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Abstract 
 

Scant literature exists regarding health effects of fine 
particulate matter (PM2.5) pollution at or below 
national standards. This study examined the 
relationship between PM2.5 and acute care use and 
costs in Honolulu where PM2.5 is low. Single and 
distributed lag over-dispersed Poisson models were 
used to examine hospitalizations/emergency 
department (ED) visits associated with cumulative 
PM2.5 exposure over the current day and seven 
previous days (lags 0-7) in 2011. A 10-µg/m3 increase 
in cumulative PM2.5 concentration was associated with 
a 32% increase in respiratory admissions (RR=1.32, 
p=0.001) costing $486,908 and a 24% decrease in 
respiratory admissions in the comparison group 
(RR=0.76, p<0.001). ED visits increased by 12% at 
lag day 0 for respiratory outcomes (RR=1.12, p=0.03) 
and cumulatively with increased respiratory visits by 
49% (RR=1.49) and increased combined respiratory 
and cardiovascular issues by 20% (RR=1.20; p<0.01 
for both) costing $117,856. Additional research is 
needed on health effects within pollution lower levels. 
 
 
1. Introduction  
 

Particulate matter is generated from fires, road 
dust, electrical power plants, industrial processes, and 
vehicles and contributes to air pollution as an ongoing 
environmental threat to health [1]. Most concerning are 
very small particles, less than 2.5 micrometers (µ) in 
width, known as fine particulate matter (PM2.5), 
because they are small enough that they may be 
inhaled into the cardiopulmonary system. Once 
inhaled, they may irritate and cause inflammation in 
the lungs leading to asthma attacks, bronchitis, and 
decreased lung function [2], as well as the blood 

vessels around the heart, increasing the risk of heart 
attack, stroke, arrhythmias, and heart failure, 
particularly in elderly patients or those with pre-
existing medical conditions [3]. These effects were 
noted in landmark studies such as the Harvard Six 
Cities study and the American Cancer Society study 
that demonstrated that higher levels of PM2.5 are a 
causative factor for increased cardiopulmonary disease 
and mortality risk [4-5].  

Further research has demonstrated that exposure to 
PM2.5 is a well-established concern at annual averages 
above the set current standard (above 12 µ/m3) with 
increases of 10 µ/m3 associated with increased 
emergency department (ED) visits, hospital 
admissions, and deaths due to respiratory and 
cardiovascular adverse health effects [6-10]. Further, 
increased hospitalizations for mental health [11] as 
well as increased hospitalizations and mortality due to 
stroke have also been linked to elevated levels of PM2.5 
[12]. Several studies have also investigated lag times in 
relation to health outcomes due to exposure to PM2.5 
above current acceptable standards with lag periods 
varying from 2-7 days [7-10]. However, with the 
exception of a study that showed an inverse association 
of chronic obstructive pulmonary disease (COPD) 
exacerbations with a 7-day lag [13] and a study that 
showed association with arrhythmias, atrial fibrillation, 
and pulmonary embolism with lags up to four days 
[14], no other studies have examined the association 
between current acceptable PM2.5 levels with a lag 
period relative to health outcomes. In terms of health 
outcomes, the majority of studies have utilized daily 
counts of hospital admissions or ED visits as measured 
by International Classification of Diseases 9th revision 
(ICD-9) or 10th revision (ICD-10) codes. Other 
methods to determine health outcomes in previous 
studies included annual patient interviews, Medicare 
claims counts, disease management groups within a 

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59812
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 3761

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


medical practice, and mortality counts. A few have 
utilized population-based or national inpatient 
registries. 

Based on evidence of harm from exposure to 
higher levels of PM2.5, the World Health Organization 
(WHO) set criteria for acceptable levels of ambient air 
pollution and defined that PM2.5 should remain below 
an average of 10 µ/m3 annually and below 25 µ/m3 
over a 24-hour period [15]. In 2012, the United States 
(US) Environmental Protection Agency (EPA) also 
strengthened the health-based standard for PM2.5 to an 
annual level of less than 12 µ/m3 (previously 15 µ/m3) 
and kept the current 24-hour mean at less than 35 µ/m3 
[16]. The EPA reported there was a 42% decrease in 
the national average PM2.5 from 2000 to 2016, with 
levels well within the more stringent standard in recent 
years [17].  

Only a few studies have examined the impact of 
PM2.5 exposure at levels lower than the current US 
EPA standards (below 12 µ/m3), but these also indicate 
adverse health effects, including increases in hospital 
admissions for all causes, cardiovascular and 
respiratory diseases, and mortality [18-20]. These 
studies were limited to a subset of the total population 
(e.g., Medicare beneficiaries) and studied aggregated 
impact rather than examining the effects of daily 
variation in air quality. Advancing knowledge of the 
effects of pollution at levels that meet current standards 
is essential to informing discussions about the impact 
of making additional changes to air quality standards 
and related polices such as vehicle emissions. 
Therefore, the objective of our study is to examine the 
relationship between daily PM2.5 and acute care 
admissions, with cumulative lag effects up to seven 
days, across the population in an urban area (Honolulu) 
that has relatively low levels of this pollutant. We also 
aimed to explore the costs of these effects.    

The average annual exposure of the general public 
to PM2.5 in Hawaii has remained below 12 µ/m3 as well 
as below annual averages in the US [21], and the 
sources of air pollution vary by region within the state. 
In addition to vehicle and industrial emissions from the 
urban island of Oahu, volcanic smog (“vog”) from the 
active Kilauea volcano is a key source of PM2.5 on the 
Big Island based on wind patterns, and prior to 2017, 
sugar cane burning during the pre-harvest season added 
pollution on the island of Maui. Hawaii Health 
Information Corporation (HHIC) maintains a robust 
data set encompassing state-wide, population-wide 
acute care health information. Previous studies using 
this data set indicate it holds promise for other air 
quality research. One study examined the association 
between sugar cane burning and acute respiratory 
illness in 2011 in a subset of patients on Maui [22] and 
another examined the association of pollution from 

volcanic emissions on ED visits for pulmonary and 
cardiovascular conditions and used ED visits for 
fractures as a comparison group expected to be 
unrelated to pollution [23]. Thus, Hawaii is an ideal 
location to study associations between relatively low 
levels of PM2.5 and health outcomes.  

 
2. Methods 
 

Honolulu County, comprising the island of Oahu, 
was the selected region of Hawaii as it has more 
typical pollution sources and the largest population 
relative to other areas in the state. The three hospitals 
outside of the Honolulu area where air quality sensors 
are located were excluded from the analyses. Data 
from patients with a home address outside of Hawaii 
were also excluded to minimize impact of variations in 
tourist volume on acute care episode frequency. 
 
2.1. Exposure 
 

PM2.5 data for 2011 were obtained from the US 
EPA’s Air Quality System database based on the four 
monitors located in Honolulu County that collected 
local daily PM2.5 conditions (located at downtown 
Honolulu, Kapolei, Sand Island, and Pearl City). The 
Hawaii Department of Health (DOH) continuously 
monitors air quality at each of these sites. The hourly 
averages are recorded, reviewed, validated, and if 
needed, revised due to equipment or other technical 
problems [24-26]. The DOH reports these validated 
hourly measures to the EPA, and the EPA calculates 
the daily mean PM2.5 concentrations from the hourly 
data. Daily PM2.5 concentrations from all four monitors 
were averaged for the current study.  
 
2.2. Main Outcome Measures 
 

HHIC collects, cleans, and verifies detailed 
patient-level discharge data from all non-federal 
hospitals for all payers across the state of Hawaii. The 
HHIC dataset contains clinically relevant information 
used for billing and other administrative purposes.  It is 
not an electronic medical record. The 2011 HHIC 
dataset of all ED visits (N=110,283) and all hospital 
admissions (N=74,600) was used to obtain population 
counts of daily acute care use by reason for admission.  
These counts include repeat use by the same patient 
(i.e., these counts are the number of episodes of acute 
care, not number of unique patients). Reason for each 
admission was based on All Patient Refined Diagnosis 
Related Groups (APR DRG) codes, a classification 
system that describes each admission based on a 
clinical grouping that can be further described by 
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severity of illness [27]. We obtained the daily counts of 
acute care episodes for respiratory and cardiovascular 
clinical groups, which have previously been found to 
be associated with high levels of PM2.5, and for a 
comparison group of clinical conditions not expected 
to be associated with this pollutant (Appendix 1).  
Because these methods cover all acute care episodes 
for the population of Honolulu, there was no need to 
control for age, gender, or other demographic 
variables. 
 
2.3. Data Analysis 
 

Descriptive statistics were used to characterize 
daily 2011 PM2.5 concentration level and hospital/ED 
admission outcomes in Honolulu County. Single lag 
and distributed lag over-dispersed Poisson regression 
models were used to examine the relative rate (RR) of 
hospitalizations/ED visits (respiratory, cardiovascular, 
combined respiratory and cardiovascular, and a 
comparison group of admissions not expected to be 
related to increases in acute care use) associated with 
cumulative exposure over the current day and the 
seven previous days (lags 0-7). While single lag 
models assume that the effect in PM2.5 is over a single 
day determined by the lag ℓ, distributed lag models 
assume that the effect on a given day is spread out over 
K previous days and typically have the form: 

log 𝜇! = 𝛼 + 𝛽ℓ𝑥!!ℓ

!

ℓ!!

+ 𝐷𝑂𝑊 + 𝑠 𝑡𝑖𝑚𝑒,𝑑𝑓  

where 𝛼 is the intercept; K is the maximum days of 
lag; 𝛽 represents the regression coefficient for PM2.5; 
𝑥! represents PM2.5 concentration levels at day t; DOW 
is a dummy variable for day of the week; and s is the 
smoothing spline function for nonlinear variables. In 
these analyses, models were adjusted for day of the 
week and smooth functions of calendar time (natural 
cubic splines) with one degree of freedom. The degrees 
of freedom (df) were selected according to the 
minimum value of the Akaike information criterion 
(AIC) for the Poisson model [28], with smaller AIC 
values indicating the preferred model. According to 
Peng and Dominici, choosing a large df will remove 
bias but will also remove most of the temporal 
variation in the residuals and thus lead to a large 
variance of the estimated air pollution coefficient [29]. 
Further, choosing a small df may lead to bias but also 
provides a more precise estimate of the air pollution 
coefficient [29]. Analyses were conducted using 
hospital and ED admissions, separately. Statistical 
significance was taken at the 0.05 level. Mean 
hospitalization and ED costs were estimated using the 
Centers for Medicare and Medicaid Services (CMS) 
cost-to-charge ratio (CCR) for fiscal year 2011, which 

was 0.379 for urban Hawaii [30]. Descriptive statistics 
were performed using SAS version 9.4 (SAS Institute 
Inc., Cary, NC) and all other analyses were conducted 
using the ‘dlnm’ package in R version 3.4.0.  
 
3. Results 
 

Table 1 displays descriptive statistics for 2011 
daily PM2.5 and daily hospitalizations/ED visits in 
Honolulu County. The average daily PM2.5 
concentration in Honolulu County was 5.71 µg/m3 

(interquartile range [IQR], 3.85-7.15 µg/m3) or average 
of 45.68 µg/m3 cumulative over the 8-day period of 
interest (0-7 days). For hospitalizations, the daily mean 
respiratory and cardiovascular admissions were 15.44 
(123.52 eight-day cumulative mean) ± 4.60 and 14.80 
(118.4 eight-day cumulative mean) ± 3.93, 
respectively. For ED visits, the daily mean respiratory 
and cardiovascular admissions were each 
approximately 25, or 200 for the eight-day cumulative 
mean (Table 1).  

 
Table 1. Descriptive statistics for 2011 daily PM2.5 

and daily admissions in Honolulu County 

Variable Mean 
± SD 

Med Min- 
Max (Q25, Q75) 

PM2.5 (µ/m3) 5.71  
± 2.70 

5.36 0.40- 
26.43 (3.85, 7.15) 

Hospitalizations    
Respiratory 
admissions 

15.44 
± 4.60 15 (12, 18) 6-36 

CV admissions 14.80 
± 3.93 15 (12, 18)  5-25 

Combined 
respiratory and 
CV admissions 

30.24 
± 6.41 30 (25, 34) 13-50 

Admissions not 
expected to be 
related to 
increases in 
acute care use  

155.69 
± 

34.96 

166  
(122, 185) 80-220 

All admissions 
204.38 
± 

40.83 

214  
(163, 238) 114-275 

ED Visits 
Respiratory 
admissions 

25.21 
± 5.31 25 (21, 28) 14-43 

CV admissions 24.35 
± 4.09 

24 (22, 27) 13-35 

Combined 
respiratory and 
CV admissions 

49.56 
± 6.96 49 (45, 54) 34-75 
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Admissions not 
expected to be 
related to 
increases in 
acute care use  

195.34 
± 

14.31 

195  
(185, 205) 

153- 
236 

All admissions 
302.15 
± 

19.96 

302  
(289, 315) 

251- 
368 

CV=Cardiovascular; SD=Standard deviation;  
Med=Median; Q25=25th percentile; Q75=75th 
percentile; Min=Minimum; Max=Maximum; 

 
The RR and 95% confidence intervals (CIs) for the 

increase/decrease in daily admission rates per 10-
µg/m3 increase in PM2.5 concentration for single lags of 
0, 1, 2, 3, 4, 5, 6, and 7 days (data not shown) and the 
distributed lag models for lags 0 through 7 for all 
outcomes were generated. The single lag model 
estimates the effect of exposure on one day only, 
lagged by 0, 1, 2, 3, 4, 5, 6, or 7 days, while the 
cumulative estimate from the distributed lag model 
represents the effect of eight days of exposure (lag 0 
through 7 days) [7]. The cumulative effects of PM2.5 on 
daily admissions over 7 days of lag for all outcomes 
are displayed in Table 2. 

 
Table 2. Cumulative effects of a 10-µ/m3 increase in 
PM2.5 on daily admissions in Honolulu County over 

seven days of lag using distributed lag over-
dispersed Poisson regression modeling 

Variable RR  
(95% CI) 

Hospitalizations 

Respiratory admissions 1.32  
(1.11-1.56)* 

CV admissions 0.92  
(0.78-1.09) 

Combined respiratory 
and CV admissions 

1.11  
(0.99-1.24) 

Admissions not 
expected to be related 
to increases in acute 
care use  

0.76  
(0.70-0.82)* 

ED Visits 

Respiratory admissions 1.49  
(1.32-1.67)* 

CV admissions 0.95  
(0.86-1.06) 

Combined respiratory 
and CV admissions 

1.20  
(1.10-1.30)* 

Admissions not 
expected to be related 
to increases in acute 
care use  

0.96  
(0.93-1.01) 

CV=Cardiovascular; RR= Relative rate; 95% CI: 95% 
Confidence interval; *p<0.01 

 
3.1. Hospitalizations 
 

There were no statistically significant single lag 
estimates for all outcomes, with the exception of the 
comparison group of admissions not expected to be 
related to increases in acute care use (data not shown). 
Specifically, we found evidence of negative 
associations between day-to-day variation in PM2.5 
concentration and the control outcome at lag 2 (data 
not shown; RR=0.96, 95% CI=0.92-1.00, p=0.04), lag 
3 (data not shown; RR=0.95, 95% CI=0.91-0.99, 
p=0.01), and lag 4 (data not shown; RR=0.96, 95% 
CI=0.92-0.99, p=0.02). Distributed lag model results 
demonstrated statistically significant 8-day cumulative 
effects for respiratory admissions and the comparison 
group admissions. Specifically, there was a 32% 
increase in respiratory hospital admissions in Honolulu 
County associated with a 10-µg/m3 increase in PM2.5 
over seven days of lag (Table 2; RR=1.32, 95% 
CI=1.11-1.56, p=0.001). There was a 24% decrease in 
admissions not expected to be related to increases in 
acute care use associated with a 10-µg/m3 increase in 
PM2.5 over seven days of lag (Table 2; RR=0.76, 95% 
CI=0.70-0.82, p<0.001). 
 
3.2. ED Visits 
 

With the exception of the control outcome, there 
was at least one exposure lag demonstrating statistical 
significance for all outcomes. The largest effect was 
found at lag 0 (same-day) for respiratory ED visits 
(data not shown; RR=1.12, 95% CI=1.01-1.23, 
p=0.03). Distributed lag estimates indicated 
statistically significant 8-day cumulative effects for 
respiratory visits as well as combined respiratory and 
cardiovascular visits. Specifically, there was a 49% 
increase in respiratory ED visits in Honolulu county 
associated with a 10-µg/m3 increase in PM2.5 over 
seven days of lag (Table 2; RR=1.49, 95% CI=1.32-
1.67, p<0.001). There was a 20% increase in combined 
respiratory and cardiovascular ED visits associated 
with a 10-µg/m3 increase in PM2.5 over seven days of 
lag (Table 2; RR=1.20, 95% CI=1.10-1.30, p<0.001). 
 
3.3. Cost estimates 
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Table 3 shows the mean cost estimate for each 
category of hospitalization and ED visit. Using these 
estimates, each 10-µg/m3 increase in PM2.5 over the 8-
day cumulative period of interest is associated with an 
increase of 39.5 respiratory hospitalizations at a cost of 
$486,908 and a decrease of 299 hospitalizations 
unexpected to be related to air pollution at a cost of 
$3,772,418.  Each 10-µg/m3 increase in PM2.5 over the 
8-day cumulative period of interest is associated with 
an increase of 79.3 ED visits for respiratory or 
cardiovascular conditions at a cost of $117,856.  

 
Table 3. Descriptive statistics of cost (in US $) 
estimated using the CMS cost-to charge ratio 

(CCR) method for hospitalizations and ED visits in 
Honolulu County 

Variable Mean 
 ±SD 

Med  
(Q25, Q75) 

Min-
Max 

Hospitalizations 

Respiratory 
admissions 

12,319 
±15,814 

7680  
(4188, 14199) 

0-249, 
805 

CV 
admissions 

9,107 
±11,642 

6463  
(3895, 10901) 

0-478, 
451 

Combined 
respiratory 
and CV 
admissions 

10,747 
±14,020 

7009  
(4031, 12539) 

0-478, 
451 

Admissions 
not related 
to increases 
in acute 
care use 

12,620 
±25,911 

6831 
(2878, 13786) 

0-1,169, 
869 

ED Visits 
Respiratory 
Admissions 

1,416 
±1,287 

1003  
(561, 1797) 0-12,856 

CV 
admissions 

1,560 
±1,356 

1222  
(737, 1850) 0-37, 179 

Combined 
respiratory 
and CV 
admissions 

1,486 
±1,323 

1131  
(633, 1821) 0-37, 179 

Admissions 
not 
expected to 
be related 
to increases 
in acute 
care use  

1,332 
±1,475 

832  
(450, 1673) 0-23, 114 

CV=Cardiovascular; SD=Standard deviation; 
Med=Median; Q25=25th percentile; Q75=75th 
percentile; Min=Minimum; Max= Maximum 

 
4. Discussion 
 

At levels that meet the current more stringent EPA 
standard, cumulative PM2.5 levels over an 8-day period 
were significantly positively associated with an 
increase in ED visits and hospital admissions for 
respiratory conditions, but not cardiovascular 
conditions. As expected, acute care use for the 
comparison group of conditions did not increase with 
air pollution. However, contrary to expectations, 
hospital admissions for this comparison group 
decreased significantly with cumulative increases in 
PM2.5. It is possible that the lack of association with 
acute care use for cardiovascular conditions and the 
decrease in hospitalizations for comparison group 
conditions is related to our methodology that counted 
episodes of care and not individual patients, such that 
each patient could be counted more than once with 
multiple episodes of acute care. In addition, each acute 
care episode is described only by the primary reason 
for the episode, regardless of other co-existing 
diagnoses. For example, a high percent of patients with 
chronic respiratory disease also have overt 
cardiovascular disease relative to those without 
respiratory disease [31]. In our study, if the reason for 
a patient’s acute care use is documented as respiratory, 
it was counted only as a respiratory episode even if the 
patient had co-morbid cardiovascular disease that 
exacerbated the respiratory condition in response to 
increases in pollution.   

Research in Australia has found that 
cardiovascular disease is only one of many co-morbid 
conditions more common in those with COPD than 
without [32]. They found that more than 90% of those 
with COPD, which is one of the most common chronic 
respiratory diseases, have at least one chronic 
comorbid condition. These include conditions not 
previously found to be associated with air quality. For 
example, within age groups (age 45 to 64; age 65 and 
older), those with COPD were significantly more likely 
to report having arthritis and/or back problems 
compared to those without COPD.  To the extent that 
the most complex and sensitive patients with multiple 
chronic conditions are hospitalized for respiratory 
problems, they decrease the count of patients who can 
present in the emergency department or hospital for 
other conditions. Thus, additional research is needed 
using identifiers to determine these relationships at the 
patient level. 
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Our research underscores the need for further 
research on the effects of lower levels of PM2.5 and 
other pollutants on health outcomes to inform policy 
decisions. Fann and colleagues estimated the number 
of PM2.5-attributable deaths avoided in the US due to 
decreases in this pollutant from 1980 to 2010 following 
regulatory action to improve outdoor air quality [33]. 
Based on previous research, they used two risk 
coefficients (one log-linear and one non-linear) with 
regard to the relationship between PM2.5 concentration 
and health outcomes. They estimated that PM2.5 
decreased by half and that deaths attributable to PM2.5 
decreased by a third from 1980 to 2010. However, the 
coefficient assumptions regarding the relationship 
between lower levels of PM2.5 and health outcomes 
need to be tested to improve the accuracy of these 
estimates and inform discussions regarding the impact 
of potential policy changes.     

Our research also demonstrates the importance of 
measuring cumulative effects when studying lower 
levels of pollution. For example, we found no same-
day or lagged-day effects of increases in PM2.5 on 
hospital admissions for respiratory conditions. 
However, we found a significant increase in respiratory 
admissions with 8-day cumulative increases in PM2.5. 
While our research used up to a 7-day lag, future 
research should examine longer lag periods to further 
explore the impact of variation in air quality at current 
lower pollution levels. Additional research with data 
covering multiple years is also needed to increase 
statistical power. Finally, additional research is needed 
that controls for variation in temperature and humidity.  
Absent these controls, Hawaii is an ideal location for 
such research given that there is little variation in 
temperature or humidity year-round [34]. 

Our research demonstrates the value of 
information systems that track health outcomes 
population-wide. The all-payer, all-hospital system 
based on routine administrative data maintained by 
HHIC has a long history of use in tracking population 
health indicators. Our current research shows its 
potential for examining the relationship between these 
health indicators and environmental variables.   
 
5. Conclusion 
 

Even at relatively low levels of pollution, there is a 
significant association between increases in PM2.5 and 
frequency of respiratory-related emergency department 
visits and hospital admissions. Additional research is 
needed on the impact of pollution at levels currently 
well within national standards for air quality. 
 
 

6. Appendices 
 
Appendix 1. All Patient Refined Diagnosis Related 

Group (APR DRG) codes queried  
Type of 
admissions APR DRG codes 

Respiratory 
admissions 

130-131,133-134, 137-
144 

Cardiovascular 
admissions 

190, 193-194, 196-199, 
201, 203-204, 207 

Admissions 
not expected 
to be related to 
increases in 
acute care use 
(comparison 
group)  

Cardiology (200, 205-
206); Cardiovascular 
surgery (167, 169, 170-
171, 173-177, 180); 
Dental (114); 
Dermatology (380-381, 
384-385); 
Endocrinology (420-
425); ENT surgery (089-
93, 095, 097-098); 
Gastroenterology (241-
249, 251-254, 279-280, 
282-284); General 
medicine (812-813, 816, 
841-844, 862, 930); 
General surgery (004-
005, 120-121, 135, 220-
229, 260-264, 361-364, 
401, 403-405, 484, 650-
651, 680-681, 710-711, 
721-722, 740, 791, 850, 
911-912, 950-952); 
Gynecological surgery 
(510-514, 517-519, 545) 
Gynecology (531-532); 
Hematology (660-661, 
663); Infectious disease 
(049-051, 344, 383, 720, 
724, 890, 892-894); 
Neonatology (580, 583, 
588-589, 591, 593, 603, 
608-609, 611, 613-614, 
621, 623, 625-626, 630-
631, 633, 636, 639-640) 
Nephrology (460, 462-
463, 466, 468); 
Neurological surgery 
(020-024, 026, 910); 
Neurology (040, 042-
043, 048, 052-053, 055-
057); Obstetrics/delivery 
(540-542, 560); 
Oncology (041, 240, 
281, 343, 382, 461, 500, 
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530, 690-694); Open 
heart surgery (160-163); 
Ophthalmologic surgery 
(070, 073); 
Ophthalmology (080, 
082); Orthopedics (340-
342, 346-347, 349; 
Orthopedic surgery 
(301-305, 308-310, 312-
317, 320-321); Other 
obstetrics (544, 546, 
561, 563-566); 
Otolaryngology (111); 
Psychiatry (759, 770, 
773-776); Rehabilitation 
(860); Rheumatology 
(351); Transplant 
surgery (001, 003); 
Urological surgery (440-
447, 480-483); Urology 
(465, 501) 
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