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Abstract 
 

Initiatives with mobile phone dispatched volunteers 

to out-of-hospital cardiac arrest (OHCA) cases, can be 

found today in some countries, e.g. Sweden, the 

Netherlands, Switzerland and Italy. When an OHCA 

case is reported, an alarm is sent to the registered 

volunteers’ phones. However, the allocation of which 

volunteers to send to the automatic external defibrillator 

(AED) and who to send directly to the patient, is today 

based on simple rules of thumb. In this paper, we 

propose a model to optimally select how many and 

which volunteers to send directly to the patient, and who 

should pick up and deliver an AED. The results show 

that the model can help increase the survivability of the 

patients, compared to simple decision rules.  

 

 

1 Introduction  

Emergency services play a vital role in society as 

entities responsible for providing help to affected people 

and minimizing damages to public and private assets as 

well as the environment during emergencies. Existing 

resources that emergency services can utilize for their 

operations are limited, which creates a challenge. 

Besides resource shortage and cutbacks, emergency 

organizations also face the issue of long distances to 

sparsely populated areas [18]. At the same time, these 

organizations face societal changes, such as growing 

population and changes in demographic structures, as 

well as an increase in the number of people affected by 

larger events (disasters), increasing the need for 

emergency services.  

One way of meeting these challenges is the increased 

utilization of volunteers [22], and one particular type of 

project that has been facing a rising interest in the past 

few years is mobile phone dispatched volunteers to out-

of-hospital cardiac arrest (OHCA) cases [2, 3, 24, 25, 

35]. In these projects, civilians who know how to do 

cardiopulmonary resuscitation (CPR) and to utilize 

automated external defibrillators (AED), register 

themselves. In case of an OHCA in their vicinity, they 

get a notification on their mobile phones, and if they 

can, they will respond to the call. A mobile phone 

positioning system (MPS) is used to locate the 

volunteers within a determined distance from the 

suspected OHCA patient, and a notification is 

automatically generated and sent to those volunteers; 

this is being done while emergency medical service 

(EMS) is being simultaneously dispatched to the patient 

[24, 25].  

Although the notification and dispatching system 

utilizes MPS, depending on the situation, it may not be 

trivial to decide which and how many volunteers to 

dispatch, or which volunteers should pick up an AED 

before going to the patient, and who should go directly 

to the patient. Therefore, in this paper, we investigate 

whether applying optimization modelling for dispatch 

of volunteers can improve an OHCA patient’s 

survivability. Hence, we present an optimization model 

to determine how the available volunteers should be 

dispatched to a suspected cardiac arrest case and 

compare the results from the proposed model with two 

simple, greedy dispatching approaches.  

The remaining of the paper is organized as follows. 

First, in the following section, a review of the related 

literature is presented. The problem description and the 

optimization model can be found in Section 3. Section 4 

is dedicated to the presentation of the solution 

procedure, while Section 5 contains the computational 

results, including the case description and input data. 

Finally, Section 6 concludes the paper and proposes 

future research. 
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2 Study baseline and related work 

For best possible utilization of volunteers, it is 

important to know their capabilities. One way to do this 

is to evaluate volunteers who have previously 

participated in response operations and describe and 

evaluate their characteristics [11]. The volunteers also 

need relevant training [30] and equipment [22]. 

Volunteer management systems can help supporting 

efficient utilization of this resource [28], as well as 

supporting coordination and information sharing [14]. 

An important input into these systems is then the 

previously mentioned capabilities, which have to be 

collected and registered [26].  

Eventually, related tasks should be assigned to 

volunteers. In this regard, several qualitative studies 

have focused on task assignment, introducing concepts 

as crowdtasking and crowdsourcing of volunteers in 

emergencies and disasters [1, 12, 17, 20].  In contrast to 

qualitative studies, one of the few quantitative studies in 

the field of volunteer management is [6] which based on 

a set of principals from the volunteer management field, 

proposes a multi-criteria optimization model for task 

assignment to both individual volunteers as well as 

volunteer groups.  

One emergency where volunteers are used, is 

OHCA, where several studies indicate that quick help, 

will increase the patient survival rate (e.g. [4, 13, 32, 

33]). Trials with lay persons (volunteers) show that 

mobile dispatch of volunteers shortens the time to first 

response [25], and publicly accessible AEDs might 

double the survival chance for the victims [10]. In [2], 

the volunteers are even only trained in using the AED, 

and thus not performing CPR.  

When designing a volunteer initiative aimed at 

OHCA cases, it is important to be able to evaluate the 

effect, which most often is measured by the chance for 

survival. This can be modelled using a survival function, 

and to determine a suitable one, factors affecting 

patient’s survivability should be found. These include 

time from collapse to CPR, from collapse to first 

defibrillator shock, from collapse to initiation of 

advanced cardiac life support [16], initial arrhythmia 

and the patient’s age [13]. Relevant survival functions 

have been developed e.g. in [5, 31, 32, 33].  

Comparing the work that is presented in this study 

with previous works, the following points are noted: 

• There are not many quantitative studies in the 

volunteer management area. [6] is the 

quantitative work most relevant to this study 

considering task assignment to volunteers. 

While [6] is concerned with task allocation 

decisions and has no considerations of time in 

the model, the proposed model handles 

dispatching decisions for which time holds 

critical importance. 

• In recent years, there has been an increase in 

studies utilizing volunteers in OHCA cases, 

especially from a practical perspective. As far 

as we know, there has not been any previous 

attempt to optimize the dispatching process, 

using mathematical modelling.  

• There exist many studies of which factors that 

contribute to OHCA patient’s survival, and 

how these can be combined into a survival 

function. Here we make an attempt of 

operationally using such a function when 

making dispatching decisions for volunteers.  

3 Problem description and mathematical 

model 

3.1 Problem statement and assumptions  

The Volunteer to OHCA patient Dispatch (VOD) 

problem can be stated as:  

The problem is to select how many and which 

volunteers to send directly to an OHCA patient, and who 

should first pick up an AED (and which AED), to 

maximize the patient’s chance of survival.  

The following assumptions are made: 

• The set of volunteers and their locations are 

known. 

• The set of AEDs and their locations are known, 

and they can be reached any time of the day. The 

time to retrieve an AED is negligible.  

• Only one AED will be delivered to the patient.  

• Some factors that in reality can be 

uncertain/stochastic are assumed to be 

deterministic such as all volunteers are available 

and will not decline an alarm, and that all travel 

times are predetermined and fixed.  

• The arrival time of professional EMS is known 

and deterministic.  

• All volunteers can perform CPR effectively for a 

fixed time period, τ minutes. After that, they need 

to rest for r minutes, before they can perform 

CPR with full efficacy again. If no other 

volunteer can take over the CPR when the τ 

minutes has passed, there will be a gap, where 

the first volunteer continues with the CPR, but 

with decreased effectiveness. These gaps are 

penalized in the objective function.  

Figures 1, 2 and 3 illustrate some intricacies of the 

volunteer CPR efficacy gap. Blue lines indicate the time 

that one of the volunteers is performing the CPR for τ = 

2 minutes, and the red line is the r = 2 minutes rest time 

after performing CPR with full effect (in Figure 1 and 2; 
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in Figure 3, r = 3 minutes). The green line in Figure 1 

shows the time from the arrival of the second volunteer 

(v2) till he/she starts performing CPR as the first 

volunteer (v1) rests. As can be seen in Figure 1, from 

the start, CPR is performed continuously, without any 

efficacy gap by two volunteers until the arrival of EMS 

after 10 minutes. In Figure 2, the second volunteer 

arrives after the full effect period has passed, giving an 

“arrival gap”, as indicated by the yellow column. 

Another type of gap, a “CPR gap”, can be created when 

the rest time (r) is longer than CPR performance time (τ) 

and not more than two volunteers are available. For 

instance, assume that r = 3 minutes and τ = 2 minutes, 

as in Figure 3. Then, when volunteer 2 finishes 

performing CPR, volunteer 1 is still resting, which 

means that there will be a gap in providing effective 

care. Both arrival gaps and CPR gaps are penalized by 

the model.  

3.2 Model formulation  

The following notation is used when formulating the 

VOD problem as a mixed integer programming (MIP) 

model: 

Sets/ indices 

I Set of volunteers indexed by 𝑖 ∈ 𝐼 

L Set of defibrillators indexed by 𝑙 ∈ 𝐿 

Parameters 

T Time horizon; i.e. arrival time of the EMS 

τ Volunteer CPR endurance time  

r Volunteer rest time 

𝑡𝑖
𝑝
 Travel time of volunteer i directly to the 

patient 

𝑡𝑖𝑙
𝐷 Travel time of volunteer i to the patient with 

defibrillator l 

M A large number 

Variables 

𝑥𝑖
𝑝
 1 if volunteer i is assigned to the patient; 0 

otherwise 

𝑥𝑖𝑙
𝐷 1 if volunteer i is assigned to getting 

defibrillator l to the patient; 0 otherwise 

𝑡∗ Time until arrival of first response, i.e. arrival 

of the first volunteer  

𝑠∗ Time until start of defibrillation 

𝑎𝑖  Arrival time of volunteer i to the patient 

𝑣𝑖  1 if volunteer i is the first to arrive; 0 otherwise 

𝑤𝑖  1 if volunteer i is the last to arrive; 0 otherwise 

𝑧𝑖𝑗  1 if volunteer j arrives directly after i; 0 

otherwise 

𝑞1  Arrival gap; the possible gap in 

CPR/defibrillation between first volunteer on 

the scene and the following one, based on their 

arrival time 

𝑞2 CPR gap; the possible gap when the rest time 

(r) is greater than endurance time (τ), and there 

are not enough volunteers available, or when 

there is only one volunteer available 

 

It should be noted that by definition, t* is the time 

until arrival of first response. This might be either a 

volunteer dispatched directly to the patient, or a 

volunteer that arrives with an AED (in which case 𝑡∗ =
𝑠∗). 

 

Objective function 

The first objective function of the model aims to 

maximize the survivability of the OHCA patients. Thus, 

a survivability function (1) is developed, based on the 

time until arrival of first response and the time until start 

of defibrillation. Furthermore, an arrival or a CPR gap 

might affect the patient’s survivability, so these should 

be avoided or minimized, giving rise to objective (2).      

CPR=2 

min 

Rest=2 

min         

v1             

 v2          

    v1       

      v2    

                v1  

10 T=10 

Figure 1. Sequence of performing CPR until the arrival of 
EMS, without any gap 

 
CPR=2 

min 

Rest=2 

min         

v1   

  

            

  v2             

    v1         

      v2     

                v1  
10 T=10 

Figure 2. Sequence of performing CPR until the arrival of 
EMS, with arrival gap 

 
CPR=2 

min 

Rest=3 

min          

v1                  

  v2  

  

           

    v1      

  

 

      v2   
                 

10 T=10 

Figure 3. Sequence of performing CPR until the arrival of 
EMS, with CPR gap 
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𝑀𝑎𝑥 
1

1 + 𝑒(−1.3614+0.3429𝑡∗+0.18633𝑠∗)
 (1) 

𝑀𝑖𝑛(𝑞1 + 𝑞2) (2) 

𝑀𝑖𝑛 ∑ (𝑥𝑖
𝑝

+ ∑ 𝑥𝑖𝑙
𝐷

𝑙

)

𝑖

 (3) 

𝑀𝑖𝑛 (−1.3614 + 0.3429𝑡∗ + 0.18633𝑠∗) (4) 

The survival function (1) is maximized; this function 

is primarily based on the simplified logistic regression 

model presented in [31]. As the survival rate for OHCA 

patients in Sweden has increased by more than double 

between the years of 1992 and 2011 [29], to adjust the 

parameter values of the simplified logistic survival 

function and to reflect Swedish conditions for the year 

2018, the more comprehensive and representative study 

population data in [33] was used for the process of 

updating the survival function parameters.  

The second function (2) is the sum of all gaps, which 

is minimized. As there does not exist enough studies (to 

the best of our knowledge) about the effect of gaps in 

delivering CPR on the survivability, it is not possible to 

directly incorporate this factor in the survivability 

function, although this would have been preferable.  

While the presence of more than one volunteer is 

desirable, dispatching a high number of volunteers to 

one case potentially has two flaws: (1) they can get in 

the way of each other and hinder the EMS, and (2) if 

there is another case shortly after the first one, there 

might not be enough volunteers to respond to the second 

case. Consequently, the model aims to minimize the 

total number of dispatched volunteers, which is 

achieved through objective function (3).    

The survival function (1), is nonlinear. This term is 

a logistic regression function, which is a nonlinear 

transformation of a linear regression function to produce 

numbers between 0 and 1 [7, 15]. By reverse 

transformation, i.e. utilization of log transform, the 

linear form can be obtained. Thus, maximizing (1) is 

equivalent to minimizing the power function in the 

denominator, resulting in Function (4). 

 

Constraints 

The constraints of the model are needed to ensure 

that enough, but not too many, volunteers are 

dispatched, to ensure the best sequence of volunteers’ 

arrivals and handle possible gaps. 

 

𝑎𝑖 =  𝑡𝑖
𝑝

𝑥𝑖
𝑝

+  ∑ 𝑡𝑖𝑙
𝐷

𝑙

𝑥𝑖𝑙
𝐷    ∀ 𝑖 ∈ 𝐼 (5) 

𝑥𝑖
𝑝

+  ∑ 𝑥𝑖𝑙
𝐷 ≤ 1

𝑙

  ∀ 𝑖 ∈ 𝐼 (6) 

∑ ∑ 𝑥𝑖𝑙
𝐷 ≤ 1

𝑙𝑖

 
(7) 

𝑡𝑖
𝑝

𝑥𝑖
𝑝

+  ∑ 𝑡𝑖𝑙
𝐷

𝑙

𝑥𝑖𝑙
𝐷 ≤ T   ∀ 𝑖 ∈ 𝐼 (8) 

𝑣𝑖 ≤ 𝑥𝑖
𝑝

+  ∑ 𝑥𝑖𝑙
𝐷

𝑙

  ∀ 𝑖 ∈ 𝐼 
(9) 

∑ 𝑣𝑖 ≤ 1

𝑖

 (10) 

𝑤𝑖 ≤ 𝑥𝑖
𝑝

+  ∑ 𝑥𝑖𝑙
𝐷 

𝑙

  ∀ 𝑖 ∈ 𝐼 
 (11) 

∑ 𝑤𝑖 ≤ 1

𝑖

 
(12) 

𝑡∗ ≥ 𝑎𝑖 − 𝑀(1 − 𝑣𝑖)  ∀ 𝑖 ∈ 𝐼 (13) 

𝑡∗ ≥ 𝑇 (1 − ∑ 𝑣𝑖
𝑖

) 
(14) 

𝑠∗ ≥ ∑ 𝑡𝑖𝑙
𝐷

𝑙

𝑥𝑖𝑙
𝐷    ∀ 𝑖 ∈ 𝐼 

(15) 

𝑠∗ ≥ 𝑇 (1 − ∑ ∑ 𝑥𝑖𝑙
𝐷

𝑙𝑖

) 
(16) 

∑ 𝑧𝑖𝑗 ≤ 1

𝑖

  ∀ 𝑗 ∈ 𝐼 
(17) 

∑ 𝑧𝑖𝑗

𝑗

≤ 𝑥𝑖
𝑝

+ ∑ 𝑥𝑖𝑙
𝐷

𝑙

  ∀ 𝑖 ∈ 𝐼 
(18) 

𝑧𝑖𝑗 + 𝑧𝑗𝑖 ≤ 1  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 
(19) 

𝑧𝑖𝑖 = 0  ∀ 𝑖 ∈ 𝐼 
(20) 

𝑎𝑖 ≤ 𝑎𝑗 + 𝑀(1 − 𝑧𝑖𝑗)  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 
(21) 

𝑤𝑖 + 1 + ∑ 𝑧𝑖𝑗
𝑗≠𝑖

≥ 𝑥𝑖
𝑝

+ ∑ 𝑥𝑖𝑙
𝐷

𝑙

+
∑ 𝑥𝑗

𝑝
𝑗≠𝑖 + ∑ ∑ 𝑥𝑗𝑙

𝐷
𝑙𝑗≠𝑖

|𝐼|
       ∀ 𝑖 ∈ 𝐼 

(22) 

𝑤𝑗 ≤ 𝑣𝑗 + ∑ 𝑧𝑖𝑗
𝑖≠𝑗

 ∀ 𝑗 ∈ 𝐼 
(23) 
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𝑞1 ≥ 𝑎𝑗 − 𝑎𝑖 −  𝜏 −  𝑀(2 − 𝑣𝑖 −

𝑧𝑖𝑗)  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼  
(24) 

𝑞2 ≥ 𝑟 −  𝜏 −  𝑇(∑ (𝑥𝑖
𝑝

+ ∑ 𝑥𝑖𝑙
𝐷

𝑙

)
𝑖

− 2) 

(25) 

𝑥𝑖
𝑝

, 𝑥𝑖𝑙
𝐷, 𝑣𝑖 , 𝑤𝑖 , 𝑧𝑖𝑗 ∈ {0,1},  

𝑡∗, 𝑠∗, 𝑎𝑖 , 𝑞1, 𝑞2 ≥ 0  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑙 ∈ 𝐿 (26) 

Constraint (5) calculates the arrival time of each 

volunteer who either goes directly to the patient or first 

picks up an AED and takes it to the patient. Constraint 

(6) ensures that a volunteer either goes directly to the 

patient, or first picks up an AED, when he/she is 

dispatched. The maximum number of AEDs that can be 

picked up for each case (here, one) is handled by 

Constraint (7). Constraint (8) limits dispatch of 

volunteers to those who can arrive before the 

ambulance. Constraints (9) and (11) make sure that the 

first and last volunteers on site also have been 

dispatched to the patient, while (10) and (12) ensure that 

only one volunteer can be first, respectively last, on site. 

Constraint (13) establishes the time for the first 

volunteer’s arrival to the patient. If for any reason no 

volunteer is dispatched to the patient, the time for the 

first response is determined through Constraint (14) and 

will be equal to arrival time of the EMS. If a volunteer 

is dispatched to pick up an AED, this time is determined 

by Constraint (15); otherwise, it is calculated by 

Constraint (16). Constraints (17)-(23) determine the 

sequence of the dispatched volunteers’ arrival to the 

patient; Constraint (17) ensures that at most one 

volunteer arrives directly before volunteer j, while 

Constraint (18) makes sure that no volunteer can arrive 

after i, if i is not dispatched. Constraint (19) ensures that 

if two volunteers have the same arrival time, they are 

still ordered, one after the other, while Constraint (20) 

makes certain that no volunteer will arrive after him-

/herself. Constraint (21) allows 𝑧𝑖𝑗  to take the value 1 

only if volunteer 𝑖 arrives before 𝑗. In case two or more 

volunteers are dispatched, at least one volunteer (𝑗) 

should come directly after volunteer 𝑖 (unless i is the last 

to arrive) and consequently 𝑧𝑖𝑗  is forced to be one 

(Constraint 22). Eventually, Constraint (23) determines 

the order of volunteers’ arrival. Constraint (24) is 

responsible for calculating the arrival gap value for first 

two volunteers on site, i.e. if volunteer j arrives after the 

endurance time of volunteer 𝑖 (when volunteer 𝑖 is first 

volunteer on site), 𝑞1 is set to a positive value; otherwise 

it takes no value. Constraint (25) determines the value 

of the CPR gap, which may occur if the rest time is 

longer than the endurance time, and there are not enough 

volunteers available. It should be noted that Constraint 

(25) penalizes any dispatch of less than two volunteers 

regardless of r and τ. Thus, one volunteer carrying an 

AED will also be penalized since it is desirable to have 

at least two volunteers available at the scene, so that if 

for any reason, manual CPR is required, it is possible to 

perform this effectively. Constraint (26) is the set of 

binary and nonnegativity constraints for the decision 

variables. 

4 Solution procedure 

There are several different methods available for 

solving multi-objective optimization models. Some of 

these models are based on distance functions including 

goal programming, compromise programming, and the 

reference point method [27]. Some of the other methods 

scalarize multi objectives into a single objective and 

solve the problem, such as the weighted sum method 

and the ε-constraint method [23]. In this paper, the 

weighted sum method [9, 34] is adopted to solve the 

multi-objective, mixed integer optimization problem. In 

the proposed model, the three objectives Function 4, 

Function 2 and Function 3 are assumed to be 𝑂𝑏𝑗1, 

𝑂𝑏𝑗2, and 𝑂𝑏𝑗3. The single objective function is 

formulated as follows: 

 

𝑀𝑖𝑛 𝑊1𝑂𝑏𝑗1 + 𝑊2𝑂𝑏𝑗2 + 𝑊3𝑂𝑏𝑗3 (27) 

 

where 𝑊1 + 𝑊2 + 𝑊3 = 1, 𝑊1, 𝑊2, 𝑊3 ≥ 0 are the 

relative weights of the objectives in (27).  

The model (objective function (27) and constraints 

(5)-(26)), was solved using AMPL and the solver 

CPLEX 12.7.1.0 on a computational server.  

5 Numerical experiments 

5.1 Case description  

To test and validate the model, a case study is 

performed for the municipality of Norrköping, Sweden. 

The case is part of a more comprehensive research 

study, investigating the possibility of training and 

equipping people to be able to act as first responders as 

a new task within their current occupations (further 

described in [19]). An experiment was performed where 

a set of potential first responders were equipped with a 

smartphone, with an application installed, to which it 

was possible to send alarms. The responders could 

indicate in the application if they would accept the 

mission. The time of response and their location were 

noted. This made it possible to calculate their expected 

response time to the incident, using the GIS software 

ArcMap. As the alarms were based on historical data 

from the fire and rescue services, the old, real response 

times by the professional emergency services were 
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known. Locations of AEDs were collected from the 

Swedish AED registry [8] and expected travel times for 

the responders to AEDs and from AEDs to incidents 

were calculated using ArcMap.  

During two months, a total of 149 alarms (i.e. 149 

patients) were sent to the responders. In 141 cases, at 

least one responder indicated reception of the mission, 

and there existed historical travel times for the 

emergency services, making it possible to construct a 

scenario for the optimization model. However, the 

number of cases where at least two responders would 

have arrived before the emergency services (thus 

making the problem non-trivial), were only 33. So, in 

order to enlarge the dataset, the arrival times for the 

emergency services were extended, to be 3 minutes 

longer than the longest response time for any of the 

volunteer responders. This gave 141 additional 

scenarios, giving a total of 174 problem instances. 

Tables 1 presents the general characteristics of the 

scenarios. For all 174 instances, r and τ are set to 2 

minutes. 

5.2 Trade-off between objectives 

All three objectives are important, but their relative 

importance might be discussed. Starting with Obj3, 

while it is important not to dispatch more volunteers 

than necessary, we want the model to dispatch all 

volunteers that may contribute to an increased survival 

chance. We thus assume that there exists a cost for 

dispatching a volunteer, but that it is very low, and set 

W3 to 0.01.  

Both Obj1 and Obj2 are indicators for the 

survivability, but it is reasonable to assume that 1 

minute prolonged time to CPR or defibrillation would 

be worse than a 1 minute gap. Thus, the weight W1 

should intuitively be larger than W2. For an illustration 

of the trade-off between Obj1 and Obj2, consider the 

scenario in Table 2. There are four volunteers and two 

AEDs available. When the weights W1, W2, W3 are set to 

0.94, 0.05, 0.01, the optimization model will dispatch 

Volunteer 2 and 3 directly to the patient while Volunteer 

4 is dispatched to pick up AED 2. This results in an 

arrival gap of 1 minute, and an output of 23.9% from the 

survival function (1). Reducing W1 to 0.84, and 

increasing W2 to 0.15, Volunteer 2 and 4 are dispatched 

directly to the patient and Volunteer 1 is dispatched to 

pick up AED 1. In this solution there is no gap, and the 

survival function (1) output is 22.3%. In this example, 

the survival chance for the patient as measured by (1), 

decreases slightly when the model prioritizes closing the 

gap. It is not obvious however, whether or not this 

decrease is acceptable, or if it would be better to have a 

gap in the effective delivery of CPR.  

So, in order to investigate how the results in the 174 

datasets are affected by varying W1 and W2 (W3 is always 

set to 0.01), different combinations are tested. Starting 

with W1 = 0.94, the weight is reduced with intervals of 

0.05 (while W2 is increased). The main outcomes of this 

investigation show that: 

• As expected, if there is no gap in arrival time when 

𝑂𝑏𝑗1 has its highest value (0.94), the model is 

insensitive to weight changes and the results for 

each of the objectives remains the same with the 

weight changes. 

• If, on the other hand, there is a gap, the model is 

sensitive to weight changes. When there is a gap in 

the first output (𝑊1 = 0.94), the first change in 

both 𝑂𝑏𝑗1 and 𝑂𝑏𝑗2 values, in 90% of cases, 

happens at 𝑊1 = 0.64. After this point, there will 

be up to one more break point so that the gap 

reaches zero, but at what weight it occurs does not 

follow a pattern across the solved instances. The 

change in the value of 𝑂𝑏𝑗2 for the remaining 10% 

of the cases, always is to a zero gap in one step.  

• All solutions produced by the model, where W1 

was less than 0.94, can be considered dominated 

by the solution produced when W1 = 0.94. This is 

because in order to close the gap, the model will 

dispatch volunteers with longer travel times, or 

select AEDs that are located further away from the 

patient, just to obtain arrival times for the 

Table 2. Characteristic of designed scenario 

Volunteer 

Response 

time 

directly 

to patient 

[min] 

Response time 

including AED 

pick up [min] 

EMS 

arrival 

time 

[min] AED 1 AED 2 

1 7 8.5 19 

14 
2 3 13 12 

3 6 18 15 

4 4 21 8 

 

Table 1. Characteristics of data from the volunteer project 

number 

of 

scenarios 

Number of 

volunteers 

Number 

of AEDs 

Range of 

travel time 

to patient 

[min] 

Range of 

travel time to 

AED 

[min] 

Range of 

EMS arrival 

time 

[min] 

Volunteer’s 

endurance 

time 

[min] 

Volunteer’s 

rest time 

[min] 

174 1-7 350 0.37-62.12 0.48-213.1 8.09-65.11 2 2 
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volunteers that are close to each other. Thus, for 

the tested scenarios, it was always best to have a 

high weight for Obj1, and no possible relevant 

trade-off between the objectives (like in the 

scenario in Table 2) was found.  

• The model never dispatched more than two 

volunteers, which like in the previous bullet point, 

is likely due to the characteristics of the scenarios. 

If more volunteers were available, giving a larger 

possible solution space, it is likely that more 

volunteers also would have been utilized.  

5.3 Comparative results 

In the following results, a high weight (0.94) is 

allocated to the linearized survivability objective 

(𝑂𝑏𝑗1), while W2 is set to 0.04 and W3 to 0.01.  

To investigate whether the proposed optimization 

model contributes to higher survivability of the patient 

or not, the results are compared to those produced by 

two simple, greedy dispatch approaches. These are 

inspired by dispatching approaches briefly mentioned in 

[35] and [20]. In both studies, dispatching is done by 

sending one third of volunteers directly to the patient 

and two thirds to the AED closest to the volunteers. 

However, neither of the papers clearly states how the 

task allocation is done, or the order of arrival of the 

volunteers. The two greedy approaches are presented in 

Table 3. In both greedy approaches, the limit of 

dispatched volunteers (i.e. ⌈
𝑟

𝜏
⌉ + 1), showing total 

number of required volunteers, is based on the needed 

number of volunteers with endurance time (τ) to fill the 

whole rest time (r) of the first volunteer (⌈
𝑟

𝜏
⌉), plus one 

which indicates the first volunteer on site.   

 Figure 4 shows the objective function (27) values 

for the optimization model and the greedy approaches, 

 

Figure 4. Weighted sum objective function values for optimization model and Greedy 1 and 2 approaches 
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Table 3: Greedy dispatch approaches  

 Greedy 1  Greedy 2 

1 Select the closest volunteer and send her/him 

directly to the patient, 

1 Select the volunteer who has the shortest response 

time including the pickup of an AED, 

2 Of the remaining of volunteers, select the one who 

has the shortest response time including the pickup 

of an AED, 

2 Considering the upper limit of dispatched volunteers 

(i.e. ⌈
𝑟

𝜏
⌉ + 1), dispatch the ones with the shortest 

response time. 

3 Considering the upper limit of dispatched 

volunteers (i.e. ⌈
𝑟

𝜏
⌉ + 1), dispatch the ones with the 

shortest response time. 
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sorted in increasing objective function value for the 

optimal solutions.  

The results show that for approximately 20% of the 

problem instances, both the optimization model and 

Greedy 1 produce the same dispatch decisions and 

hence, the objective function values and the patient’s 

survivability chances are the same. This means that both 

optimization model and the Greedy 1 approach would 

send the first volunteer directly to the patient to perform 

CPR. However, for the remaining 80% of the problem 

instances, the optimization model has a lower (better) 

objective function value.  

 Greedy 2 behaves much more often like the 

optimization model. In only 7% of the 174 instances, 

Greedy 2 fails to produce an optimal solution. In the 

instances where the optimization model actually finds a 

better solution (i.e. when it is better to prioritize dispatch 

directly to the patient), the difference in objective 

function value is not very large. This is why it is difficult 

to discern the differences between the optimal results 

and Greedy 2 results in Figure 2. It should be noted 

though, that the solutions from Greedy 2 might have 

objective function (27) values up to 14% from optimal.  

Table 4 presents one problem instance, in which 

neither the optimization model nor Greedy 1 result in 

any gap, and the response time of both dispatched 

volunteers are relatively short. However, the results 

indicate that even in such setting, the arrival of the first 

volunteer with an AED leads to better survivability for 

the patient.  

The difference in survivability as estimated by (1) 

between the optimization model and Greedy 1 can be as 

large as 54% or as small as 0.00001%. About 11% of 

these cases have more than 10% difference in survival 

probability, where the highest difference is produced 

when the optimization model results in 54.4% survival 

chance and the Greedy 1 approach in 0.8%. In all of the 

instances where the optimization model produces a 

solution with a higher survival probability, a volunteer 

is dispatched to first pick up an AED, while Greedy 1 

always dispatches the closest volunteer directly to the 

patient to perform CPR.  

One of the problem types where Greedy 1 performs 

poorly compared to the optimization model is when 

there is only one volunteer available in the system. In 

these cases, the Greedy 1 approach will dispatch the 

volunteer directly to the patient, which means that the 

first possible defibrillation is when the EMS arrive. On 

the other hand, the optimization model will, in most 

cases, dispatch the volunteer to pick up an AED first. 

However, if the difference between the arrival of a 

volunteer with an AED and arrival of the EMS is not 

larger than 3 minutes, the volunteer will be sent directly 

to the patient by the model. This happens in 5% of the 

one-volunteer problem instances, resulting in the same 

solution by the Greedy 1 approach and the optimization 

model. Thus, the patient’s survival probability is higher 

in the remaining 95% of the cases, when volunteers are 

dispatched according to the optimization model  

Neither of the greedy approaches take into account 

the possibility of arrival gaps as a consequence of the 

dispatch decision, which can lead to lower survival 

chance for the patient. In about 30% of the instances, the 

Greedy 1 approach results in a larger gap compared to 

the optimization model and in all of these cases, the 

optimization model contributes to higher survival 

probability. This indicate that for about 30% of 

instances, the Greedy 1 approach not only contributes to 

less survival probability, but also produces a larger gap. 

6 Conclusion and future research 

As the resources that the emergency management 

system can use is limited, interest in less conventional 

types of resources such as volunteers is rising, and so is 

the attention drawn to projects utilizing volunteers in 

daily emergencies. For these to be successful, resource 

management systems that dynamically can handle 

volunteers as well as the traditional resources are 

essential. These systems, e.g. expert systems, require a 

reliable foundation, which can be supported by 

optimization modelling.  

To investigate whether applying optimization 

modelling to dispatch volunteers can improve OHCA 

patients’ survivability, we developed a multi-objective, 

Table 4. Example of results from the optimization model and Greedy 1 approach without any gap 

Model Volunteer 

Dispatched Arrival 

time to 

patient 

[min] 

EMS 

arrival 

time 

[min] 

Obj1 Obj2 

Survival 

probability 

(Function 1) 

Directly to 

the patient 

To pick up 

an AED 

first 

Optimization 

model 

1  * 4.26 

8.91 

0.89 0 0.2906 
2 *  5.66 

Greedy 1 

approach 

1 *  4.19 
1.17 0 0.2359 

2  * 5.90 
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mixed integer model and compared it to two greedy 

approaches. While the optimization model of course 

always produced the best solution, one of the greedy 

approaches, which prioritizes dispatch to pick up an 

AED, in a majority of the tested instances, also 

suggested an optimal dispatch. However, this may 

possibly be due to the instances tested, which were 

characterized by relatively few volunteers and many 

AEDs. If it would have been the other way around, it is 

possible that it would have been better to prioritize 

dispatch directly to patient instead. Now, the results 

indicate that the first volunteer should arrive with an 

AED; this happened in 80% of the instances. However, 

there are times (20% of the problem instances) that 

dispatching a volunteer directly to the patient results in 

higher survivability. Therefore, as the dispatching 

decision has a direct effect on the life and death of 

OHCA patients, generalizing the dispatching decision to 

always prioritize the delivery of an AED might be too 

simplistic. Thus, it is useful to have an optimization 

model that can take the specific problem circumstances 

into account, and suggest an optimal dispatch decision, 

maximizing the survivability of the patient. 

In reality, everything is prone to uncertainty. One of 

the future steps that can be taken is to consider this 

uncertainty for: the availability of volunteers when they 

get the notification (i.e. whether they will accept the 

mission or not), volunteers’ travel times both directly to 

the patient and after picking up an AED, access time for 

an AED (i.e. the time after reaching the location of the 

AED, until travel towards the victim can start), and 

arrival time of the EMS. It should be noted that although 

there is an estimate for all these times, to depict reality 

better, they should not be treated as fixed which is why 

a stochastic approach might be suitable. All AEDs are 

considered available all the time in the presented model, 

but as some of these devices might not be available 

during the dispatch, their presence should also be treated 

as an uncertain element in the development of a 

stochastic model. In addition, in the current model, all 

volunteers are regarded as homogenous, while they 

might actually have varying capabilities, e.g. someone 

can perform CPR for longer time compared to another 

person, or might be a certified nurse, allowed to 

administer medicine. These differences can also be 

considered in a model but requires the systemization and 

collection of capabilities that are relevant for the 

specific task, in this case helping a person suffering 

from OHCA.  
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