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Abstract 
 
Peripheral edema is a swelling of the legs, feet, or 

hands due to the accumulation of excessive fluid in the 
tissues. For patients with some chronic diseases, 
peripheral edema is a crucial indicator of onset or 
exacerbation of the condition. Thus, early detection of 
peripheral edema is important for timely diagnosis of 
associated diseases. However, existing techniques for 
edema assessment are a subjective measurement for 
which a human operator estimates the amount of 
swelling using a tape measure or by pressing the 
swollen area with the tip of an index finger. As a 
systematic approach to assessing peripheral edema, we 
develop SwellFit, an experimental prototype of a novel 
wearable technology that monitors peripheral edema 
by tracking changes in ankle curvature. Through a 
series of proof-of-concept experiments, we demonstrate 
that SwellFit detects ankle swelling even in the 
presence of substantial noise in the raw sensor 
readings. 
 
1. Introduction  
 

Peripheral edema is swelling or puffiness of 
peripheral part of the body, usually happening in the 
feet, ankles or hands. Edema occurs when tiny blood 
vessels in the body leak fluid so that the fluid builds up 
in surrounding tissues. Many things in daily activities 
can cause edema, including sitting or standing still for 
too long, excessive salt intake, and medicines. When 
any of these things cause edema, the swelling is often 
temporary and clears up by itself. Edema, however, can 
also associate with more serious underlying medical 
conditions, such as diabetes, heart failure, and kidney 
disease. For patients suffering from these conditions, 
peripheral edema is considered as a crucial indicator of 
onset or exacerbation of the condition. Thus, early 
detection of peripheral edema is important for patients 
to recognize underlying conditions of some diseases in 
time and make proper action to prevent further clinical 
dysfunction or deterioration [1]. 

Among various medical conditions, congestive 
heart failure (CHF) is one of the most prevalent 

diseases for which edema is used as an important 
physical indicator of worsening of the condition. When 
the heart weakens and pumps blood less effectively 
due to CHF, fluid can slowly build up, causing leg 
edema. As the most common diagnosis in patients 65 
and older in the United States, CHF is known as a 
leading cause of hospitalization and readmission [9]  
which imposes a huge financial burden and degraded 
quality of care [17]. Thus, preventable hospital 
readmission is an increasingly prominent target in both 
policy and medical discussions. While a variety of 
direct measures have been taken into consideration to 
empower patients to monitor the condition at home and 
to reduce or prevent readmission, edema has not been 
considered as a means of patient self-measurement 
perhaps because there is no easy and systematic way 
for patients to measure edema.  

Currently, the most widely used technique for 
edema measurement is a subjective assessment for 
which a clinical examiner applies pressure with an 
index finger to a single location on the patient’s ankle 
and examine the amount of depression. This technique 
captures the amount of depression and the time needed 
for the skin to return to its original appearance as a 
single edema score ranging from 0 to 4 [21]. While this 
classic method is commonly used, it has not been 
proven to be a sufficiently objective, reliable, or 
sensitive assessment of edema [7]. More rigorous, 
objective, and yet easy way to assess edema is needed 
when careful evaluation of edema is required as part of 
patient-centric care practices. 

With the advent of IoT and the availability of 
sophisticated sensors that can monitor a myriad of 
biometric parameters, wearable technology has gained 
the interest of researchers and clinicians due to the 
benefits that could be associated with long-term 
monitoring of individuals for healthcare [6] As a result, 
a great number of wearable systems that are suitable 
for clinical applications emerged in the past few years. 
They range from simple monitoring of daily activities 
for the purpose of assessing mobility and level of 
independence in individuals, to capturing patients’ 
physiological signals to facilitate clinical evaluation, 
and to integrating miniature sensors to support 
performance of motor tasks that are otherwise unable 
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to accomplish [3] However, sensor-based measurement 
of edema to overcome the shortcomings of manual 
assessments has received relatively less attention to 
date despite its importance. Only recently, few studies 
have attempted to develop wearable technologies to 
systematically assess edema using a stretch sensor that 
measures the circumference of an ankle (e.g., [11,12]). 

In this paper, we introduce SwellFit, an 
experimental prototype that may inform the final 
design of a novel wearable technology for continuous 
assessment of edema by monitoring the changes in the 
curvature of an ankle using a flex sensor. The goal of 
this paper is to describe and demonstrate the feasibility 
of SwellFit. SwellFit is equipped with a combination of 
wearable sensors and hardware, intelligent data 
processing, and a smartphone application to provide a 
reliable and user-friendly system. The primary 
contribution of this paper comes in three parts: 
• A wearable technology to continuously monitor 

peripheral edema with unique hardware design; 
• Signal processing techniques to detect a signal of 

edema from tracking relative changes in the ankle 
curvature; 

• Feasibility testing of SwellFit in a comprehensive 
experimental procedure. 

 
2. Background  
 
2.1. Existing edema measurement 
 

Two prevalent methods of edema assessment in 
clinical practices include pitting and tape measure. For 
pitting, a clinician applies pressure on the skin with the 
tip of an index finger and estimates the amount of 
edema based on the amount of time it takes for the 
pitting to come back to its original level after a finger 
is removed. The amount of depression indicates the 
amount of pitting (Figure 1). Another method is to 
measure a circumference of an ankle using a tape 
measure, which requires making sure to measure at the 
same point of an ankle each and every time. These 
approaches must take place clinically, and thus is 
burdensome and expensive. Most importantly, in some 
cases these methods are unreliable due to its 
subjectivity and fail to detect edema in time. 
 
2.2. Wearables for Physiological Monitoring 
 

For many healthcare use cases of wearable sensors, 
it is highly desirable to have sensors capable of directly 
monitoring the physiology of the wearer in real-time. 
These sensors can measure biological, chemical or 
physical phenomena to assess physiology. The 
technology challenge is how to maintain consistent 

contact for an extended period of time and under 
different conditions, while the healthcare challenges 
are how to achieve a high sensitivity, accuracy, and 
specificity for detecting abnormal events in real-time. 

Until recently, continuous monitoring of 
physiological parameters was possible only in the 
clinical settings. Nowadays, however, with 
developments in wearable sensors and personal 
technology, the possibility of continuous, real-time 
monitoring of physiological signals in the everyday 
context has become a reality. Especially, physiological 
monitoring has benefited significantly from advanced 
sensor capabilities, smart materials and miniature 
sensors, low-power computing and networking, and 
flexible circuits to integrate into the fabric and 
wearable items [18]. Researchers have investigated the 
development of wearable systems to unobtrusively and 
continuously monitor various physiological signals to 
improve personalized healthcare. Examples include a 
ring sensor capable of monitoring heart rate and 
oxygen in the blood [3], an ear-worn, flexible, low-
power sensor for long-term monitoring of heart rate 
[21], and a smart wristband for real-time perspiration 
analysis [13].   

Contrary to the advancement in wearable 
technology and applications for health management in 
general, the domain of systematic edema assessment 
has received relatively little attention to date. Only 
recently, a few studies have attempted to develop 
wearable technologies to systematically assess edema 
using stretch sensors. These include Smart-Cuff, a 
wearable platform that continuously monitors edema 
real-time in remote and in-home settings [12], 
SmartSock, a wearable system that is equipped with 
accelerometer and flexible stretch sensor embedded in 
clothing for edema quantification [11], and the DEAP 
sensor, a wearable using dielectric electro-active 
polymer stretch sensors for continuous monitoring of 
edema [32]. The measurement approach of these 
systems is identical: they all attempted to assess edema 

 
Figure 1. Pitting edema:  Dent depth and duration from 1 

to 4 (image from http://www.med-health.net/Edema-
Grading.html)  
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by measuring a circumference of an ankle or foot using 
a stretch sensor. 

 
2.3. Challenges in Wearables for Healthcare 
 

Several technical challenges were acknowledged to 
overcome in the successful development of wearable 
systems for healthcare, especially with regard to data 
mining and signal processing to demonstrate the 
system’s feasibility and analyze data [4] Amongst, we 
identified that two specific challenges are relevant to 
the scope of this paper: data preprocessing and data 
acquisition. 

 
2.3.1. Data Processing. Although wearable sensors 
have shown promising results, additional work for data 
mining and processing of the raw sensor data is 
necessary to achieve desired and intended outcomes. In 
particular, a preprocessing of raw sensor data is 
essential due to the inevitable occurrence of noise, 
motion artifacts, and sensor errors in any wearable 
sensor systems. Preprocessing in wearable systems for 
healthcare involves filtering high frequency data and 
artifacts [4]. Commonly used techniques to remove 
high frequency noise from raw sensor data include 
power spectral density (PSD), fast Fourier transforms 
(FFT), and low-pass/high-pass filtering tools [23]. To 
filter artifacts, threshold-based methods to filter sensor 
data (e.g., [16,31]) or statistical tools to interpolate the 
missing data points (e.g., [1]) are commonly used. 
 
2.3.2. Data Acquisition. In any health monitoring 
systems, having a robust data processing stage requires 
adequate amount of data to test the feasibility of a 
system. However, it is difficult to obtain real-world 
healthcare dataset due to ethical and technical 
difficulties. Therefore, many projects that developed 
health-monitoring systems used their own data 
gathering experiments to design, model, and test the 
data analysis step (e.g., [14,26]).  In such cases, the 
gathered data are usually obtained by the predefined 
scenarios to evaluate the performed results.  

Several studies used existing clinical datasets to test 
the data analysis step (e.g., [8,24]). Two commonly 
used online database are PhysioNet database [15] that 
consists a wide range of physiological data with 
categorized and robust annotations for complex clinical 
signals (e.g., [1,17]) and MIT data sets that contain the 
time series of patients’ vital signs obtained from 
hospital medical information systems (e.g., [9,20]).  

Lastly, some studies evaluated the performance of 
their systems through simulated data (e.g., [29]). 
Feasibility testing and data analysis using simulated 
data would be useful when the focus of data processing 
method is on the efficiency and robustness of 

information extraction rather than handling real-world 
data including the artifact, errors, or conditions of data 
gathering environment [30]. Another reason to use 
simulated data is when it is difficult to obtain real, 
large-scale data sets [33]. Because it is difficult to 
obtain a large-scale, real-world edema dataset, we used 
a simulated data to test the feasibility of Swellfit.  

 
3. System design and implementation  
 

We developed SwellFit, an experimental prototype 
of a wearable system that enables a patient—in an 
outpatient setting—to monitor peripheral edema with 
minimal effort and no expertise. SwellFit is a personal, 
unobtrusive, wearable system that monitors ankle 
swelling by measuring changes in the curvature of an 
ankle. SwellFit enables continuous, more accurate and 
reliable, less variable, and more sensitive measurement 
of ankle swelling with little effort and expertise 
compared to conventional measurements. The form of 
SwellFit is a traditional sweatband or a wrist brace in 
which an array of sensors and hardware are packaged 
(Figure 2). SwellFit consists of three parts: a hardware 
sensing platform (a wearable anklet), a mobile 
application for data visualization (an iPod Touch), and 
a web server with database for processing and storing 
data (Figure 3). 

SwellFit continuously monitors the changes in 
ankle curvature for two reasons: an ankle diameter 
varies by person so that one can only detect edema by 
tracking relative changes in the value in a continuous 
manner, and continuous monitoring increases the 
chance to detect a signal of edema in time. 

 
Figure 2. Final SwellFit implementation. The form factor of 

SwellFit is similar to a sweatband. 
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Figure 3. Data transfer between parts: SwellFit hardware, an 
iPod Touch and a webserver (from left to right). First, sensor 
readings from SwellFit are transferred to an iPod Touch via 

Bluetooth (1). Then, an iPod Touch sends the data to a server 
for signal processing through Wi-Fi (2). Finally, an iPod 

Touch receives the data for visualization from the server (3) 

3.1. Hardware 
 

SwellFit hardware comprises six parts: two flex 
sensors, a Flora microcontroller with an SD memory 
card for onboard data storage, a Bluetooth 4.0 LE 
module, a Flora accelerometer, and a 500mAh battery 
with a battery charging circuit (Figure 4). A flex sensor 
detects bending: when a flex sensor is bent, its 
resistance changes from 10kΩ to about 20kΩ. Two flex 
sensors are connected to wrap around an ankle, 
resulting in resistance changes from 20kΩ to 40kΩ. 
Our system monitors this resistance change by 
measuring the voltage output of a voltage divider with 
a 10kΩ reference. The output of the voltage divider is 
sampled at 200Hz and the average value is recorded 
every second, resulting in an effective 1Hz sampling 
rate. Sensor readings stored in the SD card are 
transmitted to a mobile application via Bluetooth when 
the mobile application is launched. Transmitted data 
include timestamp, raw flex-sensor values, and battery 
values. The battery values are sent to the mobile 
application so that it displays an indicator for 
remaining battery percentage. 

 

3.2. Mobile application 
 

A mobile application running on an iPod Touch is a 
platform for data transfer between the hardware (a 
wearable sensor) and a web server, as well as for data 
visualization. As soon as a mobile application receives 
new data from the hardware via Bluetooth, it transmits 
the data to a web server for signal processing via Wi-Fi 
(to be described in the next section). Then, swelling 
values processed in the backend are transmitted back to 
the mobile application to display the current swelling 
status and render changes in ankle swelling as a graph. 
In addition, the mobile application sends a push 
notification when the system detects an abnormal 
signal of swelling or when the battery in the wearable 
sensor is low. This paper primarily focuses on 
demonstrating the feasibility of SwellFit for 
distinguishing swelling from ankle curvature values 
using the flex sensor’s readings. Thus, the design and 
implementation of a mobile application is not within 
the scope of this paper. 
  
3.3. Signal processing 
 

Once a new dataset comes from a mobile 
application into our database, a code is invoked to run 
three stages of signal processing in sequence, 
including: (1) cropping outliers, (2) removing noisy 
data, (3) finding high-and determining severity of 
swelling. 
 
3.3.1. Cropping outliers. Because SwellFit uses an 
onboard voltage reference and 10-bit encoder, 
collected data can include outliers that do not make 
sense given the specification of a flex sensor, caused 
by voltage sag of the reference or a sensor misread 
from the encoder. Thus, the first step of signal 
processing is to identify and remove these outliers. 
According to the hardware specification, the resistance 
of two flex sensors connected in series ranges from 
20kΩ when flat to about 40kΩ when flexed all the 
way. We used a 10kΩ resistor in series with flex 
sensors to form a voltage divider with the onboard 
voltage reference of 3.3V so that output voltage range 
results in from 2.2V to 2.6V, as in: 

 

As our analog-to-digital converter represents 0V–
3.3V to 0–1023 in 10 bits, 2.2V maps to 680 bits and 
2.6V maps to 820 bits. Thus, we set the boundary of 
feasible sensor values between 680 and 820, and 
considered any values outside of this boundary as 

 
Figure 4. SwellFit hardware. Sensors and hardware parts are 
connected using conductive thread (except connections to a 

battery charging station) on a fabric substrate to implement a 
flexible wearable system that ensures comfort in wearing it 

and does not interfere with a range of human motion 
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outliers and replaced the value with the mean value of 
the whole dataset. This way we can ensure that the 
length of the dataset remained equal to the raw data 
without resampling. Through this first stage of signal 
processing, the system successfully removes outlier 
data from the dataset (Graph 1). 

 
3.3.2. Filtering out noise data. Flex sensor readings 
can include artifacts caused by external forces other 
than ankle swelling. We identified three kinds of 
artifacts: motion artifacts (e.g., when a user 
unintentionally touches the sensor), rotational artifacts 
(e.g., when the sensor rotates or moves itself around an 
ankle), and human-interaction artifacts (e.g., when a 
user puts the sensor on and off an ankle). Thus, the 
next step of signal processing is to filter out these 
artifacts from our dataset.  

The onset of edema is on the time scale of hours, 
whereas the aforementioned artifacts occur on the time 
scales of minutes or seconds. Thus, we applied a low-
pass filter that keeps slow gradual changes but rejects 
rapid changes in the dataset. Specifically, we used a 
Butterworth filter, a digital signal-processing filter 
designed to have a flat frequency response in the 
passband with no ripple in the roll-off [25]. There are 
two values to adjust the roll-off of the Butterworth 
filter: a filter order and a cutoff frequency. Filter order 
determines how steep the roll-off should be. And, the 
cutoff frequency determines the frequency in which the 
roll-off begins. For a filter order, we found the 1st and 
5th order filters to be too modest and too aggressive 
respectively. Because we are blind to incoming data, 
we decided to approach it moderately using the 3rd 
order filter. For a cutoff frequency (Fc), we chose 
0.015Hz to discard values which fundamental 
frequency is less than a minute. Through this process, 
the system successfully removes the signal fluctuations 
occurring at the time scales of minutes or seconds, 
while keeping slower changes (Graph 2). 

 
3.3.3. Distinguishing severity of swelling. As 
mentioned in the previous section, the common clinical 
approach to measuring edema is a subjective 
assessment of edema pitting, where an examiner 
visually checks severity of swelling using a score from 
1 to 4 [7]. Following the scale of conventional edema 
pitting, we decided to assess severity of swelling using 
a score from 1 to 4. To calculate a severity score, the 
system first calculates a baseline (a non-swelling state) 
by averaging the first 120 largest values (data collected 
for 4 minutes) in the trusted region of incoming data 
and the first 120 largest values in the trusted region of 
existing data. Throughout several iterations of 
experiments, we identified that data collected for 
minutes are large enough to effectively determine a 

baseline region. The system uses the largest values to 
calculate a baseline because a higher value in the flex 
sensor readings means less sensor bending and thus 
less swelling (e.g., If an ankle swells, the curvature of 
an ankle becomes flatter and a flex sensor bends less 
which cause value in the flex sensor readings to 
reduce). We use these 240 values (120 
incoming/existing values each) to calculate a consistent 
baseline average.  

In some occasions, the first 120 largest data 
readings may already contain values that are caused by 
substantial edema. In this case, the calculated baseline 
may not accurately reflect the actual non-edema state. 
Because we measure relative changes in ankle 
curvature in a continuous manner without an absolute 
ground truth of a non-edema sate, this potential bias in 
calculating a baseline is inevitable and we 
acknowledge this as a limitation of our system. 

 
Graph 1. This section of raw data contains a lot of outliers 
(black vertical lines) caused by voltage sag. By cropping 

outliers that are out of the value boundary, the system 
removes the data that do not make sense. 

 
Graph 2. This section of cropped data (a green line) 

contains motion artifacts (sensor value change caused by 
artifacts) in the first 400 seconds, and at 1250 and 2100 
seconds. Our signal-processing algorithm distinguishes 

these as noisy data and filters them out (a blue line). 
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However, once a user wears SwellFit for an extended 
period of time, such as for an hour or longer, this bias 
will decrease over time and reliability to capture a true 
non-edema state for a baseline will increase.  

Using the calculated baseline as an estimate of a 
non-edema state, the system distinguishes edema as a 
scale of 5% decrease in the sensor value: up to 5% 
decrease maps to score 1 (no edema), 10% maps to 2 
(mild), 15% maps to 3 (moderate), and 20% maps to 4 
(severe). For example, a 5% decrease in the flex sensor 
reading approximately maps to a 2mm increase in 
ankle diameter for someone with an ankle radius of 
40mm. This scale complies with the degree to which a 
common pitting measurement uses [13]. We set 5% as 
a temporary but legitimate scale to detect swelling 
based on our dataset, because no clinical dataset exist 
to translate the volume of an ankle (circumference or 
curvature) into edema stages [18] Though, this scale 
needs to be adjusted, reflecting clinical expertise and 
further validations using a larger dataset. 
 
4. Feasibility testing  
 

We conducted two experiments to test the 
feasibility of the SwellFit prototype from two aspects: 
how it distinguishes noisy data (changes in sensor 
values caused by other factors than ankle swelling) 
from raw sensor values, and how it detects swelling 
with different severity levels. These experiments aim 
to provide a proof-of-concept demonstration of 
SwellFit in terms of the feasibility and accuracy of 
edema detection from continuous ankle curvature 
measurements. 
 
4.1. Collecting data from human subjects with 
artifacts 
 

We recruited four healthy adults (Table 1) to collect 
ankle curvature data using SwellFit. Each subject wore 
SwellFit for four consecutive days except when 
charging the battery. The subjects’ activity levels 
varied: one subject engaged in a lot of activities 
including playing soccer, going for a bike ride and rock 
climbing, another subject walked a lot to commute, and 
the other two were pretty sedentary with little activity 
during the data collection period.   

We did not formally assess the user experience of 
wearing SwellFit, but asked participants for brief 
feedback and personal reflection on wearing it at the 
end of data collection. Overall, the responses were 
positive in that wearing SwellFit was not intrusive or 
interfering with performing daily activities. All 
subjects but one mentioned that they almost forgot they 
were wearing it, whereas Subject 1 (with high activity 

level) commented that he felt warm around the ankle 
when he engaged in activities.  

We processed the collected data using our signal-
processing algorithms to evaluate how SwellFit filters 
out noisy data from raw values to detect edema. Not 
surprisingly, we did not identify any signal of edema 
from the entire dataset, which makes sense because the 
subjects did not have any swelling condition. In the 
following, we illustrate the process through which raw 
sensor values are turned into edema scores in detail 
with two exemplar datasets. 

 
Subject Gender Age Activity Level 

1 M Mid 20s Very active 
2 M Early 30s Walking a lot 
3 F Late 30s Sedentary 
4 M Late 20s Sedentary 
Table 1. Subjects for the first set of data collection and 

their gender, age, and activity level 

4.1.1. Case 1. The flex sensor values with high 
activity levels. The first dataset was collected while 
Subject 1 was playing soccer for an hour. In this 
dataset, he was in the mixed states of walking, running 
and standing (from 0 to 1500 seconds in the graph 3), 
and then running briskly (from 1500 to 2500 seconds) 
before returning to mild walking and standing (after 
2500 seconds).  

In the raw data (a black line in Graph 3, most of 
which is overlapped by the cropped data), there are two 
outliers caused by voltage sag. The first stage of signal 
processing successfully cropped these outliers from the 
data. Next, the data are smoothed by filtering out 
abrupt changes in the raw data that occurred on the 
order of minutes, which we identify as artifacts using 
the Butterworth filter (Graph 4).  

Finally, we distinguish if edema occurs by 
calculating the rate of decrease in the trusted data from 
the baseline. When the decrease rate is over 5%, we 
consider it as edema. This region of data is plotted in 
green, meaning no sign of notable swelling (Graph 5). 
In all, our signal-processing algorithm successfully 
cropped outliers and filtered heavy motion artifacts 
without throwing out useful information. 

 
4.1.2. Case 2. The flex sensor values with low 
activity levels. The second dataset was collected while 
Subject 2 was walking. In this data, he went from a 
walking to a sedentary state. In the raw data, there 
were a few outliers in the beginning of data collection. 
The first stage of signal processing successfully 
cropped these outliers from the data (Graph 6). Next, 
the data are again smoothed through filtering out 
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abrupt changes in the raw values that occurred on the 
order of minutes and seconds, which we identify as 
artifacts using the Butterworth filter. 

Contrary to the filtered data in Graph 4, this filtered 
data did not have any spine except a small inversed 
spine in the plot, meaning that this dataset does not 
have many motion artifacts (Graph 7). 

Finally, we distinguish if edema happens by 
calculating the rate of decrease in the trusted data from 
the baseline. In this data, ankle curvature gradually 

decreases, which makes sense because sitting for an 
extended period of time causes feet to swell mildly 
(recall that a higher flex sensor value means less sensor 
bending and less swelling). However, the decrease rate 
in the trusted data was less than 1% so that we do not 
consider it as actual edema unless more data come in 
with further signs of edema (Graph 8). In all, again, the 
signal-processing algorithm successfully cropped 
outliers and filtered heavy motion artifacts without 
throwing out useful information. 

 
Graph 6. This section of data shows cropped data from 

the original raw flex sensor values 

 
Graph 7. This section of data shows filtered data from the 

cropped data 

 
Graph 8. Calculated swelling percentage from the trusted 

data. There is no sign of swelling in this region of the 
data. 

 
 

 
Graph 3. Cropped data from the raw flex sensor values 

 

 
Graph 4. Filtered data from the cropped data 

 
Graph 5. Calculated swelling percentage from the trusted 
data. There is no sign of swelling in this region of the data 
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4.2. Simulating Swelling 
 
As we currently do not have access to patients with 

edema conditions, we simulated swelling using a 
balloon by increasing its air pressure gradually to test 
how SwellFit performs. We changed the air pressure of 
a balloon as gradually as possible in a steady condition 
to simulate swelling. Thus, no outliers and noisy data 
were introduced in the dataset, which resulted in the 
trusted data being almost identical to the raw flex 
sensor values (Graph 9). As expected, the sensor value 
gradually decreases as the balloon is inflated. 

We calculated the rate of decrease in the trusted 
data from the baseline to distinguish edema with 
different levels of severity. Our system successfully 
distinguished edema with different severity levels: 
when the decrease in the trusted data exceeds 5% from 
the baseline, the color of the plot line changes to 
yellow to indicate mild edema. When the rate exceeds 
10%, the color of the plot line changes to orange to 
indicate moderate edema. When the rate exceeds 15%, 
the color of the plot line changes to red to indicate 
severe edema (Graph 10). We iterated collecting the 
simulated swelling data using a balloon four times, and 

the results were identical across all four datasets. 
 
4.3. In Summary 

 
The data from our evaluation with four healthy 

participants demonstrated the proof of concept of 
SwellFit: it did not detect edema where none was 
present even in the presence of vigorous real-world 
physical activity, which was a source of substantial 
noise in the raw sensor measurements. The data from 
the evaluation with the balloon demonstrated the 
feasibility of the system: as the balloon’s diameter 
increased slowly over a period of 3000 seconds, 
SwellFit correctly detected abnormal swelling. 
 
5. Limitations and future work  
 

Through a series of the proof-of-concept studies, 
this paper successfully demonstrates the feasibility of 
the experimental SwellFit system that can assess 
edema through continuous monitoring of the changes 
in ankle curvature. However, we acknowledge that our 
system implementation and its feasibility testing have 
limitations. First, SwellFit monitors changes in ankle 
curvature in a continuous manner without any absolute 
ground truth data of non-edema. Because of this, the 
calculated baseline may not accurately reflect the 
actual non-edema state if the data already contain 
substantial edema or artifacts. Thus, SwellFit works 
best when a user wears it for an extended period of 
time to capture the actual non-swelling status.  

Another limitation is that we did not conduct a 
performance evaluation with people who have edema 
conditions. However, simulated swelling using a 
balloon is mechanically identical to actual swelling, 
and thus we believe our experiments still convey 
meaningful outcomes as a proof-of-concept simulation. 
The question is that we have not tested our system with 
data that contain both noisy data and swelling. In 
theory, our system will still work well because we 
created layers of the signal processing filters that are 
robust enough to distinguish swelling from such messy 
data. However, statistical analysis of the performance 
testing with a sufficient number of human subjects 
which data contain both swelling and noisy data is a 
required next step to ensure its performance.  
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