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Abstract 

Parkinson’s Disease is a worldwide health problem, 

causing movement disorder and gait deficiencies. 

Automatic noninvasive techniques for Parkinson's 

disease diagnosis is appreciated by patients, clinicians 

and neuroscientists. Gait offers many advantages 

compared to other biometrics specifically when data 

is collected using wearable devices; data collection 

can be performed through inexpensive technologies, 

remotely, and continuously. In this study, a new set of 

gait features associated with Parkinson’s Disease are 

introduced and extracted from accelerometer data. 

Then, we used a feature selection technique called 

maximum information gain minimum correlation 

(MIGMC). Using MIGMC, features are first reduced 

based on Information Gain method and then through 

Pearson correlation analysis and Tukey post-hoc 

multiple comparison test. The ability of several 

machine learning methods, including Support Vector 

Machine, Random Forest, AdaBoost, Bagging, and 

Naïve Bayes are investigated across different feature 

sets. Similarity Network analysis is also performed to 

validate our optimal feature set obtained using 

MIGMC technique. The effect of feature 

standardization is also investigated. Results indicates 

that standardization could improve all classifiers’ 

performance. In addition, the feature set obtained 

using MIGMC provided the highest classification 

performance. It is shown that our results from 

Similarity Network analysis are consistent with our 

results from the classification task, emphasizing on the 

importance of choosing an optimal set of gait features 

to help objective assessment and automatic diagnosis 

of Parkinson’s disease. Results illustrate that 

ensemble methods and specifically boosting classifiers 

had better performances than other classifiers. In 

summary, our preliminary results support the 

potential benefit of accelerometers as an objective tool 

for diagnostic purposes in PD. 
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1. Introduction 

Parkinson’s Disease (PD) is a progressive 

neurodegenerative disorder of the brain and central 

nervous system, affecting patients’ motor system, 

causing reduced movement, tremor, postural 

instability and postural rigidity [1]. Fatigue, Small 

shuffling steps, freezing of gait, and bradykinesia are 

some of the symptoms of PD [2]. In spite of advances 

in medical care, gait disturbances have been shown to 

worsen as PD advances, which in turn leads to loss of 

independence and lower patients’ quality of life [3], 

[4]. 

There is no reliable test that can discriminate 

between PD and other conditions with similar clinical 

symptoms. Clinical diagnosis is currently based on 

current test results and patients’ history and there is 

still a need for an alternate diagnosis technique, which 

can offer simple, quick and non-invasive 

measurement. Comparing gait patterns in PD patients 

with their healthy counterparts through machine 

learning approaches can potentially help healthcare 

providers to diagnose PD, quantify the progression of 

disease, and therefore help millions of people 

suffering from PD around the world. Gait analysis by 

itself may not be a solution to PD. However, gait 

features could provide information that are 

complementary to other sources of information. 

Walking is the most widely recognized form of 

human movement. Gait analysis involves estimation 

and evaluation of biomechanical features associated 

with walking. Gait analysis usually requires force 

platforms besides optical motion analysis systems 

consisting of body markers and video cameras. 

Although these traditional movement analysis systems 
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have been used for more than two decades [5] and 

provided accurate information about movement, they 

require expensive facilities and patients’ frequent visit 

to doctors’ office or locomotion laboratories. Thus, 

their use in clinical practice is limited by these factors. 

Moreover, patients wish to boost their quality of life 

while reduced number of clinic visits are desired. An 

alternative locomotion analysis approach, based on 

wearable monitoring devices such as inertial sensors 

has been shown to have the potential of being used as 

a quantitative method in clinical practice [6], [7]. Even 

though inertial sensors are not still routinely utilized 

for diagnosis of PD or treatment assessment purposes, 

they have already been used to investigate motor 

complications in PD [10], [11], [23], [24].  

The main contribution of this study is to identify 

an optimal set of gait features extracted only from 

accelerometers along with the best classifiers that can 

help to diagnose PD in the early stages. Although 

some of the features are already introduced in the 

literature, we created a new feature set only using 

accelerometer data that can lead to high classification 

accuracy. We will identify patients with mild PD from 

healthy individuals and geriatrics who present similar 

gait deficiencies (e.g., asymmetric walking pattern) 

using machine learning classifiers and a Similarity 

Network model. Although gait disorders are common 

in elderly population, their prevalence increases with 

age. 85% of people have a normal gait at the age of 60 

while this proportion drops to 18% at the age of 85 [8]. 

A geriatric, around or over the age of 80, whose gait 

deficiencies are due to aging should not be confused 

with a PD patient by any machine learning or 

Similarity Network model because of presenting 

similar gait patterns. No study has considered 

classification of these three population only using 

acceleration data to the extent of our knowledge. We 

will also contribute by introducing Maximum 

Information Gain Minimum Correlation (MCMIG) 

feature selection approach that will be proved to 

increase the classification performance. We wish to 

answer several questions in our research: 

• Can accelerometer-based gait analysis 

provide the potential biomarkers of PD? 

• Is it possible to use various machine learning 

algorithm and Similarity Network model 

together with accelerometer-based gait 

features to help in early detection of PD? 

• How important is it to choose the optimal set 

of gait features in building diagnostic and 

predictive models for PD? 

• Can MIGMC feature selection technique help 

in identifying optimal set of gait features? 

  The rest of this paper is structured as follow: First, 

we provide a background about automatic diagnosis of 

PD using machine learning techniques. Then, we 

explain our dataset and research method. Furthermore, 

results will be provided and discussed along with 

future improvements. 

2. Background 

Machine learning and data mining techniques have 

become an inevitable part of modern life. They are 

being widely used in the biomedical science and 

healthcare domain with the goal of early diagnosis, 

providing prognosis and understanding the 

classification of disease [9]–[11]. Machine learning 

techniques have been extensively used to 

automatically discriminate between healthy 

individuals and those with PD. This could be a step 

toward early diagnosis if patients are in the early 

stages of the disease. Based on a  survey study done 

by Bind et al. [12], many studies used speech and voice 

signal [13]–[16], several studies have used magnetic 

resonance imaging [17], [18], some have considered 

genomics data [19], [20], and few of them have 

utilized gait (movement) patterns [21] for classifying 

individuals into healthy and PD groups.  

Analysis of gait and posture is one of the 

components of the clinical assessment of PD. With the 

healthcare moving rapidly from the long-standing 

reactive treatment approach to the early detection and 

preventative era, using wearable devices together with 

machine learning approaches in the healthcare domain 

has rapidly increased.  

Machine learning techniques together with 

wearable devices (e.g., accelerometers) have been 

used in many PD studies to recognize activities of 

daily living [22], identify diseases severity level by 

predicting UPDRS score [23], or predict FOG events, 

tremor, dyskinesia or bradykinesia [9], [24]–[26]. 

However, there are very few studies that have used 

wearable devices to discriminate between gait patterns 

of PD and healthy individuals [24], [27]–[30]. In the 

study by Patel et al. a system was used to analyze 

lower and upper extremities and no distinction was 

found between subjects from PD and control groups in 

this study [24]. However, they used eight 

accelerometers to rate symptoms associated with PD 

like tremor, bradykinesia, dyskinesia. Deepak Joshi et 

al. performed wavelet decomposition of 

spatiotemporal gait variables as an alternate technique 

to identify patients with PD from healthy adults. 
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Although they achieved the classification accuracy of 

90.32%, PD patients and control subjects were not 

age-matched in their study which can significantly 

impact the results. It is not clear whether the high 

classification accuracy achieved by Deepak et al. is 

due to the gait alterations caused by ageing or the 

disease itself. Barth et al. has used pressure sensors 

along with inertial sensors [29], and Klucken et al. and 

Barth et al. used inertial sensors including 

accelerometers and gyroscopes for classifying 

individuals into healthy and PD groups [27], [28]. 

While both studies reached a high overall 

classification rate, developed models require data from 

both accelerometer and gyroscope [27], [28], and a 

combination of tasks, including a 10-meter walk, heel-

toe tapping, and circling, is required to be performed 

by each individual [28]. 

Considering continuous monitoring of gait, which 

is a necessary step toward real-life applications of gait 

in the context of smart homes and healthcare domain 

[31]–[33], including more data in analysis (e.g., from 

accelerometer and gyroscope) leads to a higher 

dimensionality of feature space and consequently 

more computationally intensive process.  If we can 

show that the same task can be completed only using 

accelerometers’ data (without a need for data collected 

from gyroscopes), without compromising the 

accuracy, and with a smaller set of features, it would 

help saving memory and computational resources. 

Moreover, considering only individuals’ walking 

patterns, instead of extracting and analyzing features 

associated with different tasks such as circling and 

tapping performed in the study by Kluchen et al. [28], 

will reduce the complexity of monitoring individuals 

seamlessly and continuously over time. This study 

aims at discriminating patients with mild PD from 

healthy individuals (same age range with PD patients 

and older adults in their 80s) only using 

accelerometers’ data. 

3. Material and method 

Gait analysis in the healthcare domain with the aim 

of identifying groups with pathology in the early 

stages (early diagnosis of disease) can be structured in 

the following steps: data acquisition, data 

reprocessing, feature extraction, feature 

selection/reduction, and modelling. These steps can be 

seen in Figure 1. 

 
Figure 1. Gait analysis for early diagnosis 

3.1. Signal acquisition and pre-processing  

Gait analysis in the healthcare domain can be 

structured in the following steps: data acquisition, data 

reprocessing, feature engineering, feature 

selection/reduction, exploratory analysis, and 

modelling. These steps can be seen in Figure 1. 

We used accelerometers-derived data from a 

publicly available data set collected by Barth and 

colleagues [34]. This data set includes three groups of 

people: healthy elderly, geriatrics, and people with 

mild PD. For the present study, we selected the data 

associated with a 40-meter walk protocol. In the 40-

meter walk experiment, data was sampled at 102.4 HZ 

and collected from subjects’ left and right ankles using 

SHIMMER while subjects walked 10 meters four 

times at their comfortable speed and in an obstacle-

free environment. Subjects were instructed to turn in 

the transverse plane after each 10 meters. SHIMMER 

is a validated inertial sensing platform, including 

accelerometer and gyroscope [35]. X, Y, and Z axes of 

accelerometer represent signals in Anteroposterior 

(AP), Vertical, and Mediolateral (ML) directions, 

respectively. Figure 2 shows the directions of 

accelerometer axes according to the sensor placement. 

Table 1 shows Subjects’ information. 

 
Figure 2. The directions of accelerometer 

axes according to the sensor placement [34] 

Table 1. Subjects’ Characteristics 

 Control PD Geriatrics 

Number of 

subjects 

10 10 10 

Gender (M/F) 5:5 5:5 4:6 

Age 64 ± 8.4 63.8 ± 

9.3 

81 ± 4.1 

UPDRS III  12.7 ± 

6.0 

 

H & Y  1.7 ± 0.9  

 

Prior to extracting gait parameters, we calibrated 

the data using the guideline provided by Barth et al 

[34]. Then, we used z-axis of gyroscope for stride 

segmentation. we removed each subject’s first and last 

two strides to eliminate any irregularities associated 
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with the initiation and termination of gait [36]. We also 

removed strides associated with the beginning and end 

of each 10 meters. 

3.2. Gait Features  

The following features were extracted from the 

accelerometer signal. These features represent either 

the characteristics of strides (stride level features) or 

the characteristics of complete gait sequence (signal 

level features). 

Average stride time. Mean of stride time has been 

used in evaluation of age-related gait differences [37] 

as well as disease-related gait differences [38]. 

Average stride time is considered as one of the features 

for the classification task.  

RMS of Acceleration/Body Oscillation. Root mean 

square (RMS) of acceleration is a statistical measure 

of the magnitude of acceleration that has been 

frequently reported in gait research [39], [40]. RMS of 

acceleration has been used to quantify the attenuations 

of accelerations [41]. Normalized RMS of acceleration 

has been shown to provide results that are more 

consistent across gait analysis research and is referred 

to as body oscillation in either AP, ML or vertical 

direction. Normalized RMS of acceleration in the ML 

direction has been shown to be significantly higher in 

people with movement disorder than healthy subjects 

[40]. We calculated both RMS and normalized-RMS 

of acceleration in AP, ML, and vertical direction and 

added them to our original set of features. We 

calculated normalized RMS of acceleration using 

equation (1), in which dir represents the direction of 

the acceleration signal. 

𝑅𝑀𝑆𝑅𝑑𝑖𝑟 =
𝑅𝑀𝑆𝑑𝑖𝑟

√𝑅𝑀𝑆𝐴𝑃
2+𝑅𝑀𝑆𝑀𝐿

2+𝑅𝑀𝑆𝑉𝑒𝑟
2
     (1) 

Maximum and Minimum Acceleration. Maximum 

and minimum acceleration of each stride for AP, ML, 

and vertical direction is averaged over all strides. It 

resulted in six gait features that are included in the 

original feature set. These features were calculated and 

included because they are shown to be significantly 

different between patients with PD, geriatrics, and 

healthy elderlies [28], [42]. The difference between 

the obtained maximum and minimum acceleration 

value in each direction was also included in our 

original feature set.  

Variability of Signal per Stride.  To have more 

details about strides’ acceleration signals, we 

calculated variability of acceleration signal per stride 

for all three directions. Then, we took the average of 

all standard deviation values as seen in equation (2) in 

which s is the number of strides, ds is the number of 

data points per stride, xi is the value of acceleration 

associated with ith data point, and μs is the average of 

acceleration value per stride. This feature was 

calculated for AP, ML and vertical acceleration 

signals, separately.  

1

𝑠
∑ √

1

𝑑𝑠
∑ (𝑥𝑖 − 𝜇𝑠)2𝑑𝑠

𝑖=1

𝑁𝑠

𝑠=1

       (2) 

Signal Vector Magnitude (VM). VM represents 

intensity or magnitude of acceleration in all directions. 

It is reported as one of the metrics for continuous gait 

monitoring using accelerometers [43]. Therefore, it 

was included in our original feature set.  

Symmetry. Although several studies [44], [45], 

including our previous study [45] have reported that 

gait asymmetry is not significantly present in patients 

with PD regardless of the body site the accelerometers 

attached to, and of the disease severity level, there are 

other studies reported asymmetry as a significant gait 

parameter in patients with PD as well as elderlies [46]. 

To measure symmetry, we considered stride time, 

VM, and RMS of acceleration in all three directions 

and calculated the differences between the value of 

each gait parameter associated with the left ankle and 

the value of the same gait parameter associated with 

the right ankle as it is calculated in our earlier studies 

[42], [45].  

Stride to stride variability. Gait variability, defined 

as stride-to-stride fluctuation, has been shown to be 

sensitive to aging and pathology [38], [47]. There are 

evidences for increased gait variability in patients with 

PD even in the early stages of the disease [48]. In our 

study, variability was calculated as the within-person 

coefficient variation (CV) of various features across 

strides considering both left and right sides. Stride-to-

stride variability was calculated regarding stride time, 

VM, and RMS of acceleration in all three directions. 

Velocity. Gait speed has been shown to be 

significantly slower in patients with PD than that of 

healthy older adults [39]. Although we did not have 

the exact speed information for the subjects, we 

estimated speed value for each subject indirectly using 

equation (3), in which 102.4 HZ is the frequency of 

data sampling, 40 is the distance all subjects walked, 

Ni_left and Ni_right are the number of data points 

from left and right ankles for the ith subject. Since we 

had strides’ data from left and right ankle, and the 

number of data points collected for the left and right 

ankle might have been slightly different, we then took 
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the average of speed values associated with the left and 

right ankles. 

𝑆𝑝𝑒𝑒𝑑𝑖 = 𝑚𝑒𝑎𝑛(
102.4∗40

𝑁𝑖_𝑙𝑒𝑓𝑡 
 + 

102.4∗40

𝑁𝑖_𝑟𝑖𝑔ℎ𝑡 
)     (3) 

     Signal Smoothness. The smooth movement of a 

human body is achieved by balancing the forces of 

several muscles. Balance disorders are common in 

patients with PD [49] and in geriatrics [50]. If balance 

cannot be upheld, jerky motions are likely to happen 

during walking. To account for smoothness of walking 

signal, we used equation (4), in which dSig represents 

the number of data points in the signal, and ACi and 

ACi+1 are the acceleration value of two consecutive 

data points i and i+1. We calculated this feature for 

AP, ML and vertical acceleration signals, separately.  

1

𝑑𝑆𝑖𝑔
∑ 𝑎𝑏𝑠(𝐴𝐶𝑖 − 𝐴𝐶𝑖+1)

𝑑𝑆𝑖𝑔

𝑖=1
   (4) 

Standardization has been shown to provide great 

improvement in gait classification of patients with PD 

and healthy individuals [51]. Once we calculated all 

features, we standardized each gait feature using 

equation (5), in which 𝑥𝑖 is the value of feature 𝑥 for 

the ith subject and Xmax(inter class) is the highest 

value of feature 𝑥 amongst all three groups. 

Xnorm =
𝑥𝑖

Xmax(inter class) 
      (5) 

3.3. MIGMC Feature Selection  

Too many gait parameters have been used over the 

years. Selecting the most appropriate feature set is a 

crucial step prior to applying classification techniques, 

often affecting the model accuracy and consequently 

the success of the research outcomes. Incorporating 

additional features is sometimes costly and may even 

be against the goal of achieving optimality [52].  

We performed a two-step approach called 

Maximum Information Gain Minimum Correlation to 

select an appropriate feature set. Our approach is based 

on the minimal-redundancy-maximal-relevance 

(MRMR) concept proposed by Peng et al. [53]. 

However, we did not apply the same procedure they 

proposed. First, we investigated the most influential 

features using information gain algorithm (IG) in 

WEKA. Information gain is a feature selection method 

used in gait analysis studies. It works by measuring the 

decrease in entropy in the presence and absence of the 

feature [28]. We used information gain evaluation on 

the feature set combined with ranker method to extract 

and rank the most influential features in classifying 

individuals into three associated groups. Then, we 

took a step further and came up with a feature set in 

which features are maximally dissimilar to each other. 

This step was done by pair-wise Pearson correlation 

analysis. The threshold of 80% was considered to 

determine highly correlated features. Among all 

pairwise correlations, we picked one with the highest 

value and its associated features. If we had more than 

one pair of values with the highest correlation value, 

we randomly chose one. In order to decide which one 

of the features in the selected pair of features to remain 

in our feature set, we selected the one with higher 

discriminating power. To choose this feature, we 

performed ANOVA followed by Tukey post-hoc 

multiple comparison test. The feature with the highest 

absolute value of groups mean differences was 

selected. If both features showed the same 

discriminating power, then we calculated sum of the 

pairwise correlations each feature had with other 

features. The one with the lower value of accumulated 

correlation was selected to remain in our feature set. 

We repeated this process until we did not have any 

pairwise correlation value higher than 80%. Figure 3 

illustrates MIGMC feature selection technique in 

details. 

3.4. Classification models  

Support Vector Machine (SVM) with non-linear 

kernel, naïve Bayes classifier, Random Forest, 

Bagging, and AdaBoost have been shown to be 

powerful supervised learning techniques for sensor-

based gait classification [28], [29], [54]. We used 

Naïve Bayes, SVM, Random Forest, Bagging, and 

AdaBoost classifiers using a repeated 5-fold cross 

validation method in our analysis and compared the 

accuracy of each model across different feature sets 

and across standardized and non-standardized vectors 

of feature. Each classifier’s accuracy was calculated 

using the measures of accuracy, precision, and recall.  

3.5. Similarity Network  

A similarity network for classification of 

individuals based on gait patterns is proposed by 

Rastegari et al., [42] in which correlation value 

between each pair of individuals is considered as the 

measure of similarity. In this network, vertices 

represent individuals and there is an edge between two 

individuals if the correlation value between their 

corresponding gait vectors is equal to or greater than a 

predefined threshold. Correlation analysis considers 

all of the selected parameters together and examine 

how similar two subjects are regarding their gait 

patterns. We performed correlation network analysis 

with the threshold value of 85% as an alternative and 

validation approach to show the effect of our proposed  
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Figure 3. MIGMC feature selection technique 

Table 3. Optimal set of features obtained using MIGMC 

Feature’s Name Description Feature category  

Variabiltiy_StrideTime Variability of stride time  Signal level 

Variability_VM Variability of vector magnitude  Signal level 

Variability_RMSX Variability of root mean square in the AP direction  Signal level 

Variability_RMSZ Variability of root mean square in the ML direction  Signal level 

Velocity Velocity Signal level 

Smoothness_X Smoothness in the AP direction  Signal level 

Smoothness_Z Smoothness in the ML direction  Signal level 

RMSZR Root mean square relative to the mean value in the ML 

direction  

Stride level 

feature selection technique as well as feature 

standardization. 

4. Analysis and Results 

Before performing the classification, we have 

ranked all the features according to their information 

gain to obtain a set of features that are potentially 

significant in classifying three populations. We had 32 

features in our original feature set, out of them, 22 

were identified as the most influential features using 

the information gain method.  

Then, we reduced the first reduced feature set to a 

set of features that are maximally dissimilar and 

obtained by applying Pearson correlation analysis and 

Post-hoc multiple comparison test. Table 3 shows the 

second reduced set of features along with a brief 

description of each feature. As it can be seen from 

Table 3, all selected features except RMSZ are signal 

level features, indicating that investigating the 

complete gait sequence can reveal more 

discriminating information compared to stride level 

feature.  

To make sure that the second reduced set of 

features has the minimum number of features 

contributing to the highest performance of the 

classification task, we tried to remove only one feature 

at a time, run all classification techniques using 7 

remaining features and see whether we get at least the 

same accuracy we could get using 8 features identified 

by our feature selection technique. The last row in both 

Table 4 and Table 5 shows the results of classification 

when smoothness in the AP direction was removed 

from the feature set. Although Adaboost and Random 

Forest classifiers’ performance stayed the same in 

some cases, overall, results indicated that for any set 

of features with less than the eight identified features, 

most of the classifiers could not perform at their best. 

Therefore, as it can be seen in Table 4, the second 

reduced set of features can be considered as the 

optimal feature set. 

Table 4 and Table 5 show the performance of all 

classifiers regarding accuracy, precision, and recall 
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based on both standardized and non-standardized 

feature sets, and across different sets of features. One 

of the obvious observations is that standardization 

contributed to a higher accuracy. As it can be seen in 

both Table 4 and Table 5, AdaBoost showed the best 

performance regardless of the feature set. Using eight 

features (optimal set) selected by MIGMC provided 

equal accuracy or even higher accuracy compared to 

other sets of features. 

Table 4. Classification’s performance based on standardized feature vectors- * Reduced 
Feature Set 

Features SVM Random forest AdaBoost Bagging Naïve Bayes 

Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec 

All (32) 83.6 85.6 83.3 86.6 86.9 86.7 96.7 97.0 96.7 96.7 97.0 96.7 90.0 92.3 90.0 

RFS*1 (22) 80.4 81.5 80.0 93.3 93.6 93.3 100 100 100 96.7 97.0 96.7 90.0 92.3 90.0 

RFS2 (8) 83.6 85.6 83.3 100 100 100 100 100 100 96.7 97.0 96.7 90.0 92.3 90.0 

RFS3 (7) 69.9 81.1 73.3 83.3 83.5 83.3 73.3 74.7 73.3 70.5 71.1 70.0 83.1 83.7 83.3 

 

Table 5. Classifications’ performance based on non-standardized feature vectors 

Features SVM Random forest AdaBoost Bagging Naïve Bayes 

Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec 

All (32) 83.6 85.6 83.3 80.4 81.5 80.0 83.6 84.2 83.3 68.4 70.0 70.0 67.7 71.0 66.7 

RFS*1 (22) 90.2 90.6 90.0 80.4 81.0 80.0 83.6 84.2 83.3 75.5 78.1 76.7 67.7 71.0 66.7 

RFS2 (8) 93.3 93.6 93.3 80.4 81.0 80.0 83.6 84.2 83.3 79.8 79.9 80.0 70.5 71.1 70.0 

RFS3 (7) 79.9 80.6 80.0 80.4 81.0 80.0 73.3 74.7 73.3 79.8 79.9 80.0 65.4 70.0 66.7 

 
Results of Similarity Network Analysis is 

illustrated in Figure 4 and Figure 5. Red vertices 

represent healthy subjects, blue ones represent 

geriatrics, and green vertices are associated with PD 

patients. Figure 4 shows the results of Similarity 

Network analysis using all 32 identified features with 

and without feature standardization. We can see that in 

the case of modeling based on the standardized 

features, grouping is done far way better than the 

model made without feature standardization. This is 

consistent with the results from our classification with 

and without feature standardization.  

In Figure 5, we can see three network models 

associated with the first, second, and third reduced 

feature sets including twenty-two, eight, and seven 

features, respectively.  The network model using all 32 

features is depicted in Figure 4-a.  Comparing four 

network models indicates that using the first and 

second reduced sets of features improved the 

Similarity Network model’s performance by 

increasing the discriminative power of the feature set. 

Thus, fewer number of healthy subjects are grouped 

together with PD patients in the network depicted in 

Figure 5-b compared to Figure 5-a and Figure 4-a 

networks. On the other hand, reducing the number of 

features further below the identified optimal set of 

features (second reduced set of features) reduced the 

performance of Similarity Network model as it is 

illustrated in Figure 5-c. In this figure, most of 

geriatrics (in blue) are still grouped together and 

differentiated from two other groups, indicating that 

their gait pattern is significantly different from others 

which is very likely due to the age difference. 
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However, there is no obvious differentiation between 

healthy subjects and patients with PD. Results of 

Similarity Network model using different feature sets 

is consistent with our classification results, validating 

our optimal set of features as well as MIGMC feature 

selection technique. These results emphasize on the 

importance of choosing an optimal set of features for 

classification of individuals using their gait patterns.  

a      b 

Figure 4. Similarity Network Model with (a) and without (b) feature standardization  

 

a    b     c 

Figure 5. Similarity Network Model using first (a), second (b) and third reduced sets of 
features(c) 

5. Discussion and Limitations 

In this study, a set of gait features, several 

classifiers and a Similarity Network model were used 

to develop an automatic gait analysis system for 

diagnosis of PD. The developed model was able to 

discriminate between patients with PD, healthy 

elderlies, and geriatrics using gait features extracted 

from two accelerometers placed on both ankles. 

Geriatrics were considered in analysis since aging has 

significant impact on gait and similar gait deficiencies 

(e.g., variability, asymmetry) are reported in the 

literature for both patients with PD and geriatrics. To 

avoid the confusion of machine learning techniques 

and Similarity Network analysis in automatic 

diagnosis of PD, including other populations with 
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similar gait deficiencies in analysis seems necessary 

which is missed in the literature. A geriatric who is 

suffering from movement disorder should be classified 

neither in healthy nor in PD groups. Our results show 

that the developed model could be an objective tool for 

assessment of gait alterations in PD patients and early 

diagnosis of the disease without any need for extra 

data sources such as gyroscopes.  

It is necessary to select an optimized feature set 

because a high dimension vector of features requires 

high computational cost and increases the risk of 

overfitting. To select an optimal set of features, we 

performed MIGMC feature selection technique. 

Although this feature selection technique and MRMR 

[53] share the same concept, we implemented 

MIGMC feature selection technique differently using 

Information Gain method, pairwise Pearson 

correlation analysis, ANOVA, and Tukey post-hoc.  

Obtained results showed that standardization 

increased the performance of almost all classifiers and 

the Similarity Network model. Comparison of various 

feature sets revealed that the optimal feature set 

outperforms its counterparts. AdaBoost classifier 

showed the overall best performance, which is in 

agreement with the results of two studies by Barth et 

al. and Klucken et al. on the classification of PD 

patients and healthy individuals using gait parameters 

[27], [28]. Both Adaboost and Random Forest 

classifiers performed their best when we considered 

the optimal set of features obtained using MIGMC 

feature reduction technique. In the study by Barth et 

al., data from both accelerometers and gyroscopes 

were analyzed and 12 number of features were 

identified and contributed to the highest accuracy 

value of the classification model [27]. Kluchen et al. 

extracted 694 features associated with a combination 

of tasks performed by each subject, out of them 23 

features were selected and contributed to the highest 

accuracy value of the classification [28]. Comparing 

our findings with the findings from these two studies 

illustrates that our classification models and the 

Similarity Network Model for diagnosis of PD 

outperform models developed by Barth et al. and 

Kluchen et al while a smaller feature set, including 

only 8 features, was utilized in our study. This set of 

features was extracted only from the accelerometer 

data and they were associated with a single task of 

walking, while Kluche et al. and Barth et al. both 

employed a multi-sensor system, including gyroscope 

and accelerometer. Furthermore, classification of 

subjects in the study by Kluchen et al. was based on 

features associated with a combination of tasks 

performed by subjects. Dealing with a lower number 

of data sources as well as a smaller set of features, 

would lead to a less complex and computationally 

intensive task of continuous gait monitoring. 

Comparing classifiers used in this study, we 

observed that ensemble methods and specifically 

boosting classifiers have better performances than 

other classifiers. These classifiers could distinguish 

not only between patients with PD and their healthy 

counterparts, but also between these two groups and 

geriatrics. This indicates that although gait analysis by 

itself may not be a solution to PD, gait features could 

provide information that are complementary to other 

sources of information. 

Eight features identified by MIGMC technique 

provided the best classification performance which is 

consistent with our results obtained from Similarity 

Network analysis. Among these features, four of them 

represent variability regarding various gait 

parameters, including stride time, signal vector 

magnitude, and root mean square in both AP and ML 

directions. The remaining four features are velocity, 

body oscillation in ML direction, and smoothness in 

both AP and ML direction. The fact that four measures 

of variability are included in our optimal set of features 

illustrates that different measures of variability are not 

necessarily highly correlated and each of them can 

play a distinct role in discriminating groups under the 

study. All features in our optimal set of features except 

RMSZR are signal-level features, indicating that 

signal-level features play a more important role in 

discriminating different populations based on gait 

parameters.  

Considering that our study was conducted on a 

small-size dataset, the danger of overfitting while 

training the classifiers is not deniable. However, 

Similarity Network Model is not prone to overfitting 

since it is not made using any training or test data but 

using a similarity measure between each pair of 

subjects. Similarity Network Models made using 

various feature sets confirm the fact that the optimal 

set of features introduced in our study contributes to 

creating models with a higher accuracy values 

compared to other feature sets introduced in our work 

and those introduced in the literature.  

This study has obviously its own limitations. One 

of them is having a limited data set, which makes it 

impossible to draw a general conclusion about the 

results. However, this study is a step towards objective 

assessment and early diagnosis of Parkinson’s disease 

which would benefit patients and healthcare providers. 

The other limitation of this study is the lack of having 

detailed information (e.g., UPDRS or H&Y score) 

about each individual. Having more detailed 
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information would have allowed us to have a more 

concise interpretation of our results such as 

investigating the classification errors with regards to 

age or UPDRS score. Although the results of 

classification and Similarity Network Model both 

confirm the validity of our proposed feature selection 

technique, one of the other limitations of this work is 

that we did not compare other feature selection 

techniques with MIGMC which remains the objective 

of our future works. Our future research plan is also to 

use another dataset including patients with more 

advanced PD to investigate the power of our approach 

in identifying various stages of PD. Moreover, using 

another dataset as an independent validation set might 

be useful to further confirm the results of this study 

and mitigate the effect of the small-size dataset.  

6. Conclusion 

The purpose of this study was to develop and 

validate an automated gait analysis system using 

lower-body motion data and pattern recognition 

algorithms to distinguish between three groups of 

people: healthy elderly, geriatrics, and patients with 

PD. Using a proposed feature selection technique 

based on the maximum information gain and 

minimum correlation among the features, an optimal 

set of gait features was obtained only from 

accelerometer data. The new set of features developed 

in our study together with machine learning techniques 

could distinguish PD patients from healthy elderlies 

and geriatrics. A Similarity Network Model was used 

to validate the efficiency of the optimal set of gait 

features obtained using our proposed feature selection 

technique. In conclusion, our results support the 

potential benefit of accelerometers attached to the 

ankle as an objective tool for diagnostic purposes in 

PD. 
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