknowledge this is a limit of our study and leave this issue for our 
future work (refer to the concluding part). 
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⒜  macroscopic network structure 

The  solid  square  represents  the  robot  sector. The blue 
arcs are directed to the sector and the red arc  is going 
out from the sector. The diamonds are sectors whose z-
values of total degree (ߙ௜) exceed 1.4 (no vertices with z-
value  ൐  1.5). 

 

⒝  mesoscopic network structure 

                                          
6 In fact, ‘special purpose machinery’ is one of the core sectors that 
constitute the robot sector (Table 1). Despite subtracting the input-
output flows associated with robots, the remaining part of this sector 
still has significant interaction with other sectors in the economy. This 
suggests that the relationship between the robot sector and the special 
purpose machines is very important. 

The diamond represents the sectors—33 and 41—whose 
z-values of total degree (ߙ௜) exceed 1.5. The squares are 
sectors—38 and 40—with high in-degree (ߙ௜௜௡) z-value 
(no vertices with z-value  ൐  1.5).   

Figure 2. Network structures (meso and macro) 
 

The robot sector in the macro network seems an 
absorber; that is, its in-degree surpasses the out-degree 
(only one outgoing arc to special purpose machinery 
(sector id: 33)).6 This observation is consistent with the 
nature of the robot sector shown in Figure 1. That is, the 
robot sector shows high effect ratio and low response 
ratio in typical spill-over analysis of the IO framework, 
which implies (relatively) high degree of backward 
linkage and low degree of forward linkage. Indeed, the 
robot sector in the inter-sector relations is not 
constrained, whose constraint factor is below the 
average. 

The topological structure of the meso network shows 
quite different features from those of the macro network. 
The apparent differences can be confirmed by the 
differences in network indices (as summarized in Table 
3). Although the size difference is one source of this 
difference (e.g., centralities), other measures that 
eliminate the scale effect (e.g., clustering coefficient) 
suggest that the meso network is flatter than the macro 
network. For example, while the average closeness 
centrality7 of the meso network is higher than that of 
the macro network, the average clustering coefficients 
of meso is lower than that of macro. These differences 
imply that the sectors are more locally clustered 
(forming components) in the macro network than in the 
meso networks. 

Based on the measures incorporating the flows on 
the network structure, the meso network (intra-sector 
structure) is more constrained than the macro network 
(inter-sector structure). Since both network show similar 
average efficiency, this difference may result in low 
average productivity of the robot sector (as a whole in 
the inter-sector relations). Indeed, the average 
productivity in the meso network (consisting of robot-
related sectors only) is lower than that in the macro 
network of the entire economy. Therefore, it can be 
concluded that the robot sector is not comparable to 
other highly productive sectors. 

 
 
 

7 Although this index is also affected by the network size, the scale 
effect is relatively smaller than the other centrality indices. However, 
the difference in this index between the two networks is significant 
considering the influence of the scale. 
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Table 3. Structural indices (meso and macro) 

Measures  Meso property  Macro property 

 
- mean (stdev) 
- max & min sectors 

- robot sector (z-value)
- overall mean (stdev)

Productivity 
- 1.144 (0.936) 
- 61 (max) & 37 (min) 

- 0.927 (-0.218) 
- 1.801 (4.003) 

Centrality 
(degree) 

- 12.941 (5.640) 
- 41 (max) & 24 (min) 

- 50 (-0.592) 
- 69.590 (33.111) 

Centrality 
(between) 

- 6.588 (6.868) 
- 62 (max) & 24 (min) 

- 3.282 (-0.731) 
- 27.566 (33.198) 

Centrality 
(closeness) 

- 0.045 (0.007) 
- 41 (max) & 24 (min) 

- 0.009 (-0.420) 
- 0.009 (0.002) 

Clustering 
coefficient 

- 0.560 (0.154) 
- 62 (max) & 41 (min) 

- 0.715 (0.626) 
- 0.623 (0.147) 

Efficiency 
factor 

- 0.868 (0.061) 
- 61 (max) & 62 (min) 

- 0.812 (-0.305) 
- 0.840 (0.089) 

Constraint 
factor 

- 0.707 (0.349) 
- 61 (max) & 24 (min) 

- 0.000 (-0.491) 
- 0.303 (0.617) 

 
The indices regarding the meso network together 

with Figure 2-(b) suggest that machineries (sector id’s 
33 and 41) and IT areas (sector id’s 61 and 62) play key 
role in the robot sector. On the other hand, the influence 
of the rubber sector (id: 24) is relatively weak. Pure 
structural indicators (e.g., degree indices) point out that 
the hubs are located at the machinery-related sectors. 
However, the IT service sector (id: 61) is ranked first not 
only in productivity (ߦ଺ଵ= 4.206) but also in constraints 
factor (߱଺ଵ= 1.241). Moreover, the computer software 
sector (id: 62) shows the highest clustering coefficient 
 .(଺ଶ = 0.686ߚ) and betweenness centrality (଺ଶ = 0.567ߠ)
These findings imply that the IT area is leading the robot 
sector as another keystone in the intra-sector relations.  

Structural hole analysis of the macro network 
(Figure 3-(a)) presents that the robot sector does not 
work as a broker in inter-sector relations. It is 
moderately efficient (slightly lower than the average) 
but not constrained. Thus, the robot sector seems loosely 
coupled with the other sectors in the entire economy. 

From a mesoscopic point of view, the sectors 
involved are more cohesively connected with each other. 
Compared to macro networks, efficiency and constraint 
factors are both narrowly dispersed. Two sectors—
rubber (id: 24) and house electronics (id: 40)—seem 
close to a broker. However, their influence (particularly, 
in terms of productivity and centrality) is not powerful 
enough to be called a broker. 
 

 

⒜  macroscopic structural holes 

Horizontal and vertical lines are drawn to intersect at the 
mean of the opposite axis. The red square indicates the 
robot sector with its efficiency and constraint coeff. 

 

⒝  mesoscopic structural holes 

Horizontal and vertical lines are drawn to intersect at the 
mean of the opposite axis. Note the ranges of two axes: 
the  efficiency  factors  are  more  densely  populated 
(compare the standard deviations in Table 2). 

Figure 3. Structural hole (meso and macro) 

 
5. Discussions  
 

This study demonstrates and analyzes the robot 
sector from both macro- and mesoscopic perspectives. 
This approach enhances our understanding of the robot 
sector to a multi-dimensional level by integrating the 
internal description of this sector with the external 
relations with other sectors in the entire economy. For 
example, our comparisons of the structural properties of 
the two networks suggest that while fairly cohesive 
intra-sector relations (inside the robot sector) do not 
allow room for structural holes, the robot sector itself 
(as a whole) plays a role of independent absorber in the 
inter-sector relations. We also found that the machinery 
sectors including general and special machineries (id: 32, 
33) are keystones in the intra-sector as well as the inter-
sector relations in Korea economy. The IT-related 
sectors such as communications, IT services, computer 
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softwares (id: 39, 61, 62) play a similar role (albeit 
somewhat less impressive in terms of indices). As a 
result, we could propose a promising path from cohesive 
intra-sector relations led by machinery and IT to other 
machineries, IT services and electronics across the 
economy.  

The proposed approach can also identify weakest 
links in the meso-macro connections. In the case of 
Korea, the weakest link lies at meager and inefficient 
forward linkage from the robot sector to the other 
sectors. To better understand this point, we examine the 
relationship between the structural measures and the 
performance (total output here).8 The following figures 
depict plots between the most influential measures and 
the economic outputs in the robot sector and the non-
robot sectors, respectively. 
 

 

⒜  robot sector: input coefficient vs output (sector) 

The plot between  input coefficient and sectoral output 
(all  in  z-score).  Although  the  size  of  data  is  not  big 
enough  to get meaningful  regression,  the  input  coeff. 
seems the most powerful explanatory variable.   

 

⒝  non-robot sector: efficiency vs output (total) 

The plot between efficiency and  total output  (all  in  z-
score).  The  most  significant  explanatory  variable  in 
regression (with all normalized values) is efficiency. 

                                          
8 Employing output as a key performance indicator is common in the 
IO regime. This is to make the most of IO data. 

Figure 4. Structure vs output 
 
Figure 4 also confirms this finding. The key 

dimensions that have the greatest impact on economic 
outcome or performance are different in the robot and 
non-robot sectors. The sectoral outputs in the robot 
sector have the largest positive correlation with the input 
coefficient measure, while the most powerful 
explanatory variable of multiple regression on the total 
output of the non-robot sector is the efficiency coeff., 
which accounts for structural hole. This also suggests 
that the proposed development path is highly likely to 
be implemented successfully. Note that in the success 
scenario above, leveraging highly cohesive intra-sector 
relations, keystone sectors (with high input coefficients) 
such as machinery and IT lead the entire robot sector 
while maximizing the ripple effect onto the whole 
economy through the linkage to the other sectors (with 
high efficiency factors). 

Unfortunately, however, our data and analysis find 
out that the current inter-sector relations in Korea are not 
fully on the right track. For example, the robot sector 
itself in the macro network demonstrates weak 
efficiency and low degree of forward linkage. Moreover, 
as we have seen, our framework also helps to develop 
future policy directions to increase the chances of 
successful deployment of GPT like robots.  
 
6. Conclusion  
 

The robot sector in Korea has thrived recently thanks 
to government supports and innovations in various 
industries. Therefore, our analysis of economic 
activities and business transactions based on IO data 
together with patent database presents a good case study 
to understand the nature of the robot sector from the 
viewpoint of business ecosystem. For example, our 
approach to analyzing the robot sector by seeing the 
forest and the trees simultaneously, contributes to 
finding a promising development path that leverages the 
strengths of intra-sector relations and spreads the impact 
of the robot sector across the macro network. Our future 
work will focus on elaborating our idea of the meso-
macro link and developing proper measures for 
integrated analysis of the two networks. 
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