
Reducing Costs of Managing Medication Inventory in Automated Dispensing
System in Hospital Units

Gregory Dobson Vera Tilson Sandy Sullivan Dave Webster
Simon School Simon School URMC Pharmacy URMC Pharmacy

University of Rochester, Rochester, NY 14627, USA
{Greg.Dobson, Vera.Tilson} @simon.rochester.edu {Sandy_Sullivan, Dave_Webster} @urmc.rochester.edu

Abstract

Hospital pharmacies utilize automated dispensing
systems (ADS) to store and dispense medication in
hospital wards. We propose an algorithm to minimize
the inventory management costs incurred in holding and
refilling the medications stored in an ADS. The
algorithm is a linear integer programming formulation
to compute how to configure an ADS, and how to
allocate medications into capacity-constrained
containers. Using a numerical example with real
hospital data we demonstrate significant percentage
savings relative to the status quo.

1. Introduction
A wide variety of medication is administered to

hospital patients. Various regulations govern the
management of medication inventory in institutional
settings: for example, in the state of New York,
potentially addictive medications must be carefully
accounted for at each transfer. Automated medication
dispensing systems facilitate compliance with such
regulations. The key parts of such dispensing systems
are a locking storage cabinet with electronic access
control and a database for logging the opening and
closing of the cabinets, as well as for recording the
changes in the inventory levels of the items stored in the
drawers. Most systems require user identifiers and
passwords, and internal electronic devices track nurses
accessing the system, track the patients for whom
medications are administered, and provide usage data to
the hospital's financial office for the patients' bills [1].

Figure 1 shows a storage drawer of a Pyxis
MedStation system. Pyxis MedStations represent 70%
of the automated dispensing systems currently deployed
in the US hospitals. Each station has multiple drawers,
and each drawer is configured with multiple containers
as shown in Figure 1. To retrieve medication from an

ADS, a healthcare provider selects the patient’s name
from the computer screen of the system. That action
brings up the list of medications prescribed for the
patient. Selecting a particular medication from the
prescribed list, automatically opens the drawer that
contains the container with the medication. The
container lid is automatically unlocked and opened. The
removal of the medication dose is confirmed by the
nurse using the system’s computer screen, and this event
is then recorded into the ADS database.

Figure 1: An Example of an Automated Dispensing
System: Medication Vial is Removed from a Pyxis

MedStation (manufactured by CareFusion)

Typically, hospitals centralize the management and
procurement of pharmaceuticals. Because it is
impractical to deliver each medication dose directly
from the central pharmacy to the patient in a care unit,
medications deliveries are performed in batches. The
majority of non-controlled medications are either picked
or compounded in the central hospital pharmacy and
then delivered to the hospital units with batch deliveries
in containers designated for a particular patient. The
controlled medications are delivered to the ADS. In
addition to controlled medications, some non-controlled
medications may also be stored in ADS when there is
room available. These include medications that should
be immediately available when needed (e.g. in response
to an allergic reaction), the frequently ordered
medications (e.g. Tylenol), and medications that are

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60113
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 6782

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

frequently prescribed on per-needed basis, rather than
on a regular schedule. The pharmacy department
configures which medication is placed in which ADS.
The decision is made at the level of the container within
a drawer. The pharmacy department sets the minimum
and maximum par level for each medication. Typical
inventory management of this distributed inventory is
periodic review: the inventory database of the ADS is
queried periodically generating a report of inventory
levels for medications that are at the time of the report
below the minimum par level. For these medications,
doses are pulled from the central hospital pharmacy
storage to bring the ADS inventory up to the maximum
par level. The pulled doses are delivered as a batch to
the ADS in the hospital wards.

Figure 2: Inventory Level over Time for a
Medication Dispensed via a Pyxis Machine

Figure 2 illustrates inventory levels over a period of
twenty days of a sample medication stored in a Pyxis
unit of our hospital. The data for the plot was obtained
from the system’s database. Note, that the refill amount
is not always consistent with the formula

maximum par level - inventory level at the time the
report is run

We do not know the exact reason for this particular
discrepancy, but pharmacy technicians refilling the
machines do have some discretion in the operation, and
preference to refill with complete packs of medication
is one plausible explanation in this case.

A question of interest to pharmacy management is
how to utilize the dispensing systems efficiently. One
way to measure efficiency is as the cost of keeping and
managing the inventory of medications in the Pyxis
machines. Assuming the hospital continues to follow the
periodic review policy described earlier, the minimum
and maximum par levels should be set to trade off the
holding, restocking and shortage costs.

The problem of determining the minimum and
maximum par levels for a Pyxis machine was previously
considered by Kelle, Woosley and Schneider [2]. They

proposed three mathematical programming
formulations for setting the par levels under different
optimization objectives and constraints. One of the
formulations involves minimization of expected
ordering costs subject to availability constraint for each
medication stored in the machine. The availability
constraint is formulated as the limit on the probability of
a stockout. The second formulation has a similar
availability constraint but the objective is to minimize
the expected sum of ordering and holding costs. The
third formulation considers the expected sum of
ordering, holding and shortage costs and eliminates the
availability constraint. All three formulations impose
the total volume constraint on the solution, treating the
storage space available to each medication as
continuous.

The major contribution of our paper is the
recognition of the discrete nature of the storage space
constraint. Our algorithm provides pharmacies with a
complete workable solution that not only recommends
the minimum and maximum par level for each
medication, but also the size of the storage container that
should be used for housing the medication, and assures
that the storage containers can fit the cabinet
configuration. The second contribution of our paper is
the inclusion of inventory holding costs related to the
holding of controlled substances. Finally, our numeric
example based on the data and operations of a large US
hospital quantifies the size of cost savings that can be
achieved with an optimal allocation.

2. Literature Review
Literature on joint replenishment under stochastic

demand (SJRP) is applicable in our setting. Johansen
and Melchiors [3] noted that in the academic SJRP
literature, the continuous review (s,c,S) can-order policy
[4] and the periodic replenishment policy [5] received
considerable attention. Other policies have been
proposed, for example Feng, Wu, Muthuraman and
Deshpande [6] introduced a continuous-review (s,c,d,S)
policy for managing multi-product inventory with
correlated demand. While in the (s,c,S) an order up to Si
is made for all items i with inventory level below ci,
whenever the inventory level of at least one item falls
below si, the order level in the (s,c,d,S) policy differs.

The joint replenishment literature was recently
reviewed by Khouja and Goyal [7], who argued for
shifting research focus from the search for the optimal
solution to the classic JRP problem to developing
applicable models for the real life inventory problems,
for examples problems that take into consideration
storage and transport constraints. Including these
constraints can significantly affect recommendations.
For example, the (s,S)-replenishment policy has been
proven to minimize costs in a variety of single-item

Page 6783

inventory settings [8-10]. However, Chen and
Lambrecht [11] demonstrated that the (s,S) policy may
not be optimal when inventory storage capacity is
constrained.

Given the real-world nature of our problem, we treat
the (s,S) periodic replenishment as given. Our algorithm
consists of calculating a cost-minimizing (s,S) level
when total storage capacity is not constrained, and then
calculating the cost-minimizing minimum par level
when available capacity is below the optimal S level.
Kelle, Woosley and Schneider [2] provide extensive
discussions related to the computational challenges of
finding the cost minimizing par levels. Given the
extensive literature on (s,S) policies and their variants,
and the algorithms to solve them, our focus here is
different, namely combining an (s,S) method with the
constraint on storage. Analytic algorithms or faster
approximations are left for future work.

3. Mathematical Programming
Formulation

As described in the introduction, a standard Pyxis
machine holds multiple drawers. A standard
configuration is six full-height drawers, but two half-
height drawers can be used in place of any single full-
height drawers. The full-height and the half-height
drawers are further configured as a set of rows of
containers. The full-height drawers can hold five rows
of containers, where each row has a width of five units.
So, a row in a full-height drawer can hold a container of
width 5, or a container of width 2 and a container of
width 3, or three containers of width 1 and one container
of width 2, etc. The half-height drawers can also hold
five rows of containers, but the total width of each row
is six units. The half-height containers are manufactured
in widths of 1, 2, and 3 units.

Let 𝑀𝑀 denote the set of medications to be dispensed
from a Pyxis machine, and let 𝑚𝑚 ∈ 𝑀𝑀 denote a
particular medication. Let 𝐽𝐽 denote the set of feasible
containers. In the hospital where we conducted this
project the set of utilized containers is as follows:
{(1𝑥𝑥1), (1𝑥𝑥2), (1𝑥𝑥3), (2𝑥𝑥1), (2𝑥𝑥2), (2𝑥𝑥3), (2𝑥𝑥5)} ,
where (1𝑥𝑥3) is a half-height container of width 3,
(2𝑥𝑥5) is a full-height container of width 5, etc. A
medication can be placed in multiple containers, and the
dispensing system configured to open the containers in
order: after the first container is emptied, the second one
is open whenever the needed medication is requested.
So we let 𝐾𝐾 denote a set of feasible container
combinations, for example a feasible combination may
consist of two (1𝑥𝑥3) containers, or of a (1𝑥𝑥2) and a
(1𝑥𝑥3) container, etc. Let 𝑘𝑘 ∈ 𝐾𝐾 denote a particular
container combination, and let 𝑟𝑟𝑗𝑗𝑘𝑘 denote the number of
containers of type 𝑗𝑗 included in container combination

𝑘𝑘. Not all combinations are feasible for all medications,
for example containers of width of one or two are too
small to hold syringes, so we let 𝐾𝐾𝑚𝑚 ⊆ 𝐾𝐾 be set of
container combinations that is feasible for medication
𝑚𝑚. Finally, let 𝑣𝑣𝑚𝑚𝑘𝑘 be the cost associated with stocking
medication 𝑚𝑚 in container combination 𝑘𝑘. The problem
of finding an allocation of the height of Pyxis into
drawers (𝑑𝑑1,𝑑𝑑2), an assignment of containers to fit in
those drawers �𝑏𝑏𝑗𝑗�, and an assignment of medications to
those Pyxis containers that minimizes costs can be
formulated as an integer linear programming problem:

min
�𝑧𝑧𝑚𝑚𝑘𝑘 �,�𝑏𝑏𝑗𝑗�,𝑑𝑑1,𝑑𝑑2,𝑒𝑒(2𝑥𝑥2)

� � 𝑣𝑣𝑚𝑚𝑘𝑘𝑧𝑧𝑚𝑚𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑚𝑚𝑚𝑚∈𝑀𝑀

 (1)

subject to constraints:

𝑧𝑧𝑚𝑚𝑘𝑘 ∈ {0,1} ∀𝑘𝑘 ∈ 𝐾𝐾,𝑚𝑚 ∈ 𝑀𝑀 (2)
� 𝑧𝑧𝑚𝑚𝑘𝑘

𝑘𝑘∈𝐾𝐾𝑚𝑚
= 1 ∀𝑚𝑚 ∈ 𝑀𝑀 (3)

� � 𝑟𝑟𝑗𝑗𝑘𝑘𝑧𝑧𝑚𝑚𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑚𝑚𝑚𝑚∈𝑀𝑀

= 𝑏𝑏𝑗𝑗 ∀𝑗𝑗 (4)

𝑑𝑑1 + 2𝑑𝑑2 ≤ 2𝑑𝑑 (5)
𝑏𝑏(1𝑥𝑥1) + 2𝑏𝑏(1𝑥𝑥2) + 3𝑏𝑏(1𝑥𝑥3) ≤ 30𝑑𝑑1 (6)
𝑏𝑏(2𝑥𝑥1) + 2𝑏𝑏(2𝑥𝑥2) + 3𝑏𝑏(2𝑥𝑥3) + 5𝑏𝑏(2𝑥𝑥5)

≤ 25𝑑𝑑2 (7)

𝑒𝑒(2𝑥𝑥2) ≥ 𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) (8)
𝑒𝑒(2𝑥𝑥2) + 2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) ≤ 10𝑑𝑑2 (9)

𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,

𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5) , 𝑒𝑒(2𝑥𝑥2) ≥ 0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟
(10)

Decision variable 𝑧𝑧𝑚𝑚𝑘𝑘 is equal to 1, when container
combination 𝑘𝑘 is utilized for medication 𝑚𝑚. Constraint
(3) assures that only one container combination is used
for a medication. In constraint (5) decision variables 𝑑𝑑1
and 𝑑𝑑2 are used for counting the number of half-height,
and full-height drawers, while parameter 𝑑𝑑 specifies the
total number of full-height drawer slots available.
Constraint (4) defines decision variables �𝑏𝑏𝑗𝑗 � that are
used for counting the number of containers of each type
used in the solution. Constraint (6) guarantees that the
half-height containers fit into the space available in the
half-height drawers. Similarly constraint (7) checks that
the total space used by the full-height containers is not
larger than the space available in the full-height drawers.
𝑒𝑒(2𝑥𝑥2) defined with constraint (8) is the number of full-
height, width 2 cubies in a solution in excess of the
number of full-height width 3 cubies. Because the 5-unit
width of the full-height drawers is not the divisible by 2
and 3, constraint (9) is needed to assure a feasible
solution. Problem formulation notation is listed in Table
1. The proof of the formulation is in Appendix A.

Page 6784

Table 1: Notation for the Container Assignment
Formulation

Variable Description
𝑚𝑚 ∈ 𝑀𝑀 The index on medications

𝐽𝐽

= �

(1𝑥𝑥1), (1𝑥𝑥2),
(1𝑥𝑥3),

(2𝑥𝑥1), (2𝑥𝑥2),
(2𝑥𝑥3), (2𝑥𝑥5)

�

The set of feasible container
dimensions. The first dimension
is the height of the container, the
second is the width of the
container

𝑘𝑘 ∈ 𝐾𝐾 The index on allowed container
combinations

𝑟𝑟𝑗𝑗𝑘𝑘 The number of containers of type
𝑗𝑗 included in combination 𝑘𝑘.

𝐾𝐾𝑚𝑚 ⊆ 𝐾𝐾 The subset of container
combinations that is feasible for
medication 𝑚𝑚

𝑣𝑣𝑚𝑚𝑘𝑘 The inventory cost associated
with using container
combination 𝑘𝑘 for medication 𝑚𝑚

𝑑𝑑 The total number of available for
full-height drawers in a Pyxis
unit

𝑑𝑑1 Decision variable: Number of
half-height drawers

𝑑𝑑2 Decision variable: Number of
full-height drawers

𝑏𝑏𝑗𝑗 Decision variables: Total
quantity of containers of
dimensions 𝑗𝑗 ∈ 𝐽𝐽

𝑧𝑧𝑚𝑚𝑘𝑘 ∈ {0,1} Decision variable: Indicator
variable for whether medication
𝑚𝑚 is stored in container
combination 𝑘𝑘

3.1. Computation of the Cost Coefficients

The cost, 𝑣𝑣𝑚𝑚𝑘𝑘 , of placing medication 𝑚𝑚 into container
combination 𝑘𝑘 is the cost of holding and managing the
medication inventory in that container combination over
some period 𝑇𝑇. This cost, in turn, is determined by the
minimum and maximum par levels assigned to this
combination. Let Σ𝑚𝑚

𝑘𝑘
 be the maximum number of doses

of medication 𝑚𝑚 that can be held in container
combination 𝑘𝑘 . Let ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) denote the expected
holding cost associated with the decision to set the
minimum par level at 𝜎𝜎 and the maximum par level at Σ
for medication 𝑚𝑚 in container combination 𝑘𝑘 . Let
𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) be the expected annual cost of refilling the
containers when there is a stock-out, and 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) be the
expected annual cost of periodic refills, not related to
stock-outs. The expected minimum cost is found as

𝑣𝑣𝑚𝑚𝑘𝑘 = min
𝜎𝜎,Σ

ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) + 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) + 𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ) (11)
subject to

0 ≤ 𝜎𝜎 < Σ ≤ Σ𝑚𝑚
𝑘𝑘

. (12)
Kelle, Woosley and Schneider [2] provide extensive
discussions related to the computational challenges of
finding an optimal solution to (11). For our work, we
used simulation optimization to find the values of 𝑣𝑣𝑚𝑚𝑘𝑘
and of the corresponding minimum and maximum par
levels

(𝜎𝜎𝑚𝑚𝑘𝑘 ,Σ𝑚𝑚𝑘𝑘) ∈ argmin
𝜎𝜎,Σ

{ℎ𝑚𝑚𝑘𝑘 (𝜎𝜎,Σ) + 𝑓𝑓𝑚𝑚𝑘𝑘(𝜎𝜎, Σ) +

𝑠𝑠𝑚𝑚𝑘𝑘 (𝜎𝜎, Σ)}.
(13)

We sampled single-period demand values from
historical data. Figure 2 is an inventory level diagram
for one of the medications dispensed via a Pyxis
machine in a hospital ward. The minimum par level is
set at 20 doses, the maximum par level is set at 40 doses.
The diagram shows that it is not uncommon to observe
prolonged periods of time when no doses are dispensed,
so we have empirical evidence that daily demand is not
normally distributed. Figure 2 illustrates a policy where
the central hospital pharmacy checks twice a day (about
6 am and 2 pm) whether there are medications at or
below their minimum par levels. Shortly after the below
par level reports are generated enough doses are picked
to bring the level up to the maximum par level. These
additional doses are delivered to the units some time
later. If there were additional dispenses between the
time the level was checked and the doses were
delivered, at the time when the refills are delivered, the
inventory level may not reach the maximum par level.

To speed up the search for optimal par levels we
limited the minimum par level search to the interval
[0,2𝐷𝐷𝑚𝑚] , where 𝐷𝐷𝑚𝑚 is the historical maximum one-
period demand for medication 𝑚𝑚 . We limited the
maximum par levels to the interval �𝜎𝜎 + 1, min �𝜎𝜎 +

𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚), Σ𝑚𝑚
𝑘𝑘
�� . For every medication, we first

computed the values of 𝜎𝜎𝑚𝑚𝐾𝐾 and Σ𝑚𝑚𝐾𝐾 for container
combinations with the largest capacity Σ𝑚𝑚

𝐾𝐾
 (Σ𝑚𝑚

𝐾𝐾
≥ Σ𝑚𝑚

𝑘𝑘

for all 𝑘𝑘). We then set 𝑣𝑣𝑚𝑚𝑘𝑘 = 𝑣𝑣𝑚𝑚𝐾𝐾 , 𝜎𝜎𝑚𝑚𝑘𝑘 = 𝜎𝜎𝑚𝑚𝐾𝐾 and Σ𝑚𝑚𝑘𝑘 =
Σ𝑚𝑚𝐾𝐾 for all container combinations 𝑘𝑘 that had capacity
greater than Σ𝑚𝑚𝐾𝐾 . For container combinations with
smaller volumes, i.e., such that Σ𝑚𝑚

𝑘𝑘
< Σ𝑚𝑚𝐾𝐾 , we set

maximum par level equal to capacity (Σ𝑚𝑚𝑘𝑘 = Σ𝑚𝑚
𝑘𝑘

) and
used simulation optimization to find the corresponding
𝜎𝜎𝑚𝑚𝑘𝑘 and 𝑣𝑣𝑚𝑚𝑘𝑘 .

Page 6785

4. Computational Experiments
4.1. Quantification of Optimization
Parameters

We classified medications into categories related to
the packaging of unit doses and measured the number of
doses that can fit into each container type. A sample of
our data is shown in Table 2. Note, that full-height
containers of width 1, (2x1), are not used in our hospital.
As can be seen in the case of gel capsules, the geometric
shape of dose packaging means that doubling or tripling
the total container volume by increasing one of the
container dimensions does not necessarily result in
proportional increase in container capacity for that type
of dose.

We limited the number of container combinations we
considered, so that no combination had more than two
containers. We further limited these combinations so
that, if a combination consists of two different
containers, these containers are close in size. These
assumptions were in line with preferences of the
pharmacy management. The seventeen container
combinations are listed in Table 3. While these
assumptions were appropriate for the computational
experiment in our setting, additional or different
combinations can be enumerated to define a set of
feasible combinations K in a different hospital.

Table 2: Pyxis Container Capacity by Dose Type

Table 3: Pyxis Container Combinations Considered
in Numerical Experiments: Number of Containers

is Followed by the Dimensions of the Container.

Pharmacy technicians refill machines, and from our

observation of the technicians’ work we noted that a
technician spent about two minutes retrieving the
medication from the central pharmacy, and about one
minute storing a medication into a Pyxis machine.
Assuming an hourly wage (including benefits) of $20,

we estimated the cost of a non-stockout-related refill, at
$1. We assumed that a stockout-related refill takes ten
additional minutes of the pharmacy technician’s time, so
that the cost associated with a stockout is $4.33.

Next, we estimated the costs of holding the
medications in ADS. We obtained current unit cost data
on medications, and assumed financial holding costs of
10% per year. Distribution of per unit costs is shown in
Figure 3. The median cost is $0.35 per dose. Our
estimates for the financial holding cost and the cost of
refills is in close agreement with the estimates used by
Gebicki, Mooney, Chen and Mazur [12] in their
simulation study examining medication supply chain in
a mid-size hospital.

Figure 3: Distribution of Per Unit Costs for the

Medications Included in the Numerical Experiment

In addition to financial opportunity costs, there are
holding costs related to counting medication doses.
There are two such holding costs associated with
counting. First, the inventory is counted monthly. We
estimated that it takes a technician 1/20th of a second to
count an average dose (assuming ½ of a second per 10-
pill blister pack). Assuming $20/hour cost rate for the
technician, and 12 counts per year, the annual holding
cost for this counting is 1/3 of a penny per unit dose per
year. For most medications, this holding cost is
negligible compared to the 10% of the purchasing cost,
which is what we assumed for the financial opportunity
cost.

The majority of medications stored in a Pyxis
machine are controlled medications, such as narcotic
painkillers. Controlled medications are 62% of the
medications in our sample. All the doses of the
controlled medication in a container need to be counted
by a nurse each time a dose is dispensed from the
container. So, we estimated the second component of
holding cost related to counting, as the equivalent of
1/20 second of a nurse’s time multiplied by the annual
demand. The fact that this admittedly small cost to count
a pill was incurred every time a dose was administered
made it significant for some drugs. We assumed the
nurse’s wage of $40 per hour, which leads to the
estimated of $0.0006 per unit dose per unit of annual

Page 6786

demand. Figure 4 illustrates the impact of this counting
costs, comparing it to the 10% cost of purchase. For
some medications, the counting cost (shown as the dark
part of a stacked bar) constitutes a significant portion of
the holding cost.

Figure 4: Comparing Components of the Holding

Cost

One option we considered in the optimization was to
split the inventory for a drug across two containers.
Roughly speaking, if it was split equally across two
containers, then the number of units that a nurse would
need to count upon opening only one container was half
of what it would have been if all the units were stored in
a single larger container. We assumed that the controlled
medication counting cost is only half of what we
described above, i.e., $0.0003 per unit dose per unit of
annual demand if the medication is distributed between
two containers rather than stored in a single container.

4.2. Comparison of the Optimized Solution
with the Status Quo

To quantify the cost savings that can be achieved
using optimized allocation of the medications to Pyxis
containers we compared it with the status quo allocation.
We obtained historical transaction data, as well as the
minimum and maximum par levels for a set of 109
medications stored in a Pyxis machine in one of the
hospital units. A minimum of four full-height and five
half-height Pyxis drawers is needed to store this set of
medications. We used simulation to estimate the
inventory management cost for the status quo minimum
and maximum par levels for these medications. For the
simulation, we assumed restocking and counting costs
as discussed in the previous section, and a single regular
restocking per day. We compared the number of refills
and the average inventory level calculated directly from
transaction data (with regular refills happening twice a
day) and with our simulation estimates. Over the 109
medications our simulation estimated 10% fewer refills
than shown in the transaction data, the average
inventory level was estimated as 1% lower than the level
calculated from the transaction data.

Figure 5 shows the result of our numerical analysis. We
estimate that continuing with the current par levels will
result in approximately $4,500 as the total annual cost
of holding and restocking the inventory in a single Pyxis
machine. Approximately one-fourth of these costs is the
cost of holding the inventory, and the rest is the cost of
restocking. On average, 6.6 medications will be
restocked per day, with approximately 10% of these
expedited due to stock-outs. (Note, the current number
of stock-outs is significantly smaller, but that is due to
restocking twice a day, rather than once a day – the
frequency we used in the simulation.)

Figure 5: Cost Savings Status Quo vs. Optimized

Solution for a Single Pyxis System

The optimized solution results in approximately
$2,000 annual cost savings. The savings are mostly due
to fewer refills, with 4 medications refilled on average
per day, and an insignificant percentage of stock-outs.
Fewer refills imply higher average inventory, so in total
the inventory holding costs do not change significantly
with the optimized solution. The savings in the
inventory holding costs is approximately $200 per year.
Some of the savings in holding costs result from
splitting medications over two containers. In the status
quo solution, 21 medications are stored in two
containers, while in the optimized solution 41
medications are stored in two containers. To allow for
more containers two half-height drawers replace one of
the full-height drawers.

Figure 6 shows how inventory management costs
decrease as a function of the overall system capacity.
Better allocation of medication within a Pyxis can allow
for the same inventory costs as with the status quo but
with 50% less space (4 instead of 6.5 full-height
drawers). Using the space used currently can decrease
the inventory management costs for this Pyxis unit by
$2,000 a year. Past a certain total capacity, additional
capacity has little effect on the costs related to inventory
management – assuming the capacity will not be used to
manage other medications.

Page 6787

Figure 6: Minimized Inventory Costs as a Function

of Capacity

5. Discussion and Conclusion
With increased pressure on operating costs,

managers in the healthcare industry seek to understand
whether they are using resources efficiently. Sometimes
one of the challenges is simply to define efficiency.
Quantification of the relevant costs can be another
challenge. In this paper we examined inventory
management costs related to using automated
medication dispensing systems. We defined efficiency
as minimizing costs related to refilling, storing, and
dispensing medication using these systems. To estimate
cost parameters, we observed employees involved in the
tasks related to using the systems and translated their
work into monetary costs. Using these costs and
historical transactions data on stocking and dispensing
medication using an ADS, we estimated annual ADS
inventory unit management costs for an ADS in a typical
hospital ward as approximately $4,500 per year.

We proposed a linear integer programming
formulation that will allow pharmacy managers to make
better decisions about par levels for medications they
store in an ADS, and how to configure an ADS to store
the medication. With the numeric example based on
actual hospital data we showed that optimization could
result in significant cost savings in percentage terms:
close to 50%. However, in absolute numbers these
savings are not large relative to annual expenses of a
hospital pharmacy. In a hospital with twenty ADS units,
total annual savings will be less than the salary of one
full-time pharmacy employee. In addition, a significant
effort will be required to populate a database with
medication dose types, and with the quantities that fit
into various containers. The effort in populating such a
database may be worthwhile for an ADS manufacturer,
who could implement the proposed algorithms as part of
their par level recommendation engine, a feature that
may make its product more competitive.
.

6. Appendix A: Proof of the ILP
Formulation

Consider the set of constraints (5)-(10). Let 𝑉𝑉 =

�
𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,
𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5)

� be a solution that picks

the number of drawers of the two heights and the
number of containers of various heights and widths. Let
𝐶𝐶 = {𝑉𝑉|𝑉𝑉 satisfies (5) − (10)}.

Let 𝑃𝑃 = �𝑉𝑉�the containers represented by 𝑉𝑉
can be placed in a Pyxis �. First,

if 𝑉𝑉 ∈ 𝐶𝐶 and 𝑒𝑒(2𝑥𝑥2) > �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �
+

 then we can
set 𝑒𝑒(2𝑥𝑥2) = �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �

+
 so we do that without

loss of generality.
Proposition: 𝐶𝐶 = 𝑃𝑃.
Proof: First we show that 𝐶𝐶 ⊂ 𝑃𝑃 . We do this by
providing an algorithm that feasibly places the
containers into rows of the appropriate drawers. Note
that (5) and the integrality of 𝑑𝑑1 and 𝑑𝑑2 exactly defines
the collections of drawer combinations that are feasible
for a Pyxis. For the half-height drawers, there are 5𝑑𝑑1
rows in the 𝑑𝑑1 drawers and each drawer is of width 6.
Place the 𝑏𝑏(1𝑥𝑥3) containers of width 3 into the first
�𝑏𝑏(1𝑥𝑥3) 2⁄ � rows. If there are an odd number of
containers then the last one will be placed in row
�𝑏𝑏(1𝑥𝑥3) 2⁄ �. Now place the 𝑏𝑏(1𝑥𝑥2) containers of width 2
into the last �𝑏𝑏(1𝑥𝑥2) 3⁄ � rows. It is possible that there is
one width 2 container that will need to go in row
�𝑏𝑏(1𝑥𝑥3) 2⁄ � with the odd width 3 container. This
placement is possible because by (6)
2𝑏𝑏(1𝑥𝑥2) + 3𝑏𝑏(1𝑥𝑥3) ≤ 6 ∙ 5 ∙ 𝑑𝑑1. Finally place the
containers of width 1 in the remaining space which is
possible because the number of width 1 containers,
𝑏𝑏(1𝑥𝑥1) ≤ 6 ∙ 5 ∙ 𝑑𝑑1 − 2𝑏𝑏(1𝑥𝑥2) − 3𝑏𝑏(1𝑥𝑥3) , i.e., the
remaining space. This completes placing the half-height
containers.

For the full-height containers there are 5𝑑𝑑2 rows of
width 5 in which to place them. Fill the first 𝑏𝑏(2𝑥𝑥5) rows
each with one container of width 5. Now fill the next
𝑏𝑏(2𝑥𝑥3) rows with one container of width 3. There are
enough rows because 𝑏𝑏(2𝑥𝑥3) + 𝑏𝑏(2𝑥𝑥5) ≤ 5𝑑𝑑2 by (7).
Next, for these same rows that contain a container of
width 3 add a container of width 2. If there are not
enough we are fine; if there are additional containers of
width 2, i.e., 𝑒𝑒(2𝑥𝑥2) > 0 , then place two of these
containers in each of the next �𝑒𝑒(2𝑥𝑥2) 2⁄ � rows. Note that
constraint (9) ensures that there are enough rows to do
this. We have shown that 𝐶𝐶 ⊂ 𝑃𝑃.

To show 𝑃𝑃 ⊂ 𝐶𝐶 , let 𝑉𝑉 =
�𝑑𝑑1,𝑑𝑑2,𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,𝑏𝑏(1𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,𝑏𝑏(2𝑥𝑥5) �
be the vector of drawers and containers that fits in this
Pyxis. Clearly 𝑑𝑑1 and 𝑑𝑑2 satisfy (5). Similarly,

Page 6788

𝑏𝑏(1𝑥𝑥1) ,𝑏𝑏(1𝑥𝑥2) ,and 𝑏𝑏(1𝑥𝑥3) satisfy (6) and
𝑏𝑏(2𝑥𝑥1) ,𝑏𝑏(2𝑥𝑥2) ,𝑏𝑏(2𝑥𝑥3) ,and 𝑏𝑏(2𝑥𝑥5) satisfy (7) because they
fit in the number of rows given. The only step that
remains is to ensure that (8) and (9) are satisfied. To do
this we sort the full height drawers as follows: We place
the rows with width 5 containers first, call them 𝑅𝑅5, next
the rows that have a container of width 3 and a container
of width 2, call them 𝑅𝑅32 , next the rows that have a
container of width 3, but not a container of width 2, call
them 𝑅𝑅3−. Call the remaining rows 𝑅𝑅. If 𝑅𝑅3− ≠ ∅ and
there is a row in 𝑅𝑅 with a container of width 2, move
that container out of that row and into a row in 𝑅𝑅3−
which places the row into 𝑅𝑅32. If there was anything else
(width 1 container(s)) in that row put it/them in the row
from which you removed the container of width 2.
Repeat this process until either 𝑅𝑅3−becomes empty or
there are no more width 2 containers in 𝑅𝑅. The number
of rows, 𝑑𝑑2, is greater than or equal to the number of
containers of width 5, i.e., |𝑅𝑅5| , plus the number of
containers of width 3, i.e., |𝑅𝑅32| + |𝑅𝑅3−| , plus the
number of rows in 𝑅𝑅 , i.e., |𝑅𝑅|. Thus, 5𝑑𝑑2 = 𝑏𝑏(2𝑥𝑥3) +
𝑏𝑏(2𝑥𝑥5) + |𝑅𝑅|. Define 𝑒𝑒(2𝑥𝑥2) = �𝑏𝑏(2𝑥𝑥2) − 𝑏𝑏(2𝑥𝑥3) �

+
 to be

the number of excess width-2 containers not in a row
with a container of width 3. Because all of these fit into
the rows, 𝑅𝑅 , we must have that 𝑒𝑒(2𝑥𝑥2) ≤ 2|𝑅𝑅| .
Therefore, 𝑒𝑒(2𝑥𝑥2) + 2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) ≤ 2|𝑅𝑅| +
2𝑏𝑏(2𝑥𝑥3) + 2𝑏𝑏(2𝑥𝑥5) = 2(5𝑑𝑑2) which gives us (9).

7. References

[1] M.D. Murray, Automated Medication Dispensing
Devices, in: J.D. Amy J. Markowitz (Ed.) A Critical
Analysis of Patient Safety Practices, AHRQ Publication
No. 01-E058, 2001.

[2] P. Kelle, J. Woosley, H. Schneider, Pharmaceutical
supply chain specifics and inventory solutions for a
hospital case, Operations Research for Health Care, 1
(2012) 54-63.

[3] S. Johansen, P. Melchiors, Can-order policy for the
periodic-review joint replenishment problem, Journal of
the Operational Research Society, 54 (2003) 283-290.

[4] J.L. Balintfy, On a basic class of multi-item
inventory problems, Management Science, 10 (1964)
287-297.

[5] D.R. Atkins, P.O. Iyogun, Periodic versus “can-
order” policies for coordinated multi-item inventory
systems, Management Science, 34 (1988) 791-796.

[6] H. Feng, Q. Wu, K. Muthuraman, V. Deshpande,
Replenishment Policies for Multi‐Product Stochastic
Inventory Systems with Correlated Demand and Joint‐
Replenishment Costs, Production and Operations
Management, 24 (2015) 647-664.

[7] M. Khouja, S. Goyal, A review of the joint
replenishment problem literature: 1989–2005, European
journal of operational Research, 186 (2008) 1-16.

[8] D.L. Iglehart, Optimality of (s, S) policies in the
infinite horizon dynamic inventory problem,
Management Science, 9 (1963) 259-267.

[9] H. Scarf, The optimality of (s, S) policies in the
dynamic inventory problem, First Stanford Symposium
on Mathematical Methods in the Social Sciences,
Stanford University Press, 1960, pp. 196-202.

[10] Y.-S. Zheng, A Simple Proof for Optimality of (s,
S) Policies in Infinite-Horizon Inventory Systems,
Journal of Applied Probability, 28 (1991) 802-810.

[11] S. Chen, M. Lambrecht, X-Y Band and Modified
(s, S) Policy, Operations Research, 44 (1996) 1013-
1019.

[12] M. Gebicki, E. Mooney, S. Chen, L. Mazur,
Evaluation of hospital medication inventory policies,
Health Care Manag Sci., 17 (2014) 215-229.

Page 6789

	1. Introduction
	2. Literature Review
	3. Mathematical Programming Formulation
	3.1. Computation of the Cost Coefficients
	4. Computational Experiments
	4.1. Quantification of Optimization Parameters
	4.2. Comparison of the Optimized Solution with the Status Quo
	5. Discussion and Conclusion
	6. Appendix A: Proof of the ILP Formulation
	7. References

