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Abstract

We propose the first privacy preserving search
technique for stego health data in untrusted cloud in this
paper. The Cloud computing is a popular technology
to the healthcare providers for outsourcing health data
due to flexibility and cost effectiveness. However,
outsourcing health data to the cloud introduces serious
privacy issues to the patient. For example, dishonest
personnel of the cloud provider may disclose patient
sensitive information to business organizations for
some financial benefits. Using steganography, patient
sensitive information is hidden within health data for
privacy preservation. As a result, stego health data
is generated. To the best of our knowledge, no
method exists for searching a particular stego data
without disclosing any information to the cloud. We
propose a framework for privacy preserving search over
stego health data. We systematically describe each
component of the proposed framework. We conduct
several experiments to evaluate the performance of the
framework.

1. Introduction

The healthcare providers are producing a very large
volume of data everyday. Storing and managing
this large volume of data is challenging for the
healthcare providers due to the cost of infrastructures
and human resource. The cloud computing technology
provisions remote data storage and management to its
customers. The flexibility and economic savings offered
by cloud computing are motivating healthcare providers
to outsource their local complex data management
system into the cloud. However, outsourced data
to the cloud are prone to privacy breach [1]. For
example, a dishonest personnel of the cloud provider
may disclose patient sensitive information (e.g. patient’s
personal information) to business organizations for
some financial benefits.

In order to protect data privacy and combat

unsolicited accesses in the cloud, personal health
records of patients may have to be encrypted by
data owners before outsourcing to the commercial
public cloud [2]. However, encrypting health records
obsoletes the traditional healthcare research and data
utilization service based on plaintext records. To
make it more clear, encrypted health data do not
allow normal operation on the data without decrypting
them. Hence, general analysis tasks on encrypted health
cannot performed by a user who has no credential.
The steganography [3] is another way of provisioning
privacy of patients’ sensitive information [4, 5]. Using
steganography, a patient’s sensitive information can
be hidden inside the patient’s health records without
loosing the usability of the health record [4]. From there,
the traditional healthcare research and data utilization
service based on plaintext records become possible [5].
It is possible to hide patient sensitive information using
steganography within different types of health data such
as image [6, 7], text [8, 9], biosignal [4, 10, 11], and
DNA [12, 13].

The healthcare providers convert their healthcare
documents into stego documents by hiding patient
sensitive information within the healthcare documents.
Throughout this paper, we refer the healthcare provider
as a data owner. The data owner outsorce the collection
of stego documents to the cloud for storing and data
management. Therefore, the cloud provider does not get
the patient sensitive information. Hence, the privacy is
preserved.

The key challenge of outsourcing stego documents
to the cloud is the searching of a particular stego
document in the cloud without revealing any sensitive
information to the cloud. For instance, a data consumer
(e.g. a doctor) wants to retrieve a healthcare document
of a particular patient from the cloud. In order to
preserve the privacy of the patient, the search keywords
should not be passed to the cloud. A trivial solution is
downloading all the stego documents at data consumer’s
side and search for desired document. The trivial
solution is clearly impractical, due to the huge amount
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of bandwidth and computing requirements. Moreover,
aside from eliminating the local storage management,
storing data into the cloud serves no purpose unless they
can be easily searched and utilized. Thus, exploring
privacy-preserving and effective search service over
stego cloud data is of paramount importance.

Considering the potentially large number of
on-demand data users and huge amount of outsourced
data documents in the cloud, this problem is particularly
challenging as it is extremely difficult to meet also
the requirements of performance, system usability and
scalability. Privacy preserving search over encrypted
data in the cloud is a very active research [1, 14, 15].
Nevertheless, proposed privacy preserving search
techniques over encrypted data in the literature can
not be applied for privacy preserving search over
stego data due to fundamental differences of stego
and encrypted data. To the best of our knowledge, the
privacy preserving search technique for stego data does
not exist till date.

In this paper, for the first time, we define and solve
the problem of search over stego document on untrusted
cloud while preserving strict system-wise privacy in the
cloud computing paradigm. We present a model for
privacy preserving search over stego data in this paper.
In our model, a data owner, who is a healthcare provider,
generates a stego database at first. The stego database
contains stego documents. Each stego document in the
stego database has hidden information of the related
patient. As our main focus is developing a privacy
preserving search mechanism, we do not discuss stego
data generation process. The work in [4] can be
considered as an example of hiding patient sensitive data
in health data. The data owner builds a secure search
index for the stego database at second. The secure
search index contains encrypted stego file names and
hashes of corresponding hidden keywords. At last, the
data owner sends both stego database and secure search
index to the cloud. An authorized data consumer sends
a search query as hash string to the cloud. The search
query may contain single or multiple keywords. In
case of multiple keywords, keywords are concatenated
and a hash string is generated. The hash string is
generated by the data consumer using a backdoor. The
backdoor is a secret information that is used during the
hash generation [16]. It allows the data consumer to
generate the same hash string for the search keywords
that was generated by the data owner during search
index construction. The cloud tries to find the given
hash string in the secure search index and retrieves the
corresponding encrypted file name. No information is
leaked to the cloud during the search process. We have
few assumptions in this model. Firstly, we assume

that data transfers from one party to another party are
performed using a secure channel. The secure channel
uses state-of-the-art cryptography techniques to ensure
communication security. Hence, how data security is
provided during communication is not in the scope of
this paper. Secondly, the cloud that provisions storage
as a service is untrusted. Finally, the data consumer
is authorized to access stego data. Hence, the data
owner shares secret credentials with the data consumer
to retrieve secret data from stego data. The data owner
shares secret credentials with the data consumer via a
trusted third-party.

The key contributions of this research are
highlighted as follows:

1. We propose the first model for privacy preserving
search technique over stego data in the cloud.

2. We propose a framework for privacy preserving
search over stego database. In this framework,
we develop of a secure search index to facilitate
the search of stego data without any disclosure of
sensitive information.

3. We design a privacy preserving query mechanism
in this framework that takes hash string as input
instead of plaintext, and performs search in the
cloud on secured search index.

4. We conduct an experimental study that
demonstrates the effectiveness of the proposed
approach.

This paper is organized as follows. We review
related work in privacy preserving search techniques
and steganography techniques in Section 2. We discuss
our proposed model, threat model and design goals
in Section 3. In Section 4, we present the proposed
framework for privacy preserving search over stego
database. In Section 5, the results of our conducted
experiments are provided. We conclude our paper and
provide future research directions in Section 6.

2. Related Work

In this section, we discuss some of the works closely
related to our work. As there exists no work on privacy
preserving search technique for stego data, we discuss
only privacy preserving search technique for encrypted
data. The objective of discussion is to provide readers
the view of privacy preserving search techniques.

Traditional single keyword searchable encryption
schemes [17, 18, 19, 20, 21, 22, 23, 24, 25, 26] usually
build an encrypted searchable index such that its content
is hidden to the server unless it is given appropriate
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Figure 1: System model of privacy preserving search over stego data in the untrusted cloud data centre

trapdoors generated via secret key(s) [2]. It is first
studied by Song et al. [17] in the symmetric key setting,
and improvements and advanced security definitions are
given in Goh [18], Chang et al. [19] and Curtmola
et al. [20]. The work [26] solves secure ranked
keyword search which utilizes keyword frequency to
rank results instead of returning undifferentiated results.
However, it only supports single keyword search. In
the public key setting, Boneh et al. [21] present the
first searchable encryption construction, where anyone
with public key can write to the data stored on server
but only authorized users with private key can search.
Public key solutions are usually very computationally
expensive however. Furthermore, the keyword privacy
could not be protected in the public key setting since
server could encrypt any keyword with public key and
then use the received trapdoor to evaluate this ciphertext.

3. Problem Formulation

3.1. System Model

We consider a cloud computing environment that
hosts an outsourced stego database, based on which
privacy preserving data sharing application can be
built. Additionally, the system allows data consumers
to verify the authenticity of data source. There are

four participants in our system: data owners, data
consumers, trusted key distributor (TKD) and cloud
data center (CDC). We refer data owner as producer
of the stego database. For instance, hospital or clinic
can be data owner. A data owner collects health data
from a patient and hides the patient sensitive information
within the health data (Di) for producing a stego health
data (Di). In the rest of this paper, we use health stego
data and health data interchangeably. A set of secret
information, called stego key (Ki) is used to produce
Si from Di. Finally, the data owner produces a stego
database (DBS) of health stego data of n patients, and
secured searchable index (SI). A set SK of stego keys
for DBS is generated as well. Here, SK can be defined
as: SK = {SK1, SK2, . . . , SKn}. The data owner
stores DBS and a copy of SI in cloud data center
(CDC). The set of stego keys SK is stored in a trusted
key distributor (TKD). The CDC stores DBS and SI ,
and performs search operation on stego data in SI for
data consumers. The CDC receives a search query (Q)
as a hash string and returns a stego health data Si as
response. The TKD is an entity that is trusted by all
the participants in the system. In our system model,
we assume that all the communications with TKD is
secured. A data consumer wants to access a stego data
for a specific patient, and can send a search request (i.e.,
query) in a private manner over to CDC. The data

Page 4248



consumer receives a stego health data Si as response if
exists in stego database. The overall system model is
illustrated in Figure 1.

3.2. Threat Model

We assume that cloud data center (CDC) in our
system model is “honest-but-curious” [27, 28]. In other
words, a CDC satisfies following properties: (1) the
CDC provides storage facility of stego data without
modifying or destroying stored data, and (2) the CDC
endeavours to acquire sensitive information of patients
from the stored documents, data consumers’ queries and
search outcomes.

3.3. Design Goals

The system design of privacy preserving search over
stego data in cloud data center should achieve the
following main security and performance goals.

• Index and Query Privacy: The main security
objective of this system is to prevent the
CDC from learning any useful information
about the patient related to stego data in stego
database (DBS), searchable index (SI) and data
consumers’ queries. However, the CDC can gain
knowledge from the search result in order to make
the search faster for future search operations.
Index privacy refers to the confidentiality of SI ,
and query privacy refers to the protection of data
consumers’ queries.

• Multi-attribute Keyword Search: To design a
search approach which allows a data consumer
to insert multiple keywords. Each keyword
indicates an attribute of a patient’s sensitive
information hidden within the patient’s stego
document. The search approach should be able
to return the desired stego document based on the
input attributes.

• Scalability: A new stego document should be
added or an unused stego file should be removed
without changing the security setup.

• Efficiency: Aforementioned goals should
be obtained with low computation and
communication overhead.

4. Proposed Framework for Privacy
Preserving Search Over Stego Data
Repository

We define the framework for privacy preserving
search over stego data repository in this section. The

framework consists of five tasks. We discuss the tasks in
detail in rests of this section.

4.1. Construction of Stego Database

In this task, a data owner generates a stego database
DBS . The DBS is a set of n number of stego data, i.e.,
DBS = {Si|1 ≤ i ≤ n}. A stego data Si is generated
by embedding SI-th patient’s secret information Mi

within the patient’s medical data Di. The embedding
operation Em takes Di, Mi and SKi as arguments and
generates Si. Here, SKi is the stego key. The generation
of stego data can be expressed as:

Si = Em(Di,Mi, SKi). (1)

In this framework, the secret message Mi is a set of k
attributes: < mi1,mi2, . . . ,mik >. An attribute mik

denotes a sensitive data related to the SI-th patient and
searchable by an authorized user. Giving examples,
patient ID, name, date of birth, address, and contact
number are patient’s sensitive data. The Mi contains
values of the aforementioned attributes for the SI-th
patient. Figure 2 illustrates the stego data construction
process. As stated in Section 1, the work in [4] can be
considered as an example of hiding patient sensitive data
in health data.

4.2. Building Secure Search Index

The data owner constructs a secured search index SI
in this task. The search index SI is a matrix. A row of
the matrix consists of an encrypted file name and hash
of searchable attributes of a stego file. The file name is
generated by encrypting a file’s actual identifier with the
data owner’s secret key. The hash values are generated
using an efficient hash function [16]. As a result, cloud
can only see the encrypted file name and the hash values
of searchable attributes.

The construction of SI involves the following steps:

1. Generating vectors of hash values: The data
owner generates n number of vectors for n
number of stego data in DBS . A vector Vi
contains hash values of all possible combinations
of mi. For k attributes in a secret message
Mi, there are 2k − 1 possible combinations of
attributes. Assume that, a secret message contains
only two attributes: patient ID and name. The
values of these two attributes for the first patient
are: P1001 and Alice. The number of possible
combinations are: 22 − 1 = 3. The combinations
are as follow:

< P1001 >,< Alice >,< P1001, Alice >
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Figure 2: Illustration of the Stego Database DBS construction process.

Next, hash values are generated for all
combinations of mi using an efficient hash
function H. The efficient hash function H
can informally be defined as an irreversible
and efficiently computable function which
compresses a message of any length to a message
of fixed length [16]. The generation of Vi from
Mi using a secure hash function h is illustrated in
Figure 3.

Definition 4.1 Hash Function. A hash function
is a pair of efficient algorithms H = (KGen,F).
The hash functionH associates with key space K,
message spaceM, and hash space G, such that:

• δ ← KGen(λ): KGen is an algorithm that
generates and outputs a hash key δ ∈ K on
the input of a security parameter λ.

• H ← F(δ,m): F is an algorithm that
outputs a hash value H ∈ G on the input
of a hash key δ ∈ K and a messagem ∈M.

The hash value of j-th combination of Mi can be
represented as:

δ ← KGen(λ),

H ← F(δ, ci,j),

Hi,j = H(KGen,F), (2)

where:

• H is the cryptographic hash function
• ci,j is the j-th combination of Mi

• Hi,j is the generated hash value of ci,j

Hash values are generated for all combinations
of secret attributes using the hash function in (2).
The vector Vi is denoted as:

Vi = {Hi,j |1 ≤ j ≤ 2k − 1}. (3)

Figure 3: An illustration of generating Vi fromMi using
a secure hash function h

Hence, the vectors for all stego documents are
presented as a matrix V as below:

V =


V1
V2
...
Vn

 =


H1,1 H1,2 . . . H1,2k−1

H2,1 H2,2 . . . H2,2k−1
...

...
. . .

...
Hn,1 Hn,2 . . . Hn,2k−1


(4)

An illustration of generating Vi from Mi is
provided in Fig. 3.

2. Secure naming of stego Data: The objective of
this step is naming each stego file in a secure
way. The secure naming makes stego data names
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non modifiable. To make it clear, the name of a
stego data is generated by the data owner using
data owners secret key. Hence, only a data owner
can generate the names of his/her stego data. The
data owner can verify the names of outsourced
stego data anytime by regenerating the name and
matching. The data owner uses a secret key
based encryption function Enc() for generating
the secure name of SI-th stego data in the stego
database. The generation of the secure can be
depicted as follows:

CPl,i = Enc(Pl,Mi,KPl
), (5)

where:

• Pl is the data owner’s unique ID
• Mi is the secret message of SI-th stego data
• KPl

is the the data owner’s secret key
• CPl,i is the secure name of SI-th stego data

of the data owner.

All of the secure stego data names of the data
owner having ID Pl are stored in a n × 1 vector
C stego documents are presented as a vector C as
follows:

C =


CPl,1

CPl,2

...
CPl,n

 (6)

The SI-th stego document is named as CPl,i in
the stego database DBS . In order to add a new
stego document, the encrypted name of the stego
document needs to be computed according to 5.
The name should be appended in C. A row of
the vector C is deleted and rows are re-organized
for removing a stego document from the DBS .
Any stego document that has no reference in C is
deleted from the DBS at a later time. In this way,
the scalability is achieved.

3. Construction of privacy preserving search index:
A privacy preserving search index SIPl

of the
data owner having ID Pl is a n × 2k matrix. The
SI-th row of the matrix SIPl

contains the secure
name CPl,i and vector of hash values Vi of the
SI-th stego data. SIPl

is represented as follows:

SIPl
=
[
C V

]
=


CPl,1 V1
CPl,2 V2

...
...

CPl,n Vn



∴ SIPl
=


CPl,1 H1,1 H1,2 . . . H1,2k−1

CPl,2 H2,1 H2,2 . . . H2,2k−1
...

...
...

. . .
...

CPl,n Hn,1 Hn,2 . . . Hn,2k−1


(7)

Change Management. If the value of any of the
attributes in the stego document Si is to be changed,
the data owner regenerate Si buy embedding new
set of secret attributes within Di original document.
Additionally, the new encrypted file name CPl,i for Si

is produced. Moreover, the hash vector Vi is generated
using the same hash key δ. At the end, i-th row of SI is
changed by the [CPl,i Vi] in the copy of the cloud.

If any new stego document is to be added, then the
data owner generate a new stego document. Let, the
new stego document is denoted as Sn+1 , where n is the
number of current stego documents. Additionally, the
new encrypted file name CPl,n+1 for Sn+1 is produced.
Moreover, the hash vector Vn+1 is generated using the
hash key δ. At the end, (n + 1)-th row of SI is added
with [CPl,n+1 Vn+1] in the copy of the cloud, and Sn+1

is added in DBS .
The i-row of SI of the copy of the cloud and Si from

DBS is simply removed to delete Si.

4.3. Construction of the Backdoored Hash
Generation Function

A backdoored hash function is a function H that
takes a secret key as input and generates a hash value
similar to the hash value generated by the hash function
H [16]. The data owner builds the backdoored hash
generation functionH associated with the hash function
H. The backdoored hash function is used to generate a
hash of the search keywords at the end user’s side.

Definition 4.2 Backdoored Hash Generator. The
function H = (BDHGen,F) is called a backdoored
hash generator function associated with key sapce K,
message spaceM, and a hash space G, such that:

• B ← BDHKGen(λ): BDHKGen is called
a backdoor generator function associated that
generates a backdoor B ∈ K on input of a security
parameter λ.

• H ← F(B,m): F is an algorithm that outputs
a hash value H ∈ G on the input of a backdoor
B ∈ K and a message m ∈ M such that H =
H . Here, H is the hash value generated by H =
(KGen,F).
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4.4. Privacy Preserving Query for Searching
Stego Data

A privacy preserving query PPQ(H) is an
operation that is initiated by an end user and executed
by the cloud. The query PPQ(H) takes a hashvalue as
an input and returns a stego data Dout as output. The
PPQ(H) has the following steps:

• Step-1: An end user generates a hash value H for
a search keyword m using a backdoor B. For k
number of attributes, there can be maximum 2k −
1 combinations of search keywords. The set of
all possible combinations A is denoted as: A =
{a1, a2, . . . , a2k−1}. Therefore, a search keyword
m is an element of A (i.e., m ∈ A).

• Step-2: The end user initiates a query PPQ(H).
The query is executed by the cloud. During the
execution, the cloud matches the hash value H
in the search index SIPl

. Assume that the cloud
finds an element Hi,j(1 ≤ i ≤ n, 2 ≤ j ≤ 2k)
in SIPl

, where SIPl
is a n × 2k matrix, and SI

and j denotes the row and column index ofHi,j in
SIPl

, respectively. Therefore, there exists a stego
data for the search keyword.

• Step-3: The cloud considers CPl,i as the
searched stego document’s name and sets Dout =
DBS [CPl,i], where DBS [CPl,i] is the stego
document with a name CPl,i.

• Step-4: The cloud sends Dout to the end user as
output of the PPT (H).

• Step-5: If the cloud does not find any match (H /∈
SIPl

), then returns NULL.

4.5. Performance Analysis

We analyze the performance of our proposed
framework in this section. We analyze the performance
from the aspects of semantic privacy of both search
index and query operation, functionality and efficiency,
and scalibility.

Privacy of search index. The search index SI
consists of two things: encrypted file names and
hashes of search keywords. Traditional symmetric key
encryption schemes, such as advanced encryption schem
(AES) [29] and data encryption standard (DES) [30],
can be used to produce encrypted file name. The
security strength of the aforementioned symmetric key
encryption is very high. In general, the security of a
symmetric key encryption lies on the length of the secret

key. We assume that a secured key would be used for
the generation of the encrypted file names. The data
owner generates all of the encrypted file names before
sending the stego database and search index. Moreover,
the data owner never shares the symmetric key with the
cloud. Hence, it is provably impossible for the cloud
to determine the relation between a encrypted file name
and a stego file.

Privacy of query operation. We assume that the hash
values are generated using a secured hash generation
function such as SHA-256. In each row of SI , there
are 2k − 1 hash values for k number of searchable
keywords. Cloud has no clue about the keywords hidden
inside a stego document. In the privacy preserving
query operation, the data consumer generates a hash
string of the query word(s). The hash value is generated
using a backdoor B ⊂ K. The consumer collects B
from the trusted key distributor TKD using a secure
channel. The generated hash value is send as query
to the cloud for searh execution. Plaintext search
keyword is never send to the cloud. The cloud searches
received keyword within the set of hash values V in SI .
Hence, our proposed query operation is executed in a
private manner. Overall, the privacy is preserved in our
proposed framework.

Functionality and efficiency. Enabling
multi-attribute keyword search is one of our design
goals. In our model, we stated that each stego
document has k hidden attributes and possible number
of combinations is 2k − 1. The SI contains the hash of
2k − 1 combinations. Therefore, it is guaranteed that a
valid search keyword, either single or multi-attribute,
will always be found in our model. The build time of
SI depends on the number of secret attribute k. Hence,
the runtime complexity of building SI is O(k).

Scalibility. The scalability depends on the number
of operations required for making any changes in the
SI and DBS . Our proposed framework requires 2k

number of operations in SI to change single or multiple
secret attributes. Here, 2k − 1 operations are required
for hash generation and single operation for updating
encrypted name of the stego file. For adding a new stego
file, the proposed framework requires equal number of
operations in SI as of changing a secret attribute value.
Therefore, the number of operations to make any change
is always 2k.
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5. Experimental Results and Discussion

The key contribution of this paper is building a
search mechanism for stego database that preserves the
privacy during search. We conduct a set of experiments
for evaluating performance of our proposed privacy
preserving search technique for stego data in untrusted
cloud. As we discuss the semantic privacy strength and
scalibility of our proposed search technique in Section
4.5, we focus on the efficiency in our experiments. We
consider three evaluation criteria in our experiments:
(i) times required for generating stego database, (ii)
times required for building search index, and (iii) times
required for searching a stego document in the search
index.

5.1. Experimental Setup

In order to setup the environment of our experiments,
we build a stego database containing stego biomedical
signals. We collect biosignal (e.g. ECG, PPG and
EEG signal) dataset from Physionet repository. The
Physionet repository is funded by the National Health
Institute (U.S.) [31]. PhysioNet provides free access
through their website to their large collections of
recorded biomedical signals. We implement the method
stated in [4] of hiding patient sensitive information
within biomedical signal. We generate 5, 000 stego
files for our stego database. Each file is 10 seconds
long with 250 Hz frequency. In other words, there
are 2500 records in a biosignal file. We randomly
hide different number of secret attributes in sample
biomedical signals for generating stego biomedical
signals. We take different number of stego biomedical
signals for conducting each experiment. For generating
encrypted names of stego files, we use advanced
encryption standard (AES) with 128-bit key. We use
SHA-256 hash algorithm for generating the hash values
in our experiment. We develop JAVA based programs to
run our experiment. The JAVA Development Kit (JDK)
1.8 is used to write JAVA codes. We run our experiments
on 3.40 GHZ Intel Core i7 processor and 8 GB RAM
operated under Windows 7 operating System.

5.2. Evaluation

We evaluate the performance of our proposed
framework in terms of time cost of different operations:
stego database generation, building search index and
average search time. In order to observe stego database
generation time, we build databases of different sizes
for different number of secret attributes (k = 2, 3, 4, 5).
Figure 4 demonstrates the comparison of time for
generating stego databases. The number of stego

Figure 4: Comparison of times for generating stego
database (DBS) in kilo seconds for different number of
stego documents in thousand.

documents are generated in thousands (i.e. ×1000).
Execution times are shown in kilo seconds. All of the
files in our stego database are of equal size. Therefore,
results show that times for generating stego databases
increase linearly.

We build search indexes for different number of
secret attributes (k = 2, 3, 4, 5) and database sizes.
Figure 5 illustrates the comparison of time for building
search indexes. The number of stego documents are
generated in thousands (i.e. ×1000). The results
show that times for generating stego databases increase
linearly. According to the results, time for building
search indexes increase in a linear fashion.

Figure 6 illustrates the comparison of time for
searching a stego document in different search indexs
SIs. We search keywords for different number of secret
attributes (k = 2, 3, 4, 5) and database sizes. The
number of stego documents are generated in thousands
(i.e. ×1000). We execute the experiments 100 times
for each search index and same number of keywords.
We take the average time of the executions. The results
show that times for searching a stego document in a
search index is dominated by the size of the secret
attributes in the stego database. As the number of
secret attributes increases, the combination of search
keyword increases. Hence, the search time increases.
The number of elements in each subindex (i.e. each row
of the search index) is fixed for a value of k, and the
required time for building each subindex is fixed as well.
Therefore, the search time increases almost linearly.
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Figure 5: Comparison of times for building search
index (SI) in milliseconds for different number of stego
documents in thousand.

5.3. Discussion

Our proposed framework is the first attempt of
developing a privacy preserving search technique for
stego data in the untrusted cloud data center. Hence, we
cannot compare the performance of our work with any
other work. However, our framework takes reasonable
time for generating stego databases, search indexes, and
query operation. We assume that the size of files are
equal and number of search attributes are same for
each file. Overall, the performance of the proposed
framework mostly depends on the size of the stego
database and number of secret attributes in a linear
fashion. We consider only stego databases in our
proposed search mechanism. Therefore, we do not show
any performance comparison between our proposed
search techniques on stego database and existing search
techniques on encrypted database.

6. Conclusion

In this paper, for the first time, we propose a
privacy preserving search framework for stego health
data in untrusted cloud. We discuss a system model
of our framework in this paper. Additionally, we
briefly discuss a threat model and outline specific design
goals. In the framework, we show how to construct
stego database of health data by hiding patient sensitive
information within health data. The key contribution of
this framework is the construction of a secure search
index for stego database. We build the search index
by generating hash values of patient sensitive attributes.
The hash function supports a backdoor that allows a

Figure 6: Comparison of times in milliseconds for
searching a stego document in the search index SI for
different number of stego documents in thousand.

data consumer to generate same hash value for some
keywords to that is generated by the data owner. Our
search index contains 2k − 1 hash values for each stego
document. Therefore, the time complexity of building
the search index is O(k) which is very efficient. We
establish a private link between a stego document and
a row of the search index by generating an encrypted
file name. A secure symmetric key based encryption
scheme, such as AES, is used. The encrypted file
name is stored in the search index as well. A data
consumer generates the hash string of query string at
their side using the backdoor and sends the hash string
as query string. Therefore, the cloud neither knows
the query string nor the patient sensitive information.
Moreover, it is not possible for the cloud to determine
the relationship between search string and the stego
file in the stego database. Our experimental results
demonstrate the efficiency of our framework. The
execution time linearly increases with the increment of
stego database size and number of secret attributes of
patient sensitive information.

The limitation of our proposed method is that it
only supports multi-attribute search of exact query
parameters. We do not consider ranged search query
in this work. In our future work, we plan to develop
a privacy preserving search mechanism that takes one or
more range values to perform the search operations on
stego database in untrusted cloud.
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