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Abstract

With the rapidly rising number of mobile health
(mHealth) applications (apps), it is unfeasible to manu-
ally review mHealth apps for information privacy risks.
One salient information privacy risk of mHealth apps
are confidentiality breaches. We explore whether and
how static code analysis is a feasible technology for app
review automation. Evaluation of our research proto-
type shows that, on average, our prototype detected one
breach of confidentiality risk more than human review-
ers. Contributions are the demonstration that static code
analysis is a feasible technology for detection of confi-
dentiality breaches in mHealth apps, the derivation of
eight generic design patterns for confidentiality breach
risk assessments, and the identification of architectural
challenges that need to be resolved for wide-spread dis-
semination of breach of confidentiality risk assessment
tools. In terms of effectiveness, humans still outperform
computers. However, we build a foundation for leverag-
ing computation power to scale up breach of confiden-
tiality risk assessments.

1. Introduction

The market for mobile phone and tablet applica-
tions (apps) has grown extensively [1]. It is increas-
ingly easier for companies and single developers to cre-
ate unique apps that reach millions of users around the
planet via digital app stores. This market growth also
affects mobile health (mHealth) apps. mHealth apps
support users in resolving health-related issues and try
to remedy health-related information deficiencies [2].
However, mHealth apps also require users to reveal per-
sonal, health-related information to receive a tailored
app experience. Users are concerned about their privacy
when using smartphones apps since it often remains
unclear how and where user information is sent, pro-
cessed, and stored [3, 4]. Consequently, use of mHealth
apps poses information privacy risks to users; in particu-
lar, use of mHealth apps poses breach of confidentiality

risks [5, 6]. Prior to app use, it is challenging for users
to assess what kind of private information apps collect.
A more expedient approach would be to assess breach of
confidentiality risks of apps on app store level to provide
users with the desired information right where they need
it [7]. But the high volume of available apps makes it la-
borious to review all of them by hand [1]. An automated
solution is needed. Static code analysis is used to ana-
lyze large amounts of application source code and to de-
tect faults or vulnerabilities [8]. Extant research yields
no insights whether employing static code analysis for
breach of confidentiality risk assessment is feasible and
how it should be implemented to cover the detection of
a holistic range of breach of confidentiality risks. Extant
research applied static code analysis to limited subsets
of breach of confidentiality scenarios and often in man-
ual and non-automated ways [9, 10, 11, 12]. The ob-
jective of this study is to develop a prototypical breach
of confidentiality risk detection tool for Android apps
and to evaluate its performance in comparison to human
source code reviewers.

While the proposed tool can work on an arbitrary set
of Android apps, we use the context of mHealth apps
since mHealth apps are by nature prone to breach of con-
fidentiality risks. Breach of confidentiality takes place
whenever private user information is unwillingly dis-
closed [13]. It violates the trust of users and impedes
a fruitful vendor-to-customer relationship, which is the
foundation for successful mHealth apps [14]. Users de-
mand a ’trustworthiness measure’ to support their app
installation decisions at app store level [15]. Therefore,
automating detection of breach of confidentiality risks
is of high importance. Due to the high level of diver-
sity among different breach of confidentiality risks to
detect, implementation of such a tool is challenging. We
propose an implementation-structure that enables sepa-
ration of breach of confidentiality risk detection algo-
rithms into individual strategy-components and answer
the research question: To what degree can breach of con-
fidentiality risk assessment for Android apps be auto-
mated? Our work contributes to the software engineer-
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Figure 1. Overview of extant research streams

regarding breach of confidentiality risk assessment of

apps.

ing literature in three ways: First, we extract a holistic
set of breach of confidentiality risks from extant litera-
ture. Second, we present an automated assessment tool
that identifies the breach of confidentiality risks within
the source code of Android apps. Third, we identify
design patterns and challenges for building automated
breach of confidentiality risk assessment tools for An-
droid apps.

The paper is organized as follows: First, we outline
extant research streams in the field of breach of con-
fidentiality risk assessment. Second, the research ap-
proach of the study is outlined. We then present the im-
plementation of our automated breach of confidential-
ity risk assessment tool and present eight generic design
patterns that were identified through source code review
during implementation. In the next section, we evalu-
ate the performance of the automated breach of confi-
dentiality risk assessment tool in comparison to human
reviewers. We conclude this study with an outline of
threats to validity and future research ideas.

2. Related Work

Extant research focuses on either manual or au-
tomated assessment of breach of confidentiality risks
within apps, as depicted in Figure 1. Manual assessment
can be categorized into two fields of interest. First, eval-
uation of metainformation regarding information pri-
vacy practices, such as privacy notices or user inter-
face characteristics [16, 17]. Second, manual assess-
ment conducted on technical aspects of apps, such as an-
alyzing the source code or monitoring data connections
[18, 19, 1, 9, 20, 21, 22, 23]. Research on automated
breach of confidentiality risk assessment is sparse. Ex-
tant research on automated breach of confidentiality risk
assessment can be classified into two categories. First,
previous research focused on automatically detecting
potential breach of confidentiality risks within metain-
formation provided by the app, for example, by apply-
ing text-classification and machine learning tools to pri-
vacy notices [24, 25, 26]. Automated assessment of

metainformation is challenging because privacy notices
are written in complex legal language and are difficult
to process [27]. A second focus of automated assess-
ment of breach of confidentiality risks has been put on
source code analysis and data communication analysis
of apps [25]. Researchers already use static code anal-
ysis and dynamic code analysis to perform automated
source code assessments to identify breach of confiden-
tiality risks. However, previous research focused only
on single breach of confidentiality risks or special use
cases. In this work, we identify a holistic set of breach
of confidentiality risks of Android apps and do not nar-
row our scope to specific risks. Knowing to what degree
automated breach of confidentiality risk assessment is
possible opens up new research opportunities towards
more transparent communication of breach of confiden-
tiality risks.

3. Research Approach

Our research approach is structured in three steps:
First, we identify relevant breach of confidentiality risks
that can be detected in Android app source code from
previous research. Second, we implement a breach of
confidentiality risk assessment tool for Android apps to
explore the boundaries of automated detection. Third,
we evaluate the implementation by comparing the de-
tection rate of breach of confidentiality risks with those
of two human source code reviewers. We derived the
breach of confidentiality risks, that are to be detected,
from a catalog of information privacy practices that
was developed based on a review of privacy notices
of mHealth apps [28]. The content of a privacy no-
tice informs users about the information privacy prac-
tices the associated app implements. Therefore, the
catalog of information privacy practices forms the ba-
sis for our breach of confidentiality risk assessment.
We reviewed the catalog of information privacy prac-
tices and excluded information privacy practices based
on two criteria: (1) The information privacy practice
does not represent a potential breach of confidentiality
risk of an app (e.g., the information retention policy of
an app provider). (2) The information privacy practice
is infeasible to detect via a static code analysis of app
source code (e.g., data handling and exchange on the app
providers’ servers). The review was conducted indepen-
dently by two of the authors. Disputes were resolved in
group discussions of all authors. The resulting breach of
confidentiality risks are listed in Table 1.

We evaluated the performance of the breach of con-
fidentiality risk assessment tool by comparing its output
to the results of a manual static code analysis by two
human reviewers. To ensure high-quality results for the
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Figure 2. Diagram of the three phases of the

automated breach of confidentiality risk assessment

tool over time.

human code reviews, we chose two reviewers that were
trained on the breach of confidentiality risk catalog and
experienced in professional software development. The
task for each reviewer was to identify as many breach of
confidentiality risks as possible by analyzing the source
code files of six sample apps.

4. AUTOMATED BREACH OF
CONFIDENTIALITY RISK
ASSESSMENT TOOL

We developed the automated confidentiality breach
risk assessment tool (ACCuRATe). ACCuRATe operates
in three phases, as depicted in Figure 2.

4.1. Download Phase

In the first phase, Android APK files are retrieved.
We used an mHealth app repository that lists mHealth
apps from the Google PlayStore as our main app data
source [29]. We excluded apps that are not available for
free. Free apps are more prone to breach of confiden-
tiality risks due to the increased use of business mod-
els based on advertising [12, 30]. Nevertheless, AC-
CuRATe will be able to perform its assessment on ei-
ther free or non-free apps. To download the APK files,
we used an open source implementation of an undocu-
mented Google PlayStore API [31]. The undocumented
part of the Google API allows authenticated users to
download APK files via HTTP requests, as if the files
were downloaded by the Google PlayStore app on an
Android device.

4.2. Decompilation Phase

The decompilation script uses a chain of tools to gain
access to the source code from an APK file. First, we
used the tool dex2jar [32] to extract the Java Archive
(JAR) file from the APK file. dex2jar can read and write

Dalvik EXcecutionable (DEX) and Java class files. The
next step extracts resource files, such as the Android
Manifest file from the APK file. The Android Manifest
contains metainformation about the app in a structured
Extensible Markup Language (XML) format [11, 12].
The metainformation includes the package name of the
app and the requested permissions, such as camera or
geolocation usage. To extract the Android Manifest file
from the APK file, ACCuRATe uses the apktool [33].
Another important outcome of the extraction of resource
files is retrieving the layout and localization files. These
files include information on user interface components
used within the app and content of labels and text fields.
This information is used within ACCuRATe to trace in-
formation collection data flows.

An obstacle in decompiling Java source code is ob-
fuscation. Obfuscation is a security feature that tries to
hide the logic of Java code by renaming classes, vari-
ables, and method names by disassembling the code into
pieces that are difficult to interpret for a human reader
[12]. The core of the decompilation process is a tool
called fernflower [1, 34], which is equipped with meth-
ods to cope with obfuscated source code to a certain de-
gree. The result of the decompilation phase is a directory
labeled after the package name of a given app that con-
tains the resource files, including the Android Manifest
and the decompiled source code of the app.

4.3. Static Code Analysis Phase

First, an Android data flow analysis tool extracts po-
tential data flows from the APK files. The data flow
analysis is performed using the open source tool Flow-
Droid [35]. A source is the origin of a data flow (e.g.,
user input via a text field). A sink is the destination of
a data flow. An example for a sink is an HTTP internet
connection or a local log file.

In the second preprocessing step, a machine learn-
ing text classifier was trained. We used a Naı̈ve Bayes
classifier to segment text into distinct categories [36].
The categories are predefined in the training phase and
later assigned new, to previously unseen text segments
by the classifier. We used the Naı̈ve Bayes classifier to
classify Uniform Resource Locators (URLs) into cate-
gories of data recipients to identify where data is sent
to. The URL categories were identified based on a lit-
erature review [28]. We acquired URLs in these cat-
egories from multiple online URL lists [37, 38]. To
acquire metainformation for all these URLs, we im-
plemented a download tool for the HTML source code
of the URLs and stored the content of the description
HTML metatag in a file [39]. We used this metainfor-
mation to train the Naı̈ve Bayes classifier with the as-
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sociated URL categories. After these preparatory steps,
the main static code analysis performs the breach of con-
fidentiality analysis by iterating over all available apps
and applying a set of analysis operations, that is, strate-
gies, to the source code of the apps.

4.4. Specific & Generic Strategies

Within ACCuRATe: two types of strategies are
used—generic and specific strategies. Specific strategies
assess a single breach of confidentiality risk, as listed in
in Table 1. During the development process, generic pat-
terns emerged that we consolidated into generic strate-
gies. Each specific strategy either uses or inherits func-
tionality from at least one generic strategy to perform its
risk-detection functionality.

We describe each generic strategy along the follow-
ing five components for commmunicating software pat-
terns: Identification, Context, Problem, Solution, and
Consequences [40]. The component Identification ex-
presses the name of the design pattern. The purpose of
the Context component is to demonstrate the situation
that poses a problem. The Problem component explains
the forces [40] that the design pattern tackles. The solu-
tion reveals how these forces can be overcome Finally,
the Consequences component describes the state after
the application of the design pattern.

DataFlowStrategy Context: The DataFlowStrategy
can be used, whenever all data flows within the source
code of an app need to be identified. This helps in de-
tecting leaks of private information. A data flow analy-
sis identifies data flow connections between sources and
sinks via a constructed call-graph [35]. A source is the
origin of a data flow. A sink is the destination of a data
flow. Problem: Data flows from sensitive input sources
(e.g., user input fields) may be leaked. To uncover these
malicious data flows, a traversable call graph needs to
be generated. Solution: The DataFlowStrategy parses
the pre-extracted data flow XML from the FlowDroid
preparation step and allows iteration over all identified
data flow sources and sinks. The DataFlowStrategy fil-
ters the sources and sinks for certain search words and
provides feedback if the search words were found within
sources and sinks. The filtering of the sources of sinks
for given search words can be seen in lines 6 and 15 of
Listing 1. Consequences: A data flow analysis via the
computed call graph is possible and potential breaches
of confidentiality can be detected.

ExistenceStrategy Context: Some breach of confi-
dentiality risks can be detected by the pure existence
of certain application programming interfaces (APIs)

Table 1. Generic strategies of ACCuRATe and the

corresponding specific strategies

Generic
Strategies

Specific Strategies

Existence LocalStorage, Cookies, Micro-
phone, NetworkConnectionSensor,
WiFiSensor, Surveys, Finger-
printScanner, Camera, NearField-
Communication, GPSSensor,
OtherUserDeviceStorage, CloudStor-
age, SharingWithPublic, TextInfor-
mation, SecurityDuringProcessing,
Purchases, SecurityDuringTransfer,
SharingWithOtherUsers, Sharing-
WithUnrelated, SharingWithAnalyst,
SharingWithAdvertiser

Permissions BluetoothSensor, LocalStorage,
OtherUserDeviceStorage, Cam-
era, NearFieldCommunication,
Fingerprint-Scanner

Input TextInformation

TraceBack GPSSensor, ProviderStorage, Loca-
tion, VideoInformation, ImageInfor-
mation, OnlineContacts, Security-
DuringStorage

ProviderURL ProviderStorage

URLCategory ThirdPartyStorage, SharingWithGov-
ernment, SharingWithAggregator,
SharingWithDelivery

Input-
Information-
Collection

Health, Demographics, Govern-
mentIdentifier, FinancialIdentifier,
Name, OnlineContact, Physical-
Contact, Preferences, Ideology,
OwnUniqueIdentifier, UserDevice

or software libraries within the source code of an app.
Problem: Potentially risky source code fragments can
be identified by checking for existing interface or library
usage (e.g., the existence of an analytics library within
the source code of an app). No search methodology for
code fragments in source code is initially available when
implementing a static code analysis. Solution: The Ex-
istenceStrategy is shown in listing 2. This strategy scans
the full source code of an app and collects source code
lines that match a given search pattern. Consequences:
Fast risk detection is possible by searching for potential
breach of confidentiality risks within the source code.
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1 MultiMap<S e r i a l i z e d S i n k I n f o , S e r i a l i z e d S o u r c e I n f o> r e s u l t s =
t h i s . app . d a t a f l o w . g e t R e s u l t s ( ) ;

2
3 f o r ( S e r i a l i z e d S i n k I n f o s i n k : r e s u l t s . key Se t ( ) ) {
4 i f ( t h i s . params . c o n t a i n s K e y ( ” s i n k I n c l u d e s ” ) ) {
5 f o r ( S t r i n g sea rchTermSink : ( L i n k e d L i s t<S t r i n g >)

t h i s . params . g e t ( ” s i n k I n c l u d e s ” ) ) {
6 i f ( s i n k . t o S t r i n g ( ) . c o n t a i n s ( sea rchTermSink ) ) r e t u r n new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH , t r u e ) }}
7
8 f o r ( S e r i a l i z e d S o u r c e I n f o s o u r c e : r e s u l t s . g e t ( s i n k ) ) {
9 i f ( t h i s . params . c o n t a i n s K e y ( ” s o u r c e I n c l u d e s ” ) ) {

10 f o r ( S t r i n g sea rchTermSource : ( L i n k e d L i s t<S t r i n g >)
t h i s . params . g e t ( ” s o u r c e I n c l u d e s ” ) ) {

11 i f ( s o u r c e . t o S t r i n g ( ) . c o n t a i n s ( s ea r chTe rmSource ) ) r e t u r n
new S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH ,
t r u e ) ; }}}}

Listing 1. The generic strategy

DataFlowStrategy.java parses pre-extracted data flow

XML files.

1 f o r ( S t r i n g f i l e : f i l e s ) {
2 F i l e S c a n n e r s c a n n e r = new F i l e S c a n n e r ( f i l e ) ;
3 t r y {
4 L i n k e d L i s t<S n i p p e t> s n i p p e t s = new L i n k e d L i s t<S n i p p e t >() ;
5 f o r ( S t r i n g sea rchTerm : ( L i n k e d L i s t<S t r i n g >)

t h i s . params . g e t ( ” s e a r c h F o r ” ) ) {
6 s n i p p e t s . a dd Al l ( s c a n n e r . s can ( sea rchTerm ) ) ; }
7
8 i f ( s n i p p e t s . s i z e ( ) > 0) r e t u r n new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH , t r u e ,
s n i p p e t s ) ;

9 } c a t c h ( F i l e N o t F o u n d E x c e p t i o n e ) {} }

Listing 2. The generic strategy

ExistanceStrategy.java to find the existance of search

words within source code.

InputStrategy Context: Information regarding user
input fields of an app is of interest for detecting breach
of confidentiality risks. Users can input sensitive infor-
mation into input fields while it remains unclear where
the information is sent, stored, or processed. Problem:
Initially, there is no overview of all user input fields and
their metainformation (e.g., hint texts) within an app
when analyzing the source code. Solution: The Input-
Strategy iterates over all XML layout configuration files
of an app. The InputStrategy attempts to identify user
input fields by scanning the layout files for the search
terms ’EditText’, ’AutoCompleteTextView’, ’Check-
Box’, ’RadioButton’, and ’RadioGroup’. The input
fields metainformation contain the user interface control
’id’, a ’hint’ field, and a ’text’ field. Consequences: A
clear overview over all user input fields that are usually
spread across the source code exists. This overview al-
lows for further analysis of user input field data, espe-
cially, since the InputStrategy extracts metainformation
for each input field.

TraceBackStrategy Context: For the breach of con-
fidentiality risk assessment, it is of interest to trace the
data flow from a specific code fragment to any informa-
tion sink. Such data flows could potentially leak private
information without user consent. Problem: It is chal-
lenging to trace code fragments to certain sinks when

1 f o r ( S t r i n g f i l e : f i l e s ) {
2 F i l e S c a n n e r s c a n n e r = new F i l e S c a n n e r ( f i l e ) ;
3 t r y {
4 f o r ( S t r i n g i n p u t F i e l d : INPUT FIELDS )

s n i p p e t s . a dd Al l ( s c a n n e r . s can ( i n p u t F i e l d ) ) ;
5 i f ( s n i p p e t s . s i z e ( ) > 0)

m e t a I n f o s . a dd Al l ( t h i s . e x t r a c t I n p u t M e t a ( f i l e ) ) ;
6 } c a t c h ( F i l e N o t F o u n d E x c e p t i o n e ) {} }
7
8 i f ( m e t a I n f o s . s i z e ( ) > 0) {
9 S t r a t e g y R e s u l t r e s u l t = new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH , t r u e ,
s n i p p e t s ) ;

10 r e s u l t . e x t r a . p u t ( ” meta ” , m e t a I n f o s ) ;
11 r e t u r n r e s u l t ; }

Listing 3. The InputStrategy.java identifies user

input fields and extracts their meta information.

1 I t e r a t o r <Edge> edges = t h i s . app . c a l l g r a p h . i t e r a t o r ( ) ;
2 w h i l e ( edges . hasNext ( ) ) {
3 Edge edge = ( Edge ) edges . n e x t ( ) ;
4 b o o l e a n i s S t a r t E d g e = f a l s e ;
5
6 f o r ( S t r i n g s t a r t S i n k : s t a r t S i n k s ) {
7 i f ( edge . t o S t r i n g ( ) . c o n t a i n s ( s t a r t S i n k ) ) {
8 i s S t a r t E d g e = t r u e ; b r e a k ; }}
9

10 f o r ( S t r i n g s t a r t S i n k I n v e r t e d : s t a r t S i n k s I n v e r t e d ) {
11 i f ( ! edge . t o S t r i n g ( ) . c o n t a i n s ( s t a r t S i n k I n v e r t e d ) ) {
12 i s S t a r t E d g e = t r u e ; b r e a k ; }}
13
14 i f ( i s S t a r t E d g e ) {
15 s i n k s F o u n d ++; b o o l e a n f o u n d I n C a l l s t a c k = f a l s e ;
16 SootMethod t g t = edge . t g t ( ) ;
17 L i n k e d L i s t<SootMethod> c a l l e r s = t h i s . t r a c e B a c k ( t g t ) ;
18 f o r ( SootMethod method : c a l l e r s ) {
19 S t r i n g mth = method . t o S t r i n g ( ) . toLowerCase ( ) ;
20 f o r ( S t r i n g t e s t : ( L i n k e d L i s t<S t r i n g >)

t h i s . params . g e t ( ” s e a r c h F o r ” ) ) {
21 i f ( mth == n u l l | | t e s t == n u l l ) c o n t i n u e ;
22 i f ( mth . c o n t a i n s ( t e s t . toLowerCase ( ) ) ) {
23 i f ( f o u n d I n C a l l s t a c k == f a l s e ) f o u n d I n C a l l s t a c k = t r u e ;
24 s n i p p e t s . add ( new

S n i p p e t ( method . g e t D e c l a r i n g C l a s s ( ) . getName ( ) +
” . j a v a ” , method . t o S t r i n g ( ) ,
method . g e t J a v a S o u r c e S t a r t L i n e N u m b e r ( ) ) ) ; }}}}}

Listing 4. Excerpt of the generic strategy

TraceBackStrategy.java to trace defined information

sources to information sinks via data flow analysis.

conducting a static code analysis. Solution: With the
help of the call graph construction feature of FlowDroid
the TraceBackStrategy starts at a given set of start-sinks
and traverses the call graph back until either a source is
found or a given search pattern is matched, as seen in
line 22 of listing 4. ACCuRATe mainly uses the Trace-
BackStrategy to find data flows that result in information
collection. We define information collection as a data
flow that results in storing the information either locally
on the device or a data flow that results in sending the
information to a remote server. Consequences: After
applying the TraceBackStrategy it is possible to search
for all information collection data flows of a given code
fragment and identify data flows that end in information
sharing subroutines. An example usage of this strategy
is to detect if any data flows from the Android micro-
phone API ends up in information collection sinks.
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1 I n p u t S t r a t e g y i s = new I n p u t S t r a t e g y ( ) ; i s . app = t h i s . app ;
2 S t r a t e g y R e s u l t i s R e s u l t = i s . e x e c u t e ( ) ;
3 L i n k e d L i s t<Edi tTex tMeta> metaTex t s =

I n p u t S t r a t e g y . s e a r c h M e t a F o r ( i s R e s u l t , i d e n t i f i e r s ) ;
4 L i n k e d L i s t<S t r i n g> m e t a I d T a r g e t s = new L i n k e d L i s t<S t r i n g >() ;
5
6 f o r ( E d i t T e x t M e t a metaText : me taTex t s ) {
7 m e t a I d T a r g e t s . add ( metaText . Id ) ; }
8
9 T r a c e B a c k S t r a t e g y tbsMeta = new T r a c e B a c k S t r a t e g y ( ) ;

10 tbsMeta . app = t h i s . app ;
11 tbsMeta . params . p u t ( ” s t a r t S i n k ” ,

T r a c e B a c k S t r a t e g y . INFORMATION COLLECTION SINKS ) ;
12 tbsMeta . params . p u t ( ” s e a r c h F o r ” , m e t a I d T a r g e t s ) ;
13 r e t u r n tbsMeta . e x e c u t e ( ) ;

Listing 5. The InputInformationCollectionStrategy

takes the user input fields analysis and tries to

identify information collection data flows.

InputInformationCollectionStrategy Context: The
InputInformationCollectionStrategy can be used when
the identification of information collection data flows
that contain values from the user input fields of the app
is desired. Problem: The InputInformationCollection-
Strategy counteracts the forces that sensitive user infor-
mation might be leaked via an information collection
sink and that these user input data flows are not de-
tectable without an appropriate strategy. Solution: With
making use of the InputStrategy and the TracebackStrat-
egy, the InputInformationCollectionStrategy takes the
user input fields analysis one step further and allows
for information collection analysis. First, all user in-
put fields are detected and stored. In a second step, the
InputInformationCollectionStrategy executes a Trace-
BackStrategy that starts at all available information col-
lection sinks and traces back the call graph in an attempt
to identify the user input field ’ids’ within the call graph
path (see lines 11-13 of listing 5). Consequences: If a
user input field is found within the call graph that leads
to an information collection sink, the InputInformation-
CollectionStrategy identified potentially malicious in-
formation sharing of user input information.

PermissionStrategy Context: It is required for An-
droid apps to declare permissions to use certain features,
such as GPS location or internet access, within the An-
droidManifest file [41]. Problem: The PermissionStrat-
egy counteracts the force that there is no overview of
declared Android app permissions when implementing
a static code analysis for breach of confidentiality risk
assessment. Solution: It is required for Android apps
to declare permissions to use certain features, such as
the GPS location or internet access within the ’manifest’
file.1 The PermissionStrategy enables a search through
these permissions by a given search pattern (see line 7 of

1See https://web.archive.org/web/
20160425141027/https://developer.android.com/
training/permissions/declaring.html, visited
06/14/18

1 S t r i n g m a n i f e s t = t h i s . app . g e t M a n i f e s t F i l e ( ) ;
2 F i l e S c a n n e r s c a n n e r = new F i l e S c a n n e r ( m a n i f e s t ) ;
3 L i n k e d L i s t<S n i p p e t> s n i p p e t s = new L i n k e d L i s t<S n i p p e t >() ;
4
5 f o r ( S t r i n g sea rchTerm : ( L i n k e d L i s t<S t r i n g >)

t h i s . params . g e t ( ” s e a r c h F o r ” ) ) {
6 t r y { s n i p p e t s . a dd Al l ( s c a n n e r . s can ( sea rchTerm ) ) ;}
7 c a t c h ( F i l e N o t F o u n d E x c e p t i o n e ) {} }
8
9 i f ( s n i p p e t s . s i z e ( ) > 0) r e t u r n new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH , t r u e ,
s n i p p e t s ) ;

Listing 6. The generic strategy

PermissionStrategy.java to find the existence of

Android permissions declarations.

listing 6). Consequences: An overview of the declared
permissions within the app is available and searchable.
Feature usage such as the camera, microphone, or ge-
olocation can easily be detected via this strategy.

ProviderURLStrategy Context: It is generally ques-
tionable if the app provider collects personal user infor-
mation just to tailor app experience to the user needs or
if the app provider shares the sensitive information with
third parties. To detect data connections to servers of
the app provider, the ProviderURLStrategy can be used.
Problem: Each data connection from an app either tar-
gets a hostname or an IP address. In case a hostname
is used, it is unclear if the hostname belongs to a server
of the app provider or not. Solution: The ProviderURL-
Strategy iterates over all extracted URLs found within
the source code and checks the similarity between the
URL host in comparison to the app package name (see
line 8 of listing 7). We observed that the package name
is often similar to the hostname of the app provider or
contains similar name parts. The ProviderURLStrategy
takes these potential sub-parts of the package name into
account and returns a probability that a URL connection
to the app provider is established (see line 12 of listing 7.
Consequences: After applying the ProviderURLStrat-
egy, we gain knowledge about potential communication
of an app with its app provider via a data connection.

URLCategoryStrategy Context: Information sharing
of apps is often indicated by data flows to Uniform Re-
source Locators (URL). This is, however, too detailed
information for automated breach of confidentiality risk
assessment because risk scores would have to be iden-
tified for all possible web resources. The URLCatego-
ryStrategy tackles this problem by categorizing URLs
into data recipient categories. Problem: When cate-
gorizing URLs into data recipient categories, one must
consider that URLs do not yield information on the roles
of data recipients. Solution: Making use of URLs to
automatically identify data recipients with whom apps
share information. Newly encountered URLs must be
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1 S t r a t e g y R e s u l t r e s u l t = new S t r a t e g y R e s u l t ( ) ;
2 S t r i n g [ ] packageNamePar t s =

t h i s . app . getPackageName ( ) . s p l i t ( ”\\. ” ) ;
3
4 f o r ( AppUrl u r l : t h i s . app . u r l s ) {
5 f o r ( S t r i n g packageNamePar t : packageNamePar t s ) {
6 i f ( packageNamePar t . l e n g t h ( ) > 3) {
7 f o r ( S t r i n g u r l P a r t : u r l . u r l . s p l i t ( ” / ” ) ) {
8 i n t s i m i l a r i t y = S t r i n g A n a l y z e r . i s S i m i l a r ( u r l P a r t ,

packageNamePar t ) ;
9 d ou b l e s i m i l a r i t y S c o r e = 1 . 0 − ( do ub l e ) s i m i l a r i t y /

( do ub l e ) Math . max ( u r l . u r l . l e n g t h ( ) ,
packageNamePar t . l e n g t h ( ) ) ;

10 i f ( s i m i l a r i t y S c o r e > 0 . 9 ) {
11 r e s u l t . e x t r a . p u t ( ” u r l ” , u r l . u r l ) ;
12 r e s u l t . found = t r u e ;
13 r e s u l t . c e r t a i n t y =

S t r a t e g y R e s u l t C e r t a i n t y . f romDouble ( s i m i l a r i t y S c o r e ) ;
14 r e s u l t . s n i p p e t s . add ( u r l . s n i p p e t ) ;
15 r e t u r n r e s u l t ; }}}}}

Listing 7. The generic strategy

ProviderURLStrategy.java tries to identify URL

connections to the app provider domain.

1 d ou b l e p r o b s = 0 . 0 ; i n t probCount = 0 ;
2 L i n k e d L i s t<S n i p p e t> s n i p p e t s = new L i n k e d L i s t<S n i p p e t >() ;
3
4 i f ( ! t h i s . params . c o n t a i n s K e y ( ” s e a r c h F o r ” ) ) r e t u r n new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . HIGH , f a l s e ) ;
5
6 f o r ( AppUrl appUr l : t h i s . app . c a t e g o r i z e d U r l s ) {
7 i f ( appUr l . c a t e g o r y == ( S t r i n g )

t h i s . params . g e t ( ” s e a r c h F o r ” ) ) {
8 p r o b s += appUr l . c e r t a i n t y ;
9 probCount ++;

10 s n i p p e t s . add ( appUr l . s n i p p e t ) ; }}
11
12 i f ( probCount > 0) r e t u r n new

S t r a t e g y R e s u l t ( S t r a t e g y R e s u l t C e r t a i n t y . f romDouble ( p r o b s
/ ( d ou b l e ) probCount ) , t r u e , s n i p p e t s ) ;

Listing 8. The URLCategoryStrategy.java queries for

the existance of URLs of a specific category within

the app source code.

categorized into data recipient categories. ACCuRATe
uses the categories advertiser, delivery services, gov-
ernment, instant messaging, (data) aggregation services,
search engines, and social networks [28]. URLs are
categorized based on information stored in the descrip-
tion HTML metatag for the respective URL. This in-
formation is used as input for a Naı̈ve Bayes classifier
which assigns URLs to the recipient categories based on
training data. During app assessment, the preprocess-
ing allows for easy retrieval of data recipients by query-
ing what recipient categories were assigned to a certain
URL. Consequences: Applying the URLCategoryStrat-
egy requires some effort for preprocessing URLs and
categorizing them into data recipient categories. ACCu-
RATe employs the URLCategoryStrategy to establish an
overview of all data recipients of an app and calculate
associated breach of confidentiality risk scores.

5. Evaluation

5.1. Download Phase

The original dataset from the repository of app store
listings contains 5,379 app entries from the Google Play-
Store in the category ’Medical’ and ’Health and Fitness’
[29]. From this dataset, we extracted the 3,180 free apps
for further inspection. It was possible to download 2,250
app APK files via the undocumented Google API. The
remaining 930 APK files either returned a server-error
or were no longer available on the Google PlayStore.

5.2. Decompilation Phase

We decompiled 355 of the 2,250 downloaded APK
files. Those 355 APK files were selected in order of
their file size. Decompilation failed in 24 cases. The de-
compilation time varied from 16 minutes to 54 minutes
and is dependent on the amount and complexity of the
source files of the app. Reasons for decompilation fail-
ure were heavily obfuscated source code and memory
exceptions. The decompilation was tested on a laptop
computer with 16 gigabytes of main memory as well
as an Amazon Cloud virtual machine instance with 64
gigabytes of main memory. Given that each of the as-
sessed APK files were under 50 megabytes in size, the
memory consumption during decompilation was unrea-
sonably high in some cases and demands further inves-
tigation before this prototype can be deployed at larger
scale.

5.3. Static Code Analysis Phase

The static code analysis phase uses a part of the
FlowDroid library that only computes the call graphs of
apps with a limited subset of the analysis features that
FlowDroid offers. This configuration was chosen by
suggestion of the FlowDroid authors and has proven to
be sufficient for the analysis purposes of this study since
it uses less hardware resources during computation.

The static code analysis tool completed the analysis
on 317 of the 355 decompiled apps. The reason for the
roughly 10% loss from the decompilation to the static
code analysis phase is due to errors in the generation
of the call graph via FlowDroid. The results of ACCu-
RATe reveal that 14 of the 44 implemented strategies did
not find any confidentiality breaches within the analysis
phase, 30 did. On average, 4.86 potential confidentiality
breaches were found per app via the implemented strate-
gies.

Figure 3 shows the results of the two human review-
ers that inspected the source code of six test-apps for
confidentiality breaches as well as the results of ACCu-
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App 1 = com.siyami.apps.patientregister v9.0.0.0,

App 2 = com.medicaljoyworks. prognosis.questions v2.1,

App 3 = com.szyk.myheart v2.4.24,

App 4 = cz.ulikeit.lifesquare v1.3.2,

App 5 = com.medicaljoyworks.prognosis.questions v5.0.0,

App 6 = wikem.chris v5.4.2

Figure 3. Number of detected breach of

confidentiality risks within ACCuRATe and the

average of the two human reviewers.

RATe. On average, ACCuRATe detected one breach of
confidentiality risk more than the human reviewers.

5.3.1. Benefits & Drawbacks ACCuRATe yields at
least the following five benefits in comparison to app as-
sessment by human reviewers: Speed: ACCuRATe per-
forms the breach of confidentiality risk assessment faster
than human reviewers. While it takes a human hours to
complete a thorough code analysis and risk assessment,
ACCuRATe performs the same task in a matter of sec-
onds. Consistency: As seen in Figure 3, the results of
the human reviewers vary among the two humans and
are not consistent. ACCuRATe on the other hand will al-
ways return a consistent result since it is not influenced
by situational factors such as skills, mood, or age of hu-
man reviewers. Availability: ACCuRATe can perform its
breach of confidentiality risk assessment task 24 hours a
day and seven days a week, while a human reviewer is
tied to working hours or other time constraints. Costs:
In comparison to employing human reviewers for man-
ual risk assessment of apps, ACCuRATe can be provided
at favorable costs. Computation power is less expensive
than human labor and prices for computing power con-
tinuously diminish [42]. Scalability: Risk assessment
can be scaled easily with ACCuRATe. In comparison,
scaling human app assessment is cumbersome. Humans
need to be trained on static code analysis and the catalog
of breach of confidentiality risks to detect.

Human reviewers have at least one advantage

over ACCuRATe—understanding or anticipating the
context of source code based on their experi-
ence. For example, ACCuRATe did not identify
the collection of health information in the test app
’com.siyami.apps.patientregister’ because the match-
ing source code was heavily obfuscated and therefore
metainformation on context was scarce. The human re-
viewers could identify the collection of health informa-
tion because they were able to interpret the context in
which the obfuscated code was used based on their ex-
perience. Another example where the human review-
ers were superior to ACCuRATe was the assignment of
unique identifiers to users. A unique user identification
can be a randomly generated string, the email address
of the user or any other unique user characteristic. A
human reviewer has the advantage to interpret variable
names and the context that variables are used in.

5.3.2. Design Challenges We identified three design
challenges during the implementation of ACCuRATe that
need to be resolved to facilitate automated breach of
confidentiality risk assessment at app store scale. First,
the acquisition of app binaries or source code is cumber-
some. App binaries were downloaded from the Google
PlayStore via an undocumented API. The download was
unreliable and failed in some cases. To be able to in-
crease the assessment scale of ACCuRATe, app stores
need to provide a more reliable way to access app source
code. Second, some app source code is heavily obfus-
cated. As a countermeasure, app stores could reject app
submissions if their source code is heavily obfuscated
and, thereby, support decompilation for risk assessment
purposes. Third, the capability of FlowDroid to gener-
ating call graphs is dependent on its configuration and
the examined APK file size. To run ACCuRATe at app
store scale, it is necessary to either improve FlowDroid
to lower main memory consumption, to run ACCuRATe
on machines with extensive hardware resources, or to
limit the maximum file size of APK files submitted to
app stores. Minimizing the APK file size should also be
of interest to the app vendors since downloading apps on
smartphones via cellular networks is slow and consumes
the available data volume quickly.

6. Threats to validity

First, the ’detection rate’, in our example, is heavily
influenced by the knowledge and skill-set of the two hu-
man reviewers that conducted the manual code analysis,
however, they were both experts in coding of mHealth
apps. Future research should increase the amount of hu-
man reviewers. A more uniform distribution of human
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reviewer skills and training is desirable to enhance the
findings of this research. Second, we chose to only as-
sess free apps and excluded paid apps. The reason for
this approach is the high costs for downloading large
numbers of paid apps to perform breach of confidential-
ity assessments. Moreover, free apps are more prone to
breach of confidentiality risks due to the increased use
of business models based on advertising [12, 30]. Ad-
ditionally, over 95% of the installed apps on Android
smartphones are free apps [15]. Third, the current im-
plementation of ACCuRATe automatically excludes apps
that could not be decompiled due to heavy obfuscation.
Future research should investigate whether these apps
should be flagged with high scores for breach of confi-
dentiality risks since they are prone to hide functional-
ity; thus, they may bear a greater risk for misuse of user
information.

7. Conclusion & Future Research

This study answers the question to what degree the
breach of confidentiality risk assessment of Android
mHealth apps can be automated by identifying generic
assessment strategies and evaluating their effectiveness.
In the growing market of apps, especially mHealth apps,
information privacy risks are becoming more prevalent.
Due to the large number of mHealth apps in the app
stores and its continuous growth, manual review is in-
feasible. We introduced a tool that requires little hu-
man configuration and is able to download, decompile,
and analyze Android apps with respect to their breach
of confidentiality risks. The ACCuRATe source code is
publicly available.2 The results of this study, the design
patterns, and the insights on the limitations and bene-
fits of the static code analysis for automated breach of
confidentiality assessment serve as foundation for fu-
ture research on privacy-enhancing technologies in the
mHealth domain. A major factor for improvement are
the hardware resources required for decompilation and
source code analysis. Future research could use ma-
chines with more extensive hardware resources to run
the decompilation and analysis phases on more apps.
Future research could also enhance the current imple-
mentation in a way so that it identifies and highlights
risky parts of the source code to be additionally reviewed
by a human reviewer. We encourage future research on
the integration of automated breach of confidentiality
risk assessment into app stores. Future research could
analyze the effects of integrating an ACCuRATe that per-
forms a static code analysis right after a developer sub-
mits an app and that transparently communicates the

2https://github.com/thomasbrueggemann/ACCuRATe, visited
09/02/17

breach of confidentiality risks within the source code to
the users. Breaches of confidentiality only become rele-
vant to users if they perceive them; but they suffer from
them all to often. ACCuRATe enables users to avoid
privacy violations and to embrace there privacy prefer-
ences.
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