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Abstract 
This paper studies a fundamental management 
question:  how does information economics affect the 
organization of management?  We view management 
hierarchies as tree-like structures designed to 
minimize real and opportunity costs related to 
information processing and decision making. “Line” 
production activities stand at the end nodes of a 
hierarchy tree.  Data from these bottom nodes are 
processed and distributed to higher level nodes that 
combine information from the lower nodes. The 
question we ask is: “how do the real and opportunity 
costs of information processing affect the tree”.  We 
solve for the optimal tree which includes the links 
and capacity at each of the nodes. Models are 
formulated on two underlying premises: complexity 
costs arise due to processing different types of data, 
and  queuing effects due to data arrival and 
processing uncertainties create delay which is an 
opportunity cost.  
 
1.  INTRODUCTION 

Management systems are typically organized as 
a hierarchy and exists to monitor, coordinate, control 
and make decisions about productive internal 
activities that lead to final products.   It is often 
overlooked that these functions are information 
intensive and the economics of information 
processing has much to do with the design of 
management hierarchy.  My view is that management 
hierarchy specifically exists to efficiently process 
information.  The goal of this paper is to better 
understand how the economics of efficient 
information processing affects the design of 
management hierarchy. 

Many research papers have generated insights 
about principles of hierarchy design by focusing on 
specific structural aspects, e. g. scale economies  [1], 
and  organization for information processing [2], etc.  
However  unrealistic assumptions are made in this 
literature regarding the process of information 
processing.   For example, it is largely assumed that 
the basic organizational unit is a single individual 
(thus is not scalable).  Nodes in a hierarchy represent 
“departments” with one manager! In this literature it 
is most often assumed that the process of capturing 
and processing data into information is deterministic.  

In these models, delay occurs in a cycle time like 
way: delay is caused by the time it takes for a worker 
to process the pile of data messages on his/her’s  
desk!  

Instead we model management hierarchy by 
focusing on departmental structure where the 
capacity of a department is endogenous. Two 
underlying assumptions provide the foundation of our 
model.  First, that uncertainty causes delay in 
processing data into information, thus queueing, and 
second, that processing data becomes more difficult 
when a manager is asked to process from a variety of 
sources.   

Costs are generated by the expense of staffing 
departments and the opportunity cost of delay.  We 
assume that the hierarchy design corresponds to the 
hierarchy with the cost minimizing structure. It is 
assumed that data originates from the hierarchy's 
roots called data sources where operations tasks are 
actually performed by small workgroups and/or 
equipment.  Process scope is the number of data 
sources that generate operating data that needs to be 
analyzed.  Higher level nodes in the hierarchy 
correspond to departments staffed by managers who 
process data from lower level departments, possibly 
make decisions and then pass processed information 
to the next higher level.  A department is staffed by 
multiple individuals and computing resources needed 
to process incoming data and information.  Typically 
there are multiple departments at each tier, but at the 
top, only one.  

The capacity in each department is measured by 
its processing rate, which is a function of the number 
of staff and/or amount of equipment devoted to 
information processing.  These resources are costly.  
Also, delays in processing data causes opportunity 
cost.    Short response times add value by helping a 
firm make timely error-free decisions and respond to 
coordination problems, while adjusting  to changing 
market conditions quicker and serving customers 
faster.  (See [3] for further elaboration of the value of 
timely service.)   

Queuing is a basic universal, physical process 
in any productive system in which uncertainty in 
arrival patterns or processing times exists, and is 
understood to have significant economies of scale.   
At data centers data is constantly produced, much of 
it not informative, but issues arise requiring higher 
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level interpretation and decision guidance.  The 
incidence of these occasions creates a flow of data 
from the data sources upward into the hierarchy 
where it needs to be processed.  Randomness of data 
arrival rates and processing times are more the rule 
than the exception, introducing queuing which enjoys 
economies of scale.  Economies of scale encourage 
efficiency by merging data flows and consolidating 
information processing. In short, it is efficient to 
reduce the number of departments per tier and  
increase the number of data streams into above 
departments.  The effect is that the  hierarchy 
becomes flatter. 

Without some effect offsetting the queuing 
economy of scale, the optimal hierarchy will consist 
of a single processor.  This is because with flow 
aggregation, one can minimize the processing 
capacity required (subject to a service time 
constraint) with a single very large processor serving 
a very high incoming data rate.  But it is more 
realistic to assume complexity related costs: a super-
additive cost structure with respect to scope to 
processing data from a variety of sources. Simply 
stated, when the number of direct reports to a 
department rises, management difficulty rises 
because it takes effort to switch from task to task.  
Increased management difficulty causes delays in 
processing data. That might be ameliorated by more 
processing capacity.   But that is the tradeoff we 
study: the cost of delay versus the cost of capacity. 

Because it is generally efficient to limit the 
number of data streams into departments, higher 
management levels are needed to fully internalize the 
effect of all production units on the other production 
units.  That is, to glean information and makes 
decisions that affects many data sources.  Thus the 
hierarchy gets taller. 

 
1.1 Summary of results  

 
Our analysis predicts how information 

processing influences the hierarchy's shape.  Among 
the results are that large increases in information 
processing cost/unit and large increases in data flow 
rates don't change the hierarchy's departmental 
structure very much but greatly affect capacity 
allocation decisions for departments. Process scope 
diseconomies exist when data sources are few, but 
this changes to scope economies with many sources.  
The implication is that decomposition of the 
hierarchy into smaller sets of data sources is 
inefficient. 
 We show that the number of subordinates of a 
department increases as one rises in the hierarchy.  
Increasing span means higher level managers do less 

specialized work which seems intuitively reasonable. 
In many papers the opposite is claimed: see [4] and 
[5]. Also, as one moves upward in the hierarchy, the 
capacity allocated to each department rises while the 
aggregate capacity at each tier falls, which is in 
agreement with many existing papers.   
 Due to queuing, utilization and delay falls as one 
ascends tiers.   This means that the effective 
workload of higher management is less than at lower 
tiers. We find that higher level departments have 
more subordinates.  
 General patterns emerge for changes in 
department structure with changes in structural 
parameters. With increased scale (that is, data flow 
rates) or process scope (number of data) the number 
of tiers in the hierarchy rise, but at a decreasing rate. 
Capacity cost per unit output has only a second order 
effect on hierarchy height.  A similar statement can 
be said of data flow.  Analysis and examples show 
that increasing the delay cost rate per unit time (or 
reducing the cost of processing capacity) causes the 
hierarchy to shrink.  Intuitively, higher delay cost 
reduces the relative importance of capacity cost 
which causes more capacity to be employed and the 
number of subordinates to rise for all departments. 
This increase in subordinates implies that there are 
more departments at remaining tiers, but the increase 
can be small.  In an example we show that even with 
a 4-fold increase in the importance of delay, the total 
capacity employed rises by a small amount (for 
example a 10% increase) and the number of 
departments at remaining tiers is only slightly greater 
than before.   
 Many factors cause more specialization. 
Specialization refers to processing a narrower range 
of data types coming from data sources.  A 
department’s specialization increases with higher 
data flow rates, higher complexity cost, higher delay 
cost, and larger process scope.  However, unless one 
of these factors changes a great deal, the general 
departmental structure (and thus specialization) does 
not change much.  Instead changes in these factors 
cause the allocation of capacity to shift greatly.   
   
 
2.  MODELS OF HIERARCHY 
 

A hierarchy is a topological tree where all nodes 
except those at the bottom correspond to information-
processing departments, and the bottom nodes are 
data sources.  Nodes correspond to department which 
is where data processing occurs.  Departments pass 
information upward to departments higher up. This 
process of receiving and processing data, and then 
passing it upwards in the hierarchy continues until 
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there is just one department at the top of the 
hierarchy.  Figure 1 illustrates the hierarchy.  

The shape of a hierarchy can be described by the 
number of tiers or levels of management, each 
department’s span of control and each department’s 
processing capacity. If the span of control is large for 
each department then the hierarchy is flatter and 
decisions are made faster but at the cost of extra 
capacity due to added complexity.  In contrast, a 
hierarchy that is “taller” exhibits the opposite 
advantages and disadvantages.  Hence, the costs 
incurred in an information-processing hierarchy are 
highly associated with its shape.   
 
 
 
 
 
 
 

 
 

 
 
 

FIGURE 1:  A Hierarchy 
 
2.1.  Model setup 

We assume a symmetric hierarchy as shown in 
Figure 1.  Data is generated by random events 
according to a Poisson process with rate 𝜆  where 
larger 𝜆  means higher data flow rates need to be 
processed.  The time delay is the total time for the 
data to traverse from the bottom to the top of the 
hierarchy. The number of departments (or data 
sources at the bottom level) of each tier i is denoted 
by 𝑥! and the span of control of each department at 
tier 𝑖 is denoted by 𝑠! .  Each department at the 𝑖th tier 
receives 𝜆 ∗ 𝑠!!! data signals per unit time from its 
subordinates Time to process data is assumed to 
follow an exponential distribution.  At each 
department, time delay is modeled as an M M /1 queue.  
Rate 𝜇 is the total data processing rate at tier  𝑖 and is 
our measure of capacity.  Thus, the capacity per 
department is 𝜇 𝑥.  The effective processing rate of 
each department is reduced by the complexity of 
arriving work.  Complexity is set by the number of 
subordinates a department serves, say, s and also a 
parameter 𝛿: 0 ≤ 𝛿 ≤ 2.      𝐴 department’s effective 
processing rate is 𝜇 𝑥𝑠𝛿. If at tier i, there are 𝑥!  
departments each with 𝑠!   subordinates and the 
capacity has been set to 𝜇! ,   then, the time delay at 
each department at tier i  is just 

	   𝑙! =
1

𝜇𝑖      
𝑠𝑖
𝛿   
1
𝑥−𝜆

	  .	   (1) 	  

Thus, the otal delay time to process data from source 
to apex is just 𝐿 = 𝑙!!!!

!!!  
 We denote the cost rate of capacity by 𝐶! , 

and the cost of delay per unit time by 𝐶! . Table 1 
lists the notation we use in this paper. 
 

Table 1:  Table of Notation 

Exogenous	  
variables:	  

𝜆:	   Data	  flow	  rate/production	  center	  and	  the	  
firm's	  production	  rate,	  units/time	  

𝐶! :	   Cost	   of	   time	  delay	   per	   unit-‐time,	   $/unit-‐
time	  

𝐶!:	   Cost	   of	   capacity	   per	   unit-‐time	   at	   tier	  
𝑖, 𝑖 = 1,2,… , 𝐼 − 1	  ,	  $/unit-‐time	  

𝛿:	   Complexity	  level,	  1 ≤ 𝛿 ≤ 2	  
Decision	  
variables:	  

𝑥! , 𝑥(𝑡):	   Number	   of	   departments	   at	   tier	  
𝑖  in  integer  formulation, at  tier  𝑡  in  continous  formulation	  

𝑠! , 𝑠(𝑡):	   Span	   of	   control	   at	   tier	   i	   in	   integer	  
formulation,	   at	   tier	   t	   in	   continuous	  
formulation	  

𝜇!:	   Total	   processing	   capacity	   at	   tier	   𝑖, 𝑖 =
1,2,… , 𝐼 − 1	  ,	  units/time	  

I	  ,T:	   Number	  of	  tiers	  in	  integer	  formulation,	  in	  
continuous	  formulation	  

Other	  
variables:	  

𝑁  𝑜𝑟  𝑛:	   Number	  of	  data	  sources	  
𝑖, 𝑡:	   Index	   of	   tier	   in	   integer,	   continuous	  

formulations	  
	   	  

 
Total cost is the weighted sum of capacity cost and 
delay cost over the hierachy's I tiers: 
	   𝑇𝐶 = 𝜆𝐶!𝐿 + 𝐶!𝜇!!!!

!!! .	   (1) 	  
The number of departments in each tier i can 

be expressed as 𝑥! = 𝑠!𝑠!𝑠!… 𝑠!!!.  Given 
equations and (1), the total cost when there are 𝐼 tiers 
in the hierarchy is 

𝑇𝐶 =
𝜆𝐶!

𝜇!
𝑥!

1
𝑥!!!/𝑥! ! − 𝜆

+ 𝐶!𝜇!

!!!

!!!

. 

The total cost function is concave in 𝜇! , ∀𝑖. 
Minimizing the total cost with respect to 𝜇!  gives the 
cost minimizing 𝜇!  as 
	  

𝜇! =
!!!!!

!!!!
!!

!

!!
+ 𝑥!

!!!!
!!

!
𝜆	  .	   (2) 	  

As is shown, capacity choice is a variable that is set 
by the number of departments.   Thus, this equation 
by itself cannot deliver insightful insights.  
 If one substitutes the expression for optimal 𝜇!  
back into the total cost function it appears that total 
cost is expressed as  

1

III

λ

λ

λλ

1

λ

0

λ

Tier 0, Supervisory 
Department

  Tier 1,    Departments

i ii     Tier i,     Departmentsi ii

i-1 i-1 Tier i-1,  Departments

Tier I, n Data Sources

I-1

III

λ λλ

I-1
Number of Department, xi

Span of Control, si
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𝑇𝐶 = 𝑓!!!

!!! 𝑥! , 𝑥!!!,𝐶! ,𝐶! , 𝜆, 𝛿  where 

𝑓 𝑥! , 𝑥!!!,𝐶! ,𝐶! , 𝜆, 𝛿 = 2 𝜆𝐶!𝐶!𝑥!
!!!!
!!

!
+ 𝜆𝐶!𝑥!

!!!!
!!

!
  

 
as the cost of capacity and time delay at tier 𝑖.  Note 
that 𝑥! = 1 and 𝑥! = 𝑛.  Additional integer 
constraints are imposed on the decision variables.  
The resulting integer optimization problem can be 
expressed as follows: 
	   𝑚𝑖𝑛!!,! 𝑓!!!

!!! 𝑥! , 𝑥!!!,𝐶! ,𝐶! , 𝜆, 𝛿 	  	   (3.1)	  

subject 
to 

𝑠! =   
𝑥!!!
𝑥!
,  	  

𝑖 = 0,1, . . , 𝐼 − 1	  ,	  
(3.2)	  

 𝑠! , 𝑎𝑛𝑑  𝑥!   𝑎𝑟𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠,	   	  (3.3)	  

and 𝑥! = 1, 𝑥! = 𝑛	  .	   (3.4)	  

This is an open-ended calculus of variations problem 
with 𝑥!  being the state variable and 𝑠!  the control 
variable.   
 Optimal hierarchies can be found by direct 
computation of all the possible hierarchy designs.  
Although in principle this sort of computation can be 
done, this approach does not lead to general 
analytical insights.  Instead, to do so we apply a 
continuous-tier approximation to the hierarchy design 
problem. 
 
2.2.  Continuous-tier approximation  
In this section, we drop the integer constraints and 
solve the hierarchy design problem by using a 
continuous-tier approximation.  We use the positive 
real number 𝑡 instead of integer 𝑖 to represent the 
number of tiers in the hierarchy,   𝑥!  and 𝑠!  are 
replaced by 𝑥 𝑡  and 𝑠 𝑡  and  I become T.  The 
number of departments at tier I in the integer 
representation is just and in can be 
can be rewritten in the form ln  (𝑥!) = ln  (𝑠!)!

!!! .  
Accordingly, in the continuous representation it 
becomes ln 𝑥 𝑡 = ln 𝑠 𝑢 𝑑𝑢!

! .  Differentiating 
both sides with respect to  gives 𝑥 ′ 𝑡 =

𝑥 𝑡 𝑙𝑛 𝑠 𝑡 .  We replace  with 

ln  (𝑠 𝑡 !) and the rest of  with  implying 

.  Thus, the continuous form of our 
problem is as follows: 

	  
,	  	   4.1	  

Subject 
to 

𝑥 0 = 1, 𝑥 𝑇 = 𝑛	  ,	  	  	  	  	  	  	  	  	  
4.2	  

Where 𝑓 𝑥 𝑡 , 𝑥 ′ 𝑡 =	  

2 𝜆𝐶!𝐶!𝑥 𝑡 𝑒
!′ ! !
! ! + 𝜆𝐶!𝑥 𝑡 𝑒

!′ ! !
! ! 	  ,	  

4.3	  

 
And x(t) and 𝑇 are a decision variables. 

Referring to section 9 in [6], our problem belongs 
to the category of calculus of variations problems 
with free horizons, that is, 𝑇 is free and 𝑥 𝑇  is fixed 
at the value of 𝑛. The optimal solution satisfies the 
following conditions: 
	   !"

!"
− !

!"
!"
!!′

= 0	  ,	   5.1	  
	   𝑓 − 𝑥 ′ 𝑡 !"

!!′
= 0, 𝑎𝑡  𝑡 = 𝑇	  ,	   5.2	  

	   𝑥 𝑇 − 𝑛 = 0	  ,	   5.3	  
and	   𝑥 0 = 1	  .	   5.4	  
This problem satisfies sufficient conditions for a 
solution to exist.  Equations (5.1) and (5.2) are the 
Euler equation and the transversality condition, 
respectively.  Substituting (4.1) in equations (5.1) and 
(5.2) gives two equations in 𝑥 𝑡 , 𝑥! 𝑡 , 𝑥!! 𝑡 , and 
𝑥! 𝑇 .  Accompanied by equations (5.3) and (5.4), 
numerical methods can find 𝑥 𝑡 .  However, analytic 
results can be obtained from the problem formulation 
as we show next. 
  
2.1 Analytical Results and Illustrations 

 
Theoretically speaking, solving the equation system 
of (5.1) to (5.4) will give the solutions to 𝑇 and 𝑥 𝑡 , 
for the optimal hierarchical structure.  We start with 
studying the Euler equation.  Substituting (4.3) in 
equation (5.1) gives  
 
𝜆𝐶!𝐶!
𝑥 𝑡

𝑒
! ′ ! !
! ! 2 − 𝛿

𝑥 ′ 𝑡
𝑥 𝑡

− 𝛿!
𝑥 ′′ 𝑡 𝑥 𝑡 − 𝑥 ′ 𝑡 !

𝑥 𝑡 !   

+ [2𝜆𝐶!𝑒
! ′ ! !
! !

1 − 𝛿
𝑥 ′ 𝑡
𝑥 𝑡

−

𝛿!
𝑥 ′′ 𝑡 𝑥 𝑡 − 𝑥 ′ 𝑡 !

𝑥 𝑡 !

] 

(6)	  

(8) 	  

 
Moreover, substituting (4.3) in the transversality 
equation (5.2) gives the boundary condition 
 
	  
2 𝜆𝐶!𝐶!𝑛𝑒

!′ ! !
! + 𝜆𝐶!𝑛𝑒

!′ ! !
! 	   	  

xi = s0s1s2...si−1

t
xi+1 / xi( )δ

xi x(t)

s(t)( )δ = e
δ x '(t )
x(t )

minT ,x(t ) f (x(t)x '(t)dt
t=0

T

∫
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− 𝜆𝐶!𝐶!𝑛𝑒
!′ ! !
! + 𝜆𝐶!𝑛𝑒

!′ ! !
!

𝑥 ′ 𝑇 𝛿
𝑛

= 0, 

	  
which can be simplified to: 
 

𝜆𝐶!𝐶!𝑛𝑒
!′ ! !
! 2 −

𝑥 ′ 𝑇 𝛿
𝑛

 

+[𝐶!𝑛𝑒
!′ ! !
! 1 − !′ ! !

!
] = 0.   (7) 

 
For fixed n, we seek the optimal function x(t)  and 
tier height T but these equations have no closed form 
solution.  But this system can be solved numerically. 

The following propositions describe the 
hierarchy and are presented without proofs which are 
found in [7]. 

 
Proposition 1.: The number of departments at 
each tier convexly increases from the top to the 
bottom of the hierarchy,  𝑥 ′ 𝑡 > 0, and 
  𝑥 ′′ 𝑡 > 0. 
 
Proposition 2.: The span of control falls from 
the top to the bottom of the hierarchy:  𝑠 ′ 𝑡 < 0.   
   
Proposition 1 suggests the “trumpet-like” department 
structure as seen in Figure 2.  Intuitively, the number 
of departments falls as one ascends.  Insight can be 
gained by considering that a unit of capacity reduces 
delay much more at the top of the hierarchy than at 
any lower tier.  At each tier, any added capacity must 
be divided up among the departments, thus there is 
less “division” higher up and each department will 
get more.  Thus, it is rational to allocate 
proportionally more capacity to departments higher 
up, which in turn allows the departments to 
efficiently process data from more subordinates.  
Thus the number of subordinates in the  hierarchy 
rises as one ascends. 

As to the capacity in an optimal hierarchy, the 
following proposition generalizes how capacity is 
allocated at each tier. 
  
Proposition 3.: The capacity per department 
rises and the total capacity at a tier falls from 
the bottom to the top of the hierarchy. 
 
A higher level department is endowed with more 
capacity because it has to coordinate more 
subordinates.  Increased complexity reduces 
information-processing efficiency, thus requiring 
more capacity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2: The graph demonstrates that when the number 
of data sources differ, common tiers from the top possess 
identical department sizes and capacities.   

 
It turns out that capacity is so effective at reducing 
delay at higher tiers that the utilization of 
departments (and its workers) actually falls as one 
ascends the hierarchy. 
 
Proposition 4.: The utilization of each 
department falls as one ascends the hierarchy. 
 
Given that the capacity cost at each tier is the same 
and is a proxy for wages, the result states that 
managers at higher levels actually work less 
intensively than lower level supervisors.  Intuitively, 
utilization falls because reducing delay at the top is 
less costly than doing the same at lower levels.  In a 
queuing system, reducing delay is equivalent to 
lowering capacity utilization).  On the contrary, many 
papers in the literature assume high tier managers 
earn a higher wage rate than lower tier managers, and 
this effect increases the utilization as one rises.  This 
does not occur in our model: at higher tiers, the 
increasing number of subordinates convexly raises 
the effective cost of processing data.  It is clear that 
the current pattern will be reversed if the wage rates 
rise steeply enough with tier.  But, with a steep wage 
profile by tier, the subordinate count and the delay 
will be lower than if queuing phenomenon is ignored.   

 Next, we study how the shape of the optimal 
hierarchy changes with increased process scope.  

0 

2 
4 

30
0 

10
0 

50
 

10
0 20

0 

0 

Tier  
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departments at 
each tier 
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Proposition 5.: When process scope (n) 
increases, then the optimal number of tiers of a 
hierarchy concavely increases and the total 
capacity, total time delay, and the total cost of 
capacity and delay increase.  The average cost 
first increases and then decreases with the 
process scope.  Further, the existing optimal 
hierarchy of an organization retains its shape 
and becomes the top portion of the new 
hierarchy when the process scope increases. 
 
This positive relationship between the number of tiers 
and the process scope is not surprising and has been 
shown empirically and theoretically. The number of 
departments at each tier and the capacity allocated to 
each tier fall from the top to the bottom tier.  An 
example of these properties is illustrated in Figure 2 
where the y-axis represents the tier number, the left 
x-axis reports the total capacity by tier, and the right 
x-axis reports the number of departments by tier.   In 
addition, the figure shows that the optimal 
hierarchical structure retains its relative shape even 
when the scope increases.  In Figure 2, if the scope is 
reduced to 𝑛 = 50, the shape of this smaller 
hierarchy is identical to the top portion of the original 
larger hierarchy above the dashed horizontal line. 

The number of departments and the span of 
control at each tier of a smaller hierarchy are the 
same as those at the corresponding tiers in a larger 
hierarchy.   

Figure 3 presents analysis of average cost against 
process scope (n).  The average cost illustrated by the 
upper curve in the figure indicates that the cost 
exhibits diseconomies of scope when the process 
variety is very small and economies of scope at high 
process scope.  We note that both average capacity 
cost and average delay cost have this property. The 
average delay cost and the average capacity cost have 
been drawn with a fixed number of subordinates.  
The graph shows the adjustment in average total cost 
when an optimal subordinate structure is applied. 

Given the assumptions of this section, it can be 
concluded that if a firm is operating at high process 
scope levels, from an information economics 
viewpoint it is inefficient to divide the organization 
into subunits that are focused on subsets of processes, 
or in other words, becoming process focused.  Such 
subdivision is paradoxically possible at low scope. 
 One more observation can be gleaned from 
this figure: as process scope increases, total delay 
cost becomes less and less important in hierarchy 
design.  This intuitively follows since delay cost is 
not weighted by the magnitude of scope.  When the 

product mix is constant, as the number of production 
centers increases, time delay becomes only a small 
portion of the hierarchy control cost and becomes a 
minor factor in hierarchy design when process scope 
is large.  It is this factor which caused past papers to 
find that the average cost declines with process 
scope.  That holds true here but we also consider 
economies of scale of queueing. 

 
 

 

 

 

 

 

 

 
FIGURE 3: The graph shows that for a small number of 
data sources (n), the average cost rises (diseconomies of 
scope), especially for capacity cost, but for large process 
scopes, economies prevail as the average cost declines.  
The graph also captures the change in average cost due to 
changes in the optimal subordinate structure.   

 
The structure of a hierarchy is also shaped by data 

flow scale (𝜆).  When scale changes, an organization 
restructures its hierarchy.  The following proposition 
characterizes the impact of scale.  

 
Proposition 6.: With an increase in the scale 
(𝜆), the optimal number of tiers concavely 
increases and the total capacity, total delay, and 
total cost increase.  Capacity at the top tiers 
strictly increases while the span of control falls 
and because tier capacity increases, utilization 
falls.  Because the span of control falls, there 
are fewer departments at each existing tier.   
Average cost falls due to economies of scale of 
queuing and reduced complexity at incremental 
tiers thus scope economies exist.  
 
Higher scale implies that at corresponding tiers there 
will be fewer subordinate departments resulting in 
more specialization and more tiers.  
 Figure 4 shows that with a ten-fold increase in 
scale, the number of tiers increases only 
slightlyFigure 4 shows that with increased scale there 
is a small shift to specialization.  Figure 5 shows that 
the number of department in a tier gets smaller with 
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larger scale and that the hierarchy height only 
increases a small amount.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
FIGURE 4:  Impact of the data flow rate on the span 

of control.  Specialization of departments does increase, but 
note how little the number of subordinates fall with a ten-
fold volume increase.  This indicates that there are limits to 
specialization with scale increases.   

 
 
 
 
 
 
 
 
 

 
 

 
 
FIGURE 5:  Impact of scale on number of 

departments.  This graph demonstrates that the general 
shape of the hierarchy in terms of number of departments 
does not change radically with the volume of data. At each 
tier the number of departments for the λ=10 case falls 
compared to the λ=1 case. 
 
That large shifts in the flow rate cause small changes 
in hierarchy height will be an effect later observed 
with the cost parameters,  𝐶! ,𝐶!.  
 Table 2 reports data comparing performance 
when 𝜆 = 1 and when 𝜆 = 10. In this example 
n=100 and when the data flow increases from 𝜆 = 1 
to 𝜆 = 10 total capacity and total cost increase by a 
factor of 8.8 demonstrating economies of scale.   
 
     The complexity of information-processing and 
coordination is captured by the parameter  𝛿 and we 
explore how the magnitude of this parameter affects 
the optimal hierarchical structure, which is 
characterized by the following proposition.   

 

 Proposition 7.: When complexity level (𝛿) 
increases, the optimal number of tiers increases and 
the total capacity, the total delay, and the total cost 
of capacity and delay increase	  
 
 
Except as 
noted  
Cc=1, 
Cw=1, 
 n=100 
λ=1, 
𝛿 = 1. 
 

 Delay 
(time) 

Capacity 
(units) Cost 

($) 

Base case  42.8 456.5 490.1 

High delay 
cost 

Cw=4 20.8 
(49%) 

500.3 
(110%) 

573.4 
(117%) 

Increase 
in data 
flow 

λ=10 13.8 
(32%) 

4177.0 
(920%) 

4315. 
(880%) 

TABLE 2:  The delay time, capacity and cost for optimal 
hierarchies under different structural assumptions. The 
percentage is a column computation: the fraction of the 
"base case" number in that column.  

In order to counter the effect of increased complexity 
cost the organization shrinks the span of control and 
adds capacity to the resulting departments.  Increased 
complexity level, 𝛿, leads to a taller and narrower 
hierarchy with more specialization at all tiers.  
Interestingly, total cost is approximately linear in 
parameter 𝛿. 

The optimal hierarchy is also shaped by the 
relative importance of the two types of costs, the 
delay cost and the capacity cost.  The following 
proposition illustrates how the number of tiers 
changes with the ratio of these two costs, 𝐶!/𝐶! .  

 
Proposition 8.: The optimal number of tiers 
increases with the ratio, 𝐶!/𝐶!.  
 
The proposition implies that as the cost of delay (the 
cost of capacity) becomes larger (smaller), the 
optimal hierarchy becomes flatter and the number of 
departments at each level falls.  Spans of control 
increase, reducing specialization and hierarchy 
height.  Higher delay costs cause capacity cost to in 
effect become relatively smaller causing an increase 
in capacity in the remaining tiers. Figure 6 shows the 
distribution of capacity and Figure 7 compares the 
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FIGURE 6:  Distribution of capacity when 𝐶! = 1  (𝑠𝑜𝑙𝑖𝑑) 
and when 𝐶! = 4   𝑑𝑎𝑠ℎ𝑒𝑑 .     The capacity in each tier 
rises significantly when the delay cost rate is multiplied by 
4.  
 
 
 
  
 
 
 
 
 
 
 
 
 
FIGURE 7:  The number of tiers vs the number of data 
sources when 𝐶! = 1  (𝑠𝑜𝑙𝑖𝑑) and when 
𝐶! = 4   𝑑𝑎𝑠ℎ𝑒𝑑 .  In this example the number of tiers with 
n data sources does not fall much when the delay cost rate 
is multiplied by 4. 
 
tier structure for n data sources when 𝐶!=1, and 
when 𝐶! = 4.  As expected the number of tiers falls 
for all values of n but this change is small. Table 2 
reports that the net effect of a quadrupling of delay 
cost is that delay drops by approximately half with an 
increase in total capacity of 10%, and an increase in 
total cost of 17%.  Capacity resources formerly at the 
lower tiers are shifted upward to the remaining ones, 
and 10% additional capacity is added. Decreased 
capacity cost makes unit delay cost relatively more 
important, and results in effects like those described 
above.   As in the discussion about scale, the 
departmental structure changes little but capacity is 
shifted significantly. 
 

3. MANAGERIAL INSIGHTS  
 
 This paper contributes to the literature in 
information systems in analyzing the implications of 
information processing on how a firm is organized.   
1. Large increases in the cost of delaying data 
processing do not affect the departmental structure 

very much.  Many have ascribed the flattening of 
firm’s hierarchy to the development of cheaper 
information processing.  Here we show that is not the 
case. We have shown that re-optimizing the hierarchy 
with lower capacity cost or higher delay cost rates 
cause only a small reduction in height. Instead we 
posit that other management changes better explain 
this pattern.  For example, introducing decentralized 
decision making can be shown to cause dramatic 
reduction in hierarchy height. 
2.  As the number of data sources increases, 
additional tiers are added to the hierarchy with little 
change in the number of departments in the existing 
tiers.  The implications follow:   consider a firm that 
merges with another or otherwise increases the scope 
of its activities.  Our model indicates that the top of 
the new organizational structure will tend to follow 
the existing hierarchy's departmental and staffing 
structure. New layers are added to the bottom of the 
hierarchy where the bulk of the new staff will reside.  
Management layers will be added above the direct 
supervisors of production but below the bulk of 
existing departments.  On the other hand, outsourcing 
or introducing integrated production equipment that 
allows consolidation of data sources has the opposite 
effect. We predict the bottom tiers of management 
will be pared.  This is a striking insight into the 
disappearance of middle management 
3. We found that large increases in data 
volume cause a relatively small increase in hierarchy 
height and even a small decrease in the number of 
departments at each existing tier.  The major change 
is a significant rise in staffing levels at each 
department.  Interestingly, our model predicts that 
capacity utilization will drop at all existing tiers.  
That is, managers will be less busy in order to make 
faster decisions.    
4. A department at a higher tier than another 
has more capacity and operates at lower utilization.  
The utilization is lower in order to speed up control 
activities.  As a result, managers at higher tiers make 
faster decisions than lower ones and have more 
resources available to facilitate decision-making.  
Higher level managers also have more subordinates, 
thus their work is less specialized than those below.  
The supervisors at the lowest level have the fewest 
subordinates.  This seems reasonable by the criterion 
of common sense.  However some may argue that 
this prediction only holds if one ignores the very high 
wages earned by the very highest executive officers.  
It is true that a very steep convex increasing wage 
rate as one ascends can reverse the prediction.  We 
would argue that the top of an executive organization 
might follow that pattern, but in operating 
organizations wage profiles are not as steep. 
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5. Many factors cause more specialization of 
control in departments, that is, fewer subordinates: 
higher data flow rates, more complexity in processing 
varied data sources, higher capacity cost, and less 
emphasis on delay.   
6.  Although delay cost is an opportunity cost, 
capacity cost is captured by a firm's managerial 
accounting system, and is manifest in the 
organization's overhead cost for control.  Conjectures 
about shifts in control overhead are suggested from 
the examples found in Table 2. Economies of scale of 
capacity cost are demonstrated throughout, thus the 
control associated overhead rate will decline with 
scale.  A large increase in the delay cost rate raises 
expenditures for "management capacity costs", but 
our examples show that these costs if measured as 
overhead may rise only moderately.   
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