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Abstract 

Hospital pharmacies utilize automated dispensing 
systems (ADS) to store and dispense medication in 
hospital wards. We propose an algorithm to minimize 
the inventory management costs incurred in holding and 
refilling the medications stored in an ADS. The 
algorithm is a linear integer programming formulation 
to compute how to configure an ADS, and how to 
allocate medications into capacity-constrained 
containers. Using a numerical example with real 
hospital data we demonstrate significant percentage 
savings relative to the status quo.  
 
 

1. Introduction 
A wide variety of medication is administered to 

hospital patients. Various regulations govern the 
management of medication inventory in institutional 
settings: for example, in the state of New York, 
potentially addictive medications must be carefully 
accounted for at each transfer. Automated medication 
dispensing systems facilitate compliance with such 
regulations. The key parts of such dispensing systems 
are a locking storage cabinet with electronic access 
control and a database for logging the opening and 
closing of the cabinets, as well as for recording the 
changes in the inventory levels of the items stored in the 
drawers. Most systems require user identifiers and 
passwords, and internal electronic devices track nurses 
accessing the system, track the patients for whom 
medications are administered, and provide usage data to 
the hospital's financial office for the patients' bills [1]. 

Figure 1 shows a storage drawer of a Pyxis 
MedStation system. Pyxis MedStations represent 70% 
of the automated dispensing systems currently deployed 
in the US hospitals. Each station has multiple drawers, 
and each drawer is configured with multiple containers 
as shown in Figure 1. To retrieve medication from an 

ADS, a healthcare provider selects the patient’s name 
from the computer screen of the system. That action 
brings up the list of medications prescribed for the 
patient. Selecting a particular medication from the 
prescribed list, automatically opens the drawer that 
contains the container with the medication. The 
container lid is automatically unlocked and opened. The 
removal of the medication dose is confirmed by the 
nurse using the system’s computer screen, and this event 
is then recorded into the ADS database. 

  
Figure 1: An Example of an Automated Dispensing 
System: Medication Vial is Removed from a Pyxis 

MedStation (manufactured by CareFusion) 

Typically, hospitals centralize the management and 
procurement of pharmaceuticals. Because it is 
impractical to deliver each medication dose directly 
from the central pharmacy to the patient in a care unit, 
medications deliveries are performed in batches. The 
majority of non-controlled medications are either picked 
or compounded in the central hospital pharmacy and 
then delivered to the hospital units with batch deliveries 
in containers designated for a particular patient. The 
controlled medications are delivered to the ADS. In 
addition to controlled medications, some non-controlled 
medications may also be stored in ADS when there is 
room available. These include medications that should 
be immediately available when needed (e.g. in response 
to an allergic reaction), the frequently ordered 
medications (e.g. Tylenol), and medications that are 
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frequently prescribed on per-needed basis, rather than 
on a regular schedule. The pharmacy department 
configures which medication is placed in which ADS. 
The decision is made at the level of the container within 
a drawer. The pharmacy department sets the minimum 
and maximum par level for each medication. Typical 
inventory management of this distributed inventory is 
periodic review: the inventory database of the ADS is 
queried periodically generating a report of inventory 
levels for medications that are at the time of the report 
below the minimum par level. For these medications, 
doses are pulled from the central hospital pharmacy 
storage to bring the ADS inventory up to the maximum 
par level. The pulled doses are delivered as a batch to 
the ADS in the hospital wards. 

 
Figure 2: Inventory Level over Time for a 
Medication Dispensed via a Pyxis Machine 

Figure 2 illustrates inventory levels over a period of 
twenty days of a sample medication stored in a Pyxis 
unit of our hospital. The data for the plot was obtained 
from the system’s database. Note, that the refill amount 
is not always consistent with the formula 

maximum par level - inventory level at the time the 
report is run  

We do not know the exact reason for this particular 
discrepancy, but pharmacy technicians refilling the 
machines do have some discretion in the operation, and 
preference to refill with complete packs of medication 
is one plausible explanation in this case.  

A question of interest to pharmacy management is 
how to utilize the dispensing systems efficiently. One 
way to measure efficiency is as the cost of keeping and 
managing the inventory of medications in the Pyxis 
machines. Assuming the hospital continues to follow the 
periodic review policy described earlier, the minimum 
and maximum par levels should be set to trade off the 
holding, restocking and shortage costs.  

The problem of determining the minimum and 
maximum par levels for a Pyxis machine was previously 
considered by Kelle, Woosley and Schneider [2]. They 

proposed three mathematical programming 
formulations for setting the par levels under different 
optimization objectives and constraints. One of the 
formulations involves minimization of expected 
ordering costs subject to availability constraint for each 
medication stored in the machine.  The availability 
constraint is formulated as the limit on the probability of 
a stockout. The second formulation has a similar 
availability constraint but the objective is to minimize 
the expected sum of ordering and holding costs. The 
third formulation considers the expected sum of 
ordering, holding and shortage costs and eliminates the 
availability constraint. All three formulations impose 
the total volume constraint on the solution, treating the 
storage space available to each medication as 
continuous.  

The major contribution of our paper is the 
recognition of the discrete nature of the storage space 
constraint.  Our algorithm provides pharmacies with a 
complete workable solution that not only recommends 
the minimum and maximum par level for each 
medication, but also the size of the storage container that 
should be used for housing the medication, and assures 
that the storage containers can fit the cabinet 
configuration. The second contribution of our paper is 
the inclusion of inventory holding costs related to the 
holding of controlled substances. Finally, our numeric 
example based on the data and operations of a large US 
hospital quantifies the size of cost savings that can be 
achieved with an optimal allocation. 

2. Literature Review 
Literature on joint replenishment under stochastic 

demand (SJRP) is applicable in our setting. Johansen 
and Melchiors [3] noted that in the academic SJRP 
literature, the continuous review (s,c,S) can-order policy 
[4] and the periodic replenishment policy [5] received 
considerable attention. Other policies have been 
proposed, for example Feng, Wu, Muthuraman and 
Deshpande [6] introduced a continuous-review (s,c,d,S) 
policy for managing multi-product inventory with 
correlated demand. While in the (s,c,S) an order up to Si 
is made for all items i with inventory level below ci, 
whenever the inventory level of at least one item falls 
below si, the order level in the (s,c,d,S) policy differs.  

The joint replenishment literature was recently 
reviewed by Khouja and Goyal [7], who argued for 
shifting research focus from the search for the optimal 
solution to the classic JRP problem to developing 
applicable models for the real life inventory problems, 
for examples problems that take into consideration 
storage and transport constraints. Including these 
constraints can significantly affect recommendations. 
For example, the (s,S)-replenishment policy has been 
proven to minimize costs in a variety of single-item 
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inventory settings [8-10]. However, Chen and 
Lambrecht [11] demonstrated that the (s,S) policy may 
not be optimal when inventory storage capacity is 
constrained. 

Given the real-world nature of our problem, we treat 
the (s,S) periodic replenishment as given. Our algorithm 
consists of calculating a cost-minimizing (s,S) level 
when total storage capacity is not constrained, and then 
calculating the cost-minimizing minimum par level 
when available capacity is below the optimal S level. 
Kelle, Woosley and Schneider [2] provide extensive 
discussions related to the computational challenges of 
finding the cost minimizing par levels. Given the 
extensive literature on (s,S) policies and their variants, 
and the algorithms to solve them, our focus here is 
different, namely combining an  (s,S) method with the 
constraint on storage. Analytic algorithms or faster 
approximations are left for future work. 

3. Mathematical Programming 
Formulation 

As described in the introduction, a standard Pyxis 
machine holds multiple drawers. A standard 
configuration is six full-height drawers, but two half-
height drawers can be used in place of any single full-
height drawers. The full-height and the half-height 
drawers are further configured as a set of rows of 
containers. The full-height drawers can hold five rows 
of containers, where each row has a width of five units. 
So, a row in a full-height drawer can hold a container of 
width 5, or a container of width 2 and a container of 
width 3, or three containers of width 1 and one container 
of width 2, etc. The half-height drawers can also hold 
five rows of containers, but the total width of each row 
is six units. The half-height containers are manufactured 
in widths of 1, 2, and 3 units. 

Let 𝑀𝑀 denote the set of medications to be dispensed 
from a Pyxis machine, and let 𝑚𝑚 ∈ 𝑀𝑀  denote a 
particular medication. Let 𝐽𝐽 denote the set of feasible 
containers. In the hospital where we conducted this 
project the set of utilized containers is as follows: 
{(1𝑥𝑥1), (1𝑥𝑥2), (1𝑥𝑥3), (2𝑥𝑥1), (2𝑥𝑥2), (2𝑥𝑥3), (2𝑥𝑥5)} , 
where (1𝑥𝑥3)  is a half-height container of width 3, 
(2𝑥𝑥5)  is a full-height container of width 5, etc. A 
medication can be placed in multiple containers, and the 
dispensing system configured to open the containers in 
order: after the first container is emptied, the second one 
is open whenever the needed medication is requested. 
So we let 𝐾𝐾  denote a set of feasible container 
combinations, for example a feasible combination may 
consist of two (1𝑥𝑥3)  containers, or of a (1𝑥𝑥2) and a 
(1𝑥𝑥3)  container, etc. Let 𝑘𝑘 ∈ 𝐾𝐾  denote a particular 
container combination, and let 𝑟𝑟𝑗𝑗𝑘𝑘 denote the number of 
containers of type 𝑗𝑗 included in container combination 

𝑘𝑘. Not all combinations are feasible for all medications, 
for example containers of width of one or two are too 
small to hold syringes, so we let 𝐾𝐾𝑚𝑚 ⊆ 𝐾𝐾  be set of 
container combinations that is feasible for medication 
𝑚𝑚. Finally, let 𝑣𝑣𝑚𝑚𝑘𝑘  be the cost associated with stocking 
medication 𝑚𝑚 in container combination 𝑘𝑘. The problem 
of finding an allocation of the height of Pyxis into 
drawers (𝑑𝑑1,𝑑𝑑2), an assignment of containers to fit in 
those drawers �𝑏𝑏𝑗𝑗�, and an assignment of medications to 
those Pyxis containers that minimizes costs can be 
formulated as an integer linear programming problem: 

min
�𝑧𝑧𝑚𝑚𝑘𝑘 �,�𝑏𝑏𝑗𝑗�,𝑑𝑑1,𝑑𝑑2,𝑒𝑒(2𝑥𝑥2) 

� � 𝑣𝑣𝑚𝑚𝑘𝑘𝑧𝑧𝑚𝑚𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑚𝑚𝑚𝑚∈𝑀𝑀

 (1) 

subject to constraints: 

𝑧𝑧𝑚𝑚𝑘𝑘 ∈ {0,1} ∀𝑘𝑘 ∈ 𝐾𝐾,𝑚𝑚 ∈ 𝑀𝑀 (2) 
� 𝑧𝑧𝑚𝑚𝑘𝑘

𝑘𝑘∈𝐾𝐾𝑚𝑚
= 1 ∀𝑚𝑚 ∈ 𝑀𝑀 (3) 

� � 𝑟𝑟𝑗𝑗𝑘𝑘𝑧𝑧𝑚𝑚𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑚𝑚𝑚𝑚∈𝑀𝑀

= 𝑏𝑏𝑗𝑗 ∀𝑗𝑗 (4) 

𝑑𝑑1 + 2𝑑𝑑2 ≤ 2𝑑𝑑 (5) 
𝑏𝑏(1𝑥𝑥1) + 2𝑏𝑏(1𝑥𝑥2) + 3𝑏𝑏(1𝑥𝑥3) ≤ 30𝑑𝑑1 (6)  
𝑏𝑏(2𝑥𝑥1) + 2𝑏𝑏(2𝑥𝑥2) + 3𝑏𝑏(2𝑥𝑥3) + 5𝑏𝑏(2𝑥𝑥5) 

≤ 25𝑑𝑑2 (7) 

𝑒𝑒(2𝑥𝑥2) ≥ 𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3)   (8) 
𝑒𝑒(2𝑥𝑥2) + 2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) ≤ 10𝑑𝑑2 (9) 

𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) , 

𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5) , 𝑒𝑒(2𝑥𝑥2) ≥ 0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟 
(10) 

Decision variable 𝑧𝑧𝑚𝑚𝑘𝑘  is equal to 1, when container 
combination 𝑘𝑘 is utilized for medication 𝑚𝑚. Constraint 
(3) assures that only one container combination is used 
for a medication. In constraint (5) decision variables 𝑑𝑑1 
and 𝑑𝑑2 are used for counting the number of half-height, 
and full-height drawers, while parameter 𝑑𝑑 specifies the 
total number of full-height drawer slots available. 
Constraint (4) defines decision variables �𝑏𝑏𝑗𝑗 � that are 
used for counting the number of containers of each type 
used in the solution. Constraint (6)  guarantees that the 
half-height containers fit into the space available in the 
half-height drawers. Similarly constraint (7) checks that 
the total space used by the full-height containers is not 
larger than the space available in the full-height drawers. 
𝑒𝑒(2𝑥𝑥2)  defined with constraint (8) is the number of full-
height, width 2 cubies in a solution in excess of the 
number of full-height width 3 cubies. Because the 5-unit 
width of the full-height drawers is not the divisible by 2 
and 3, constraint (9) is needed to assure a feasible 
solution. Problem formulation notation is listed in Table 
1.  The proof of the formulation is in Appendix A. 
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Table 1: Notation for the Container Assignment 
Formulation 

Variable Description 
𝑚𝑚 ∈ 𝑀𝑀 The index on medications 

𝐽𝐽

= �

(1𝑥𝑥1), (1𝑥𝑥2),
(1𝑥𝑥3),

(2𝑥𝑥1), (2𝑥𝑥2),
(2𝑥𝑥3), (2𝑥𝑥5)

� 

The set of feasible container 
dimensions. The first dimension 
is the height of the container, the 
second is the width of the 
container 

𝑘𝑘 ∈ 𝐾𝐾 The index on allowed container 
combinations 

𝑟𝑟𝑗𝑗𝑘𝑘 The number of containers of type 
𝑗𝑗 included in combination 𝑘𝑘.  

𝐾𝐾𝑚𝑚 ⊆ 𝐾𝐾 The subset of container 
combinations that is feasible for 
medication 𝑚𝑚 

𝑣𝑣𝑚𝑚𝑘𝑘  The inventory cost associated 
with using container 
combination 𝑘𝑘 for medication 𝑚𝑚 

𝑑𝑑 The total number of available for 
full-height drawers in a Pyxis 
unit 

𝑑𝑑1 Decision variable: Number of 
half-height drawers 

𝑑𝑑2 Decision variable: Number of 
full-height drawers 

𝑏𝑏𝑗𝑗 Decision variables: Total 
quantity of containers of 
dimensions 𝑗𝑗 ∈ 𝐽𝐽 

𝑧𝑧𝑚𝑚𝑘𝑘 ∈ {0,1} Decision variable: Indicator 
variable for whether medication 
𝑚𝑚  is stored in container 
combination 𝑘𝑘 

 
3.1. Computation of the Cost Coefficients 

The cost, 𝑣𝑣𝑚𝑚𝑘𝑘 , of placing medication 𝑚𝑚 into container 
combination 𝑘𝑘 is the cost of holding and managing the 
medication inventory in that container combination over 
some period 𝑇𝑇. This cost, in turn, is determined by the 
minimum and maximum par levels assigned to this 
combination. Let Σ𝑚𝑚

𝑘𝑘
 be the maximum number of doses 

of medication 𝑚𝑚  that can be held in container 
combination 𝑘𝑘 . Let ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ)  denote the expected 
holding cost associated with the decision to set the 
minimum par level at 𝜎𝜎 and the maximum par level at Σ 
for medication 𝑚𝑚  in container combination 𝑘𝑘 . Let 
𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ)  be the expected annual cost of refilling the 
containers when there is a stock-out, and 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) be the 
expected annual cost of periodic refills, not related to 
stock-outs. The expected minimum cost is found as 

𝑣𝑣𝑚𝑚𝑘𝑘 = min
𝜎𝜎,Σ

ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) + 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) + 𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) (11) 
subject to 

0 ≤ 𝜎𝜎 < Σ ≤ Σ𝑚𝑚
𝑘𝑘

. (12) 
Kelle, Woosley and Schneider [2] provide extensive 
discussions related to the computational challenges of 
finding an optimal solution to (11).  For our work, we 
used simulation optimization to find the values of 𝑣𝑣𝑚𝑚𝑘𝑘  
and of the corresponding minimum and maximum par 
levels 

(𝜎𝜎𝑚𝑚𝑘𝑘 ,Σ𝑚𝑚𝑘𝑘 ) ∈ argmin
𝜎𝜎,Σ

{ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎,Σ) + 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) +

𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ)}. 
(13) 

We sampled single-period demand values from 
historical data.  Figure 2 is an inventory level diagram 
for one of the medications dispensed via a Pyxis 
machine in a hospital ward. The minimum par level is 
set at 20 doses, the maximum par level is set at 40 doses. 
The diagram shows that it is not uncommon to observe 
prolonged periods of time when no doses are dispensed, 
so we have empirical evidence that daily demand is not 
normally distributed. Figure 2 illustrates a policy where 
the central hospital pharmacy checks twice a day (about 
6 am and 2 pm) whether there are medications at or 
below their minimum par levels. Shortly after the below 
par level reports are generated enough doses are picked 
to bring the level up to the maximum par level. These 
additional doses are delivered to the units some time 
later. If there were additional dispenses between the 
time the level was checked and the doses were 
delivered, at the time when the refills are delivered, the 
inventory level may not reach the maximum par level.  

To speed up the search for optimal par levels we 
limited the minimum par level search to the interval 
[0,2𝐷𝐷𝑚𝑚] , where 𝐷𝐷𝑚𝑚  is the historical maximum one-
period demand for medication 𝑚𝑚 . We limited the 
maximum par levels to the interval �𝜎𝜎 + 1, min �𝜎𝜎 +

𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚), Σ𝑚𝑚
𝑘𝑘
�� . For every medication, we first 

computed the values of 𝜎𝜎𝑚𝑚𝐾𝐾 and Σ𝑚𝑚𝐾𝐾  for container 
combinations with the largest capacity Σ𝑚𝑚

𝐾𝐾
 ( Σ𝑚𝑚

𝐾𝐾
≥ Σ𝑚𝑚

𝑘𝑘
 

for all 𝑘𝑘). We then set 𝑣𝑣𝑚𝑚𝑘𝑘 = 𝑣𝑣𝑚𝑚𝐾𝐾 , 𝜎𝜎𝑚𝑚𝑘𝑘 = 𝜎𝜎𝑚𝑚𝐾𝐾  and Σ𝑚𝑚𝑘𝑘 =
Σ𝑚𝑚𝐾𝐾  for all container combinations 𝑘𝑘 that had capacity 
greater than Σ𝑚𝑚𝐾𝐾 .  For container combinations with 
smaller volumes, i.e., such that Σ𝑚𝑚

𝑘𝑘
< Σ𝑚𝑚𝐾𝐾  , we set 

maximum par level equal to capacity (Σ𝑚𝑚𝑘𝑘 = Σ𝑚𝑚
𝑘𝑘

) and 
used simulation optimization to find the corresponding  
𝜎𝜎𝑚𝑚𝑘𝑘  and 𝑣𝑣𝑚𝑚𝑘𝑘 . 
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4. Computational Experiments 
4.1. Quantification of Optimization 
Parameters 

We classified medications into categories related to 
the packaging of unit doses and measured the number of 
doses that can fit into each container type. A sample of 
our data is shown in Table 2. Note, that full-height 
containers of width 1, (2x1), are not used in our hospital. 
As can be seen in the case of gel capsules, the geometric 
shape of dose packaging means that doubling or tripling 
the total container volume by increasing one of the 
container dimensions does not necessarily result in 
proportional increase in container capacity for that type 
of dose. 

We limited the number of container combinations we 
considered, so that no combination had more than two 
containers. We further limited these combinations so 
that, if a combination consists of two different 
containers, these containers are close in size. These 
assumptions were in line with preferences of the 
pharmacy management. The seventeen container 
combinations are listed in Table 3. While these 
assumptions were appropriate for the computational 
experiment in our setting, additional or different 
combinations can be enumerated to define a set of 
feasible combinations K in a different hospital. 

Table 2: Pyxis Container Capacity by Dose Type 

 
Table 3: Pyxis Container Combinations Considered 
in Numerical Experiments: Number of Containers 

is Followed by the Dimensions of the Container. 

 
Pharmacy technicians refill machines, and from our 

observation of the technicians’ work we noted that a 
technician spent about two minutes retrieving the 
medication from the central pharmacy, and about one 
minute storing a medication into a Pyxis machine. 
Assuming an hourly wage (including benefits) of $20, 

we estimated the cost of a non-stockout-related refill, at 
$1. We assumed that a stockout-related refill takes ten 
additional minutes of the pharmacy technician’s time, so 
that the cost associated with a stockout is $4.33. 

Next, we estimated the costs of holding the 
medications in ADS. We obtained current unit cost data 
on medications, and assumed financial holding costs of 
10% per year. Distribution of per unit costs is shown in 
Figure 3. The median cost is $0.35 per dose. Our 
estimates for the financial holding cost and the cost of 
refills is in close agreement with the estimates used by 
Gebicki, Mooney, Chen and Mazur [12] in their 
simulation study examining medication supply chain in 
a mid-size hospital. 

 
Figure 3: Distribution of Per Unit Costs for the 

Medications Included in the Numerical Experiment 

In addition to financial opportunity costs, there are 
holding costs related to counting medication doses. 
There are two such holding costs associated with 
counting.  First, the inventory is counted monthly. We 
estimated that it takes a technician 1/20th of a second to 
count an average dose (assuming ½ of a second per 10-
pill blister pack). Assuming $20/hour cost rate for the 
technician, and 12 counts per year, the annual holding 
cost for this counting is 1/3 of a penny per unit dose per 
year. For most medications, this holding cost is 
negligible compared to the 10% of the purchasing cost, 
which is what we assumed for the financial opportunity 
cost.  

The majority of medications stored in a Pyxis 
machine are controlled medications, such as narcotic 
painkillers. Controlled medications are 62% of the 
medications in our sample. All the doses of the 
controlled medication in a container need to be counted 
by a nurse each time a dose is dispensed from the 
container. So, we estimated the second component of 
holding cost related to counting, as the equivalent of 
1/20 second of a nurse’s time multiplied by the annual 
demand. The fact that this admittedly small cost to count 
a pill was incurred every time a dose was administered 
made it significant for some drugs.  We assumed the 
nurse’s wage of $40 per hour, which leads to the 
estimated of $0.0006 per unit dose per unit of annual 
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demand. Figure 4 illustrates the impact of this counting 
costs, comparing it to the 10% cost of purchase. For 
some medications, the counting cost (shown as the dark 
part of a stacked bar) constitutes a significant portion of 
the holding cost.  

 
Figure 4: Comparing Components of the Holding 

Cost 

One option we considered in the optimization was to 
split the inventory for a drug across two containers.  
Roughly speaking, if it was split equally across two 
containers, then the number of units that a nurse would 
need to count upon opening only one container was half 
of what it would have been if all the units were stored in 
a single larger container. We assumed that the controlled 
medication counting cost is only half of what we 
described above, i.e., $0.0003 per unit dose per unit of 
annual demand if the medication is distributed between 
two containers rather than stored in a single container.  

4.2. Comparison of the Optimized Solution 
with the Status Quo 

To quantify the cost savings that can be achieved 
using optimized allocation of the medications to Pyxis 
containers we compared it with the status quo allocation. 
We obtained historical transaction data, as well as the 
minimum and maximum par levels for a set of 109 
medications stored in a Pyxis machine in one of the 
hospital units. A minimum of four full-height and five 
half-height Pyxis drawers is needed to store this set of 
medications. We used simulation to estimate the 
inventory management cost for the status quo minimum 
and maximum par levels for these medications. For the 
simulation, we assumed restocking and counting costs 
as discussed in the previous section, and a single regular 
restocking per day.  We compared the number of refills 
and the average inventory level calculated directly from 
transaction data (with regular refills happening twice a 
day) and with our simulation estimates. Over the 109 
medications our simulation estimated 10% fewer refills 
than shown in the transaction data, the average 
inventory level was estimated as 1% lower than the level 
calculated from the transaction data. 

Figure 5 shows the result of our numerical analysis. We 
estimate that continuing with the current par levels will 
result in approximately $4,500 as the total annual cost 
of holding and restocking the inventory in a single Pyxis 
machine. Approximately one-fourth of these costs is the 
cost of holding the inventory, and the rest is the cost of 
restocking. On average, 6.6 medications will be 
restocked per day, with approximately 10% of these 
expedited due to stock-outs. (Note, the current number 
of stock-outs is significantly smaller, but that is due to 
restocking twice a day, rather than once a day – the 
frequency we used in the simulation.) 

 
Figure 5: Cost Savings Status Quo vs. Optimized 

Solution for a Single Pyxis System 

The optimized solution results in approximately 
$2,000 annual cost savings. The savings are mostly due 
to fewer refills, with 4 medications refilled on average 
per day, and an insignificant percentage of stock-outs. 
Fewer refills imply higher average inventory, so in total 
the inventory holding costs do not change significantly 
with the optimized solution. The savings in the 
inventory holding costs is approximately $200 per year. 
Some of the savings in holding costs result from 
splitting medications over two containers. In the status 
quo solution, 21 medications are stored in two 
containers, while in the optimized solution 41 
medications are stored in two containers. To allow for 
more containers two half-height drawers replace one of 
the full-height drawers. 

Figure 6 shows how inventory management costs 
decrease as a function of the overall system capacity. 
Better allocation of medication within a Pyxis can allow 
for the same inventory costs as with the status quo but 
with 50% less space (4 instead of 6.5 full-height 
drawers). Using the space used currently can decrease 
the inventory management costs for this Pyxis unit by 
$2,000 a year. Past a certain total capacity, additional 
capacity has little effect on the costs related to inventory 
management – assuming the capacity will not be used to 
manage other medications. 
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Figure 6: Minimized Inventory Costs as a Function 

of Capacity 

5. Discussion and Conclusion 
With increased pressure on operating costs, 

managers in the healthcare industry seek to understand 
whether they are using resources efficiently. Sometimes 
one of the challenges is simply to define efficiency. 
Quantification of the relevant costs can be another 
challenge. In this paper we examined inventory 
management costs related to using automated 
medication dispensing systems. We defined efficiency 
as minimizing costs related to refilling, storing, and 
dispensing medication using these systems. To estimate 
cost parameters, we observed employees involved in the 
tasks related to using the systems and translated their 
work into monetary costs. Using these costs and 
historical transactions data on stocking and dispensing 
medication using an ADS, we estimated annual ADS 
inventory unit management costs for an ADS in a typical 
hospital ward as approximately $4,500 per year.    

We proposed a linear integer programming 
formulation that will allow pharmacy managers to make 
better decisions about par levels for medications they 
store in an ADS, and how to configure an ADS to store 
the medication.  With the numeric example based on 
actual hospital data we showed that optimization could 
result in significant cost savings in percentage terms: 
close to 50%. However, in absolute numbers these 
savings are not large relative to annual expenses of a 
hospital pharmacy. In a hospital with twenty ADS units, 
total annual savings will be less than the salary of one 
full-time pharmacy employee.  In addition, a significant 
effort will be required to populate a database with 
medication dose types, and with the quantities that fit 
into various containers. The effort in populating such a 
database may be worthwhile for an ADS manufacturer, 
who could implement the proposed algorithms as part of 
their par level recommendation engine, a feature that 
may make its product more competitive.  
. 
 

6. Appendix A: Proof of the ILP 
Formulation 

Consider the set of constraints (5)-(10). Let 𝑉𝑉 =

�
𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,
𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5) 

� be a solution that picks 

the number of drawers of the two heights and the 
number of containers of various heights and widths.  Let 
𝐶𝐶 = {𝑉𝑉|𝑉𝑉 satisfies (5) − (10)}. 

Let 𝑃𝑃 = �𝑉𝑉�the containers represented by 𝑉𝑉 
can be placed in a Pyxis �.  First, 

if 𝑉𝑉 ∈ 𝐶𝐶  and 𝑒𝑒(2𝑥𝑥2) > �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �
+

 then we can 
set 𝑒𝑒(2𝑥𝑥2) = �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �

+
 so we do that without 

loss of generality. 
Proposition: 𝐶𝐶 = 𝑃𝑃.  
Proof: First we show that 𝐶𝐶 ⊂ 𝑃𝑃 . We do this by 
providing an algorithm that feasibly places the 
containers into rows of the appropriate drawers. Note 
that (5) and the integrality of 𝑑𝑑1 and 𝑑𝑑2 exactly defines 
the collections of drawer combinations that are feasible 
for a Pyxis. For the half-height drawers, there are 5𝑑𝑑1 
rows in the 𝑑𝑑1 drawers and each drawer is of width 6. 
Place the 𝑏𝑏(1𝑥𝑥3)  containers of width 3 into the first  
�𝑏𝑏(1𝑥𝑥3) 2⁄ �  rows. If there are an odd number of 
containers then the last one will be placed in row 
�𝑏𝑏(1𝑥𝑥3) 2⁄ �. Now place the 𝑏𝑏(1𝑥𝑥2)  containers of width 2 
into the last �𝑏𝑏(1𝑥𝑥2) 3⁄ � rows. It is possible that there is 
one width 2 container that will need to go in row 
�𝑏𝑏(1𝑥𝑥3) 2⁄ �  with the odd width 3 container. This 
placement is possible because by (6) 
2𝑏𝑏(1𝑥𝑥2) + 3𝑏𝑏(1𝑥𝑥3) ≤ 6 ∙ 5 ∙ 𝑑𝑑1.   Finally place the 
containers of width 1 in the remaining space which is 
possible because the number of width 1 containers, 
𝑏𝑏(1𝑥𝑥1) ≤ 6 ∙ 5 ∙ 𝑑𝑑1 − 2𝑏𝑏(1𝑥𝑥2) − 3𝑏𝑏(1𝑥𝑥3) , i.e., the 
remaining space. This completes placing the half-height 
containers.  

For the full-height containers there are 5𝑑𝑑2 rows of 
width 5 in which to place them. Fill the first 𝑏𝑏(2𝑥𝑥5)  rows 
each with one container of width 5. Now fill the next 
𝑏𝑏(2𝑥𝑥3)  rows with one container of width 3. There are 
enough rows because 𝑏𝑏(2𝑥𝑥3) + 𝑏𝑏(2𝑥𝑥5) ≤ 5𝑑𝑑2  by (7). 
Next, for these same rows that contain a container of 
width 3 add a container of width 2. If there are not 
enough we are fine; if there are additional containers of 
width 2, i.e., 𝑒𝑒(2𝑥𝑥2) > 0 , then place two of these 
containers in each of the next �𝑒𝑒(2𝑥𝑥2) 2⁄ � rows. Note that 
constraint (9) ensures that there are enough rows to do 
this. We have shown that 𝐶𝐶 ⊂ 𝑃𝑃.  

To show 𝑃𝑃 ⊂ 𝐶𝐶 , let 𝑉𝑉 =
�𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5) � 
be the vector of drawers and containers that fits in this 
Pyxis. Clearly 𝑑𝑑1  and 𝑑𝑑2  satisfy (5). Similarly, 
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𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,and 𝑏𝑏(1𝑥𝑥3)  satisfy (6) and 
𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,and 𝑏𝑏(2𝑥𝑥5)  satisfy (7) because they 
fit in the number of rows given. The only step that 
remains is to ensure that (8) and (9) are satisfied. To do 
this we sort the full height drawers as follows: We place 
the rows with width 5 containers first, call them 𝑅𝑅5, next 
the rows that have a container of width 3 and a container 
of width 2, call them 𝑅𝑅32 , next the rows that have a 
container of width 3, but not a container of width 2, call 
them 𝑅𝑅3−. Call the remaining rows 𝑅𝑅. If 𝑅𝑅3− ≠ ∅ and 
there is a row in 𝑅𝑅 with a container of width 2, move 
that container out of that row and into a row in 𝑅𝑅3− 
which places the row into 𝑅𝑅32. If there was anything else 
(width 1 container(s)) in that row put it/them in the row 
from which you removed the container of width 2. 
Repeat this process until either 𝑅𝑅3−becomes empty or 
there are no more width 2 containers in 𝑅𝑅. The number 
of rows, 𝑑𝑑2, is greater than or equal to the number of 
containers of width 5, i.e., |𝑅𝑅5| , plus the number of 
containers of width 3, i.e.,  |𝑅𝑅32| + |𝑅𝑅3−| , plus the 
number of rows in 𝑅𝑅 , i.e., |𝑅𝑅|. Thus, 5𝑑𝑑2 = 𝑏𝑏(2𝑥𝑥3) +
𝑏𝑏(2𝑥𝑥5) + |𝑅𝑅|. Define 𝑒𝑒(2𝑥𝑥2) = �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �

+
 to be 

the number of excess width-2 containers not in a row 
with a container of width 3. Because all of these fit into 
the rows, 𝑅𝑅 , we must have that 𝑒𝑒(2𝑥𝑥2) ≤ 2|𝑅𝑅| . 
Therefore, 𝑒𝑒(2𝑥𝑥2) + 2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) ≤ 2|𝑅𝑅| +
2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) = 2(5𝑑𝑑2) which gives us (9).  
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