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Abstract 
 

 The objective of this study was to use rules, NLP and 

machine learning for addressing the problem of clinical 

data interoperability across healthcare providers. 

Addressing this problem has the potential to make 

clinical data comparable, retrievable and exchangeable 

between healthcare providers. Our focus was in giving 

structure to unstructured patient smoking information. 

We collected our data from the MIMIC-III database. We 

wrote rules for annotating the data, then trained a CRF 

sequence classifier. We obtained an f-measure of 86%, 

72%, 69%, 80%, and 12% for substance smoked, 

frequency, amount, temporal, and duration respectively. 

Amount smoked yielded a small value due to scarcity of 

related data. Then for smoking status we obtained an f-

measure of 94.8% for non-smoker class, 83.0% for 

current-smoker, and 65.7% for past-smoker. We created 

a FHIR profile for mapping the extracted data based on 

openEHR reference models, however in future we will 

explore mapping to CIMI models. 

 

 

1. Introduction  

 
Health care institutions in South Africa still find it 

difficult to share, compare, reuse and efficiently query 

patients’ health data on their Health Information 

Systems (HIS). According to [1] HIS are characterized 

by fragmentation and a lack of coordination, hence these 

systems are not interoperable. In order to make the 

interoperability picture clearer, [2] said in the Eastern 

Cape (South Africa), the South African Society of 

Cardio-vascular Intervention has observed that different 

doctors are not able to share their medical notes. As a 

result, they don’t know the history of the patients’ 

treatments and often during consultations, patients 

would be requested to do lab scans, lab tests, and be 

prescribed to medicine that another doctor previously 

prescribed but that did not work. Furthermore, a report 

by National Department of Health (NDoH) compiled by 

the Council for Scientific and Industrial Research 

(CSIR) shows that more than 70% of HIS used in 

hospitals do not comply with interoperability standards. 

Some of those that do comply are not able to exchange 

health records because the target healthcare institution 

uses a different HIS, and does not comply with the 

standard from the source healthcare institution [3].  

[4] have defined interoperability in health care 

systems as the ability of information and 

communication technology (ICT) systems to share and 

exchange patients’ health data. According to [3, 5], there 

are four different types of interoperability, namely: 

technical, syntactical, semantical and organizational. In 

this study the researchers address the issues of 

organizational, syntactical and semantical 

interoperability. Syntactical interoperability looks at the 

exchange of messages from one system to the other, 

where messages must have a well-defined syntax, 

vocabulary, and encoding. While Semantic 

interoperability is meant to get a common understanding 

between two messages even though they are phrased 

differently. Lastly, organizational looks at the ability for 

organisations to effectively communicate and transfer 

information to other organisations that are not using the 

same infrastructural architecture. Later in the study we 

address transportability of messages where we look at 

Fast Health Interoperability Resources (FHIR) RestFul 

API. 

In health care, standardization concepts have been 

considered to be the potential solution to the fragmented 

and siloed health systems [6]. Data management 

standards have enabled seamless exchange of 

information and have reduced the complexity when 

sharing data between multiple systems [7–9]. Getting 

unstructured data to be semantically interoperable could 

create value in the delivery of healthcare services. It has 

also been reported that unstructured data constitutes 

approximately 80% to 85% of business information 

according to [10–13], and some of this data is dormant 

in healthcare. In a hospital setting, vital clinical 

information is recorded in a human-readable language 

such as English. Recording the information in a human 

readable language makes it easier and faster for the 

clinical personnel to record into an EHR (Electronic 
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Health Record) system than to record the data in a 

structured format [14]. Unstructured data is often easier 

to read by humans but it is much more difficult to 

manage via computers [15]. Even in such a case, the 

volume of this data is overwhelming for clinicians to 

manage manually, it has no common physical structure, 

and it is constantly being received and updated. Such 

data is high in volume, varies a lot in structure, and is 

high in velocity, and these are the characteristics of big 

data [13]. For text data, the application of advanced 

language processing techniques are used to address 

these kind of data problems. Therefore, the goal of this 

study is to apply NLP algorithms for extracting patients’ 

smoking data concepts, then apply a coding standard to 

standardize the extracted information. Achieving this 

goal makes this study unique in a sense that it extracts 

smoking concepts via Ruta rules, and applies a sequence 

classifier which is trained on a sequence-based data like 

passages and sentences. Then the extracted details are 

mapped to FHIR profiles and to a health coding standard 

for secondary use. Doing so creates structure from 

unstructured data and it ensures that the mapped data is 

retrievable, comparable, reusable and exchangeable 

across healthcare systems. 

 

2. Motivation 

 

Table 1. Entities to be extracted from clinical notes 

 
Data 

Element 

Notes from MIMIC-III 

database 

Data value 

Quantity Quit smoking prior to 

surgery, smoked one pack 

per 3 days for many years 

prior. 

one pack 

Type Social History: Retired 

machinist. Recently 

seperated, lives alone. 

Active smoker - about 3 

cigs/day. Admits to 45 

pack year history of 

tobacco. Rare ETOH. 

cigs 

Frequency SOCIAL HISTORY:  She 

smokes half a pack a day 

for the past 60 years. She 

is still currently smoking, 

but denies any alcohol 

use.  

half a pack a 

day 

Event 

temporal 

Social History: quit 

smoking 30 yrs ago lives 

with wife social ETOH 

investment attorney 

30 yrs ago 

 

The researchers have derived the smoking behaviour 

challenge from a study by [16] whose findings provided 

the guidance of how unstructured nicotine use 

information could be represented as structured data 

elements. [16] have concluded that there is a need for 

the use of NLP methods for extracting clinical values 

from clinical notes and standardizing them. Later on, 

[17] were able to use a rule-based NLP methods for 

extracting the use of substances such as drugs, nicotine 

and alcohol from clinical notes. Their study also mapped 

the use of each substance to data elements, for example 

Table 1 shows a real-life example of extracted details 

from clinical notes. In this study we look at methods for 

smoking details standardization, and how to exchange 

the data between organizations. Clinical Element Model 

(CEM) is an Intermountain Healthcare’s initiative that 

is used for defining the conformant structures and the 

semantics of clinical data through detailed clinical 

models. These models are used to normalize clinical text 

documents including not only Health Level 7 (HL7) 

messages and HL7 Consolidated Clinical Document 

Architecture (C-CDA) documents. CEMs enable 

secondary use of health data and also makes data 

comparable between multiple health care systems [18]. 

On the Strategic Health IT Advanced Research Projects 

(Sharpn), [19] have derived a set of generic CEMs for 

capturing clinical-based information such as 

Medications, Signs/symptom, Disease/disorder, 

Procedures, Labs, and Diagnoses into granular and 

computable models. Although CEMs were successfully 

used on the Sharpn project, the developers of CEM have 

reported that CEM was a short-term project, and they 

intend to replace it with Clinical Information Modelling 

Initiative (CIMI) [20].  However, CIMI are still under 

development, therefore in this study we have opted for 

the use of OpenEHR standard. OpenEHR is an open 

standard that can be used for storing, querying and 

partly exchanging clinical data. It uses a reference 

model for defining the semantics, data structures, 

identifiers, data types and more of an EHR system [21]. 

Therefore, the researchers have used openEHR 

guidelines for defining smoking details model. 

Furthermore, openEHR is not primarily concerned with 

data exchange, therefore we propose FHIR resources 

and profiles to be used for exchanging data. FHIR 

represents health information in a form of resources 

which are used for categorizing medical concepts, for 

instance the observation resource is used for managing 

and capturing demographic information, monitoring 

progress, and for supporting diagnostics. As for FHIR 

profiles they are used for defining data elements, 

constraint and relationships between heath data 

elements that become a building block of the FHIR 

resource. 

  

3. Materials and methodology  
 

In this section the researchers define the processes 

and steps that were followed in order to conduct this 

Page 3752



study. Firstly, we collected data and pre-processed it. 

Then we wrote rules in a Ruta language in order to 

annotate clinical notes. Then we trained a classifier, 

thereafter we tested the model that was produced on 

unannotated clinical data, and the details are covered in 

this section. 

 

3.1 Data collection 

 
We used Medical Information Mart for Intensive 

Care Version 3 (MIMIC-III) database for our 

experiments. The database is not open-source, however 

it is accessible to researchers under a data usage 

agreement [22] and is accessible on the 

http://mimic.physionet.org website. This database 

contains patients’ demographic information, laboratory 

tests, medications, ICD9 diagnoses, admitting notes, 

discharge summaries and pharmacotheraphy, 

demographics, and a medical history dictionary. It 

should also be noted that this database complies with the 

HIPPA (Health Insurance Portability and 

Accountability Act) regulations, and patient-identifying 

information was removed. For the purpose of this study, 

discharge summary data from the noteevents table was 

used. 

The researchers sampled 288 unique records based 

on the subject_id. These records were filtered by the 

“discharge summary” category and by whether they 

contained patient’s smoking information. Additional 

filters were applied to exclude: deceased patients, 

patients younger than 18 years of age, and to exclude 

records with a true flag for the iserror attribute. The 

researchers ensured that the retrieved results for all the 

queries are unique based on every sample that was 

selected, the uniqueness of a record was based on the 

subject_id which is unique per patient on the MIMIC-

III database. 

 

3.2. Data Preprocessing and components 

 
Unstructured data is said to be difficult to search, 

classify, and to use. The researchers have proposed the 

use of NLP tools such as CLAMP or cTakes in order to 

analyse clinical text data. CLAMP is also known as 

Clinical Language Annotation, Modelling and 

Processing, while cTakes is clinical Text Analysis and 

Knowledge Extraction System and is open-source. Both 

systems use UIMA (Unstructured Information 

Management Architecture) as the underlying 

framework. UIMA is an open-source framework that 

was originally developed by IBM for processing text, 

sound and video. Although cTakes offers similar 

functionality to CLAMP, CLAMP has been reported to 

provide modern and advanced NLP components and a 

user-friendly graphical user interface for analysing 

clinical text [23]. Hence in this study an academic 

version of the tool was used. Below is a list of NLP 

components that we have used: 

• Sentence boundary detector.  This component was 

used for detecting the beginning and the end of a 

sentence through punctuation marks such as a full-

stop or a question mark.   

• Tokenizer. This component has two sub-functions, 

firstly it breaks the sentences into tokens that can be 

analysed further. Then it merges the tokens in order 

to create date, fraction, measurement, person title, 

range, roman numerals, and time-based tokens. We 

used the OpenNLP chunker which is inherent on the 

CLAMP toolkit. 

• Normalizer. It is used to produce tokens based on 

punctuation, spelling variants, stop words, and 

symbols just to mention a few. Part of speech (POS) 

functionality detects the type of grammar used on the 

text data, it assigns tags of tokens such as patient to 

a noun tag.  

• Chunker. It is used for tagging noun phrases, verb 

phrases and more.  

• Named Entity Recognition (NER). NER is used to 

extract entities from the given text through rule-

based and machine learning approaches. This is one 

of the most important functions because it is a 

building block for understanding the semantics of a 

language [24]. This component allowed the 

researchers to add a dictionary that helps to map 

acronyms, abbreviations, and synonyms to common 

words that will be used throughout the experiments. 

For instance, words such as “former, past, h/o, hx, 

quit” were mapped to the “history” tag. Furthermore, 

words were stemmed so that “smoked” and 

“smoking” represent a common word which is 

“smoke”. 

• Assertion identifier. This checks if there is a 

negation associated with a clinical concept. It checks 

for the absence or opposite of a positive observation, 

e.g. “Patient’s father has history of alcohol abuse, 

but patient does not drink alcohol”. In this case the 

second part of the sentence regarding the patient is 

negated, while the first passage about patient’s father 

is not. Therefore, similarly to the NER component, 

we added a dictionary of words for identifying 

negated words and phrases. 

• UMLS encoder. The encoder is used to match the 

clinical concept terms into UMLS Concept Unique 

Identifier (CUI) code. Once a term has been mapped 

to a CUI code, it is then easier to map that term to 

LOINC or SNOMED or to any coding standard. For 

instance, nicotine is mapped to the CUI code of 

C0028040 which has a LOINC code of 3854-7 for 

the presence of nicotine in urine. 
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• UIMA Ruta Rule. It is a rule engine that is used for 

identifying, creating and modifying annotations. The 

rules are used to speed up the process of corpus 

annotation and they help with feature extraction 

instead of manually extracting features from 

corpora. Encompassed in Ruta rule engine is a 

scripting language that allows for execution of 

conditional statements, control structures 

declaration of variables and more [25]. 

• Temporal recognizer and relation. The temporal 

is able to extract time-specific information such “last 

month, 3rd of August, 2011-01-02” and more. There 

is also a temporal relation which is used for creating 

relations between the event and the time, e.g. for the 

passage: “smoked for five months”, smoked is the 

event, while five months is the temporal recognized. 

 

3.3 UIMA Ruta rule engine 

 
TYPESYSTEM ClampTypeSystem; 

 

// 1. rules to parse past smokers; 

BLOCK(ForEach) Sentence{} { 

// pattern: history of smoking; 

ClampNameEntityUIMA{ FEATURE( "semanticTag", 

"History") } 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", 

"Smoker") -> SETFEATURE( "semanticTag", 

"PastSmoker" ) }; 

 

// 2. rules to parse non-smokers; 

BLOCK(ForEach) Sentence{} { 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", 

"Smoker"), FEATURE( "assertion", "absent" )  

        -> SETFEATURE( "semanticTag", "Non-smoker" 

) }; 

} 

 

// 3. rules to parse current smokers; 
BLOCK(ForEach) Sentence{} { 

// currently smokers 

ClampNameEntityUIMA{ FEATURE( "semanticTag", 

"TimeModifier") } 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", 

"Smoker") -> SETFEATURE( "semanticTag", 

"CurrentSmoker" ) }; 

} 
Figure 1. Rules written in Ruta scripting language for 
classifying notes to a past smoker, non-smoker and 
the current smoker class 

 

In this study we use the words corpora and corpus to 

represent the sampled datasets, corpora is the datasets of 

text data, and the annotated set of this data is referred to 

as annotated corpus [26]. The corpora will be annotated 

using Ruta rules, see Figure 1 for sample rules written 

via Ruta rule scripting language. The researchers have 

identified two main tasks which includes: smoking 

information extraction and smoking status 

classification. These tasks only covered cigarette 

smoking behaviour from the clinical notes. Smoking 

therapy details such nicotine patch or gum are outside 

the scope of this study and therefore were not explored.  

 

Smoking information extraction task 

 

Subtask 1. Extract nicotine 

 

The researchers created a dictionary of all 

substances that could be smoked by patients, e.g. 

cigarette, cigar, pipe and more. The dictionary included 

abbreviations and acronyms of smoked substances. All 

cigarette substances were tagged as “nicotine”. 

 

Subtask 2. Extract quantity and range 

 

Regular expressions were used to extract the amount 

or range of cigarettes that the patient smokes at a given 

time. These were tagged using the “qty” tag. In a large 

portion of the clinical notes the quantity is measured in 

“packs” as shown in the example below. However, there 

are also notes that explicitly state the number of 

cigarettes smoked without mentioning the pack. 

Therefore, some of the regular expressions that were 

used had to check for the occurrence of a numeric value 

that was succeeded by any of the possible expressions 

“pack|pck|pk|cigs|pack of”, or one that was succeeded 

by “nicotine” tag. The quantity of smoke often goes 

together with range, for example, “patient smokes 3 to 4 

packs”. Therefore, range was also extracted through a 

regular expression such as “-|to|and”, which was 

preceded and succeeded by a numeric value (also in 

text). In other instances the quantity was preceded by a 

symbol, for example “< 1 pack”. In such cases the 

researchers used a “-” to tag as less than value and a “+” 

for opposite case.  

 

Subtask 3. Extract temporal based information 

 

There were three types of time-based values that we 

wanted to extract based on smoking event. That is “date: 

when an event happened”, “frequency: how often it 

happened” and “duration: how long did it happened”. 

Below are part of the rules we wrote for extracting these 

time-based values: 

- Date/Time: This is a point in time value which 

represents both relative and absolute time. An 

example of relative time is “last year”, while 

absolute could be “2010-01-01”. We tagged these 

values as “date”. In addition, we have also tagged a 

range where there is a start and an end date of date 

as “interval” tag. 

- Frequency: We used frequency as a determiner for 

the number of cigarettes that the patient has smoked 

in a day or week or month or in a year. According to 

[27] this is known as “pack-year” whereby each 

pack contains 20 cigarettes. The pack information is 

often recorded with acronym “ppd”, “ppy”, “pyh” 

which respectively stands for pack per day, pack per 
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year, and pack year history. As thus, frequency was 

extracted with rules that identified the amount tag 

that was followed by a subordinating conjunction 

e.g. “3 packs per day”. Some of the rules tagged 

“frequency” whenever a “qty” tag appeared next to 

temporal value. In some cases the frequency is 

recorded in the following format, “2 packs 3 x a 

week”. Therefore, we added these frequency 

representations from “1x” to “10x” in NER 

dictionary and we mapped them to the “frequency” 

tag. 

- Duration: Duration in our case is the length of time 

since the patient started smoking. [27] have 

emphasized the complexity of extracting duration 

from the corpora. They said that duration could be 

represented in multiple ways, which often leads to 

an overwhelming task when designing patterns to 

extract the data. However recent studies [28–32] 

have shown progress in duration extraction. They 

have also addressed common mistakes to be 

watchful of during the annotation process. In [31], 

they have shown how “duration” could be confused 

with ”frequency”. For example the phrase “every 

three days”, should be tagged as “frequency” 

however, the presence of “three days” alone 

indicates “duration”. Therefore, the determiner 

“every” is a distinction between the two phrases. 

Another example where frequency and duration is 

used: “smokes one pack of cigarettes per day x over 

50 years”, “one pack of cigarettes per day” should 

be tagged as frequency, whereas “over 50 years” is 

the duration. 

 

Smoking status extraction task 

 

Subtask 4. Extract smoking status 

 

This task is about annotating the given corpus into 

one of the three classes, namely: current smoker, non-

smoker and past smoker. We applied rules at a 

document and sentence-level and used extraction 

methods as shown in [33–35]. Shown in Figure 1 is an 

excerpt of the rules where the first rule states that if the 

“history” tag is followed by the “smoker” tag then a new 

tag past smoker was created as a feature. The second 

rule states that if there is a “smoker” tag followed by a 

negated tag “absent”, then tag it as non-smoker. The 

“absent” keyword indicates that the tag is negated, for 

instance, when the clinical note states that “the patient 

denies tobacco use”. The third rule extracts information 

about the current smokers. A current smoker was tagged 

for every corpus that stated that the patient has been 

smoking in the past year. The rules tagged corpus with 

“month < 12” or “year < 1” as current smokers and 

otherwise as past smokers. Part of the rules were 

constructed by first identifying a temporal value which 

in this case are time-based adverbs such as currently, 

momentarily, presently and more.  
 

4. Modelling 
 

We used the components covered from the previous 

section to annotate clinical notes so that they can be used 

to train a machine learning classifier. Annotated text 

provides more information about the text, hence it 

makes it the metadata of the text. As thus a gold standard 

was defined in order to annotate the clinical notes. 

 

4.1. Gold standard  
 

The annotation process is driven by the expert’s 

advice, for instance, extracting smoking-related 

information from clinical notes is done by a health 

informatics annotator. However, [36] have discovered 

that non-expert annotators can achieve the same 

performance on a larger training sets as experts do when 

done on limited set. Experts perform annotation on a 

limited set because the task is time-consuming, and 

expensive. Therefore, due to difficulty in finding an 

already annotated smoking data corpus, and health 

experts for the annotation task. We have resorted into 

following the guidelines provided by [16, 17, 33] for 

creating annotations for patient smoking details, and 

smoking status and for creating the gold standard. 

Furthermore, we followed the annotation development 

cycle as defined by [26]. The gold standard in an 

annotation development lifecycle is defined as the 

benchmark and the final version of the annotated corpus 

which is then used to train the machine learning 

classifier [26]. Prior to training the classifier, we created 

rules using UIMA RUTA engine. We executed the rules 

for the purpose of annotating the top 50 clinical notes 

that covered task 1 through to task 4. Then we manually 

observed if the rules captured the annotations as 

prescribed from the smoking details and smoking status 

guidelines. We revised the rules until we were satisfied 

with the outcomes, and usually the correctness of the 

annotations is calculated from the Inter-Annotator 

Agreement (IAA) scores.  However, in our case rules 

were used in place of human annotators. 

 

4.2. Selecting features 

 
We extracted features through the following word 

representation (WR) features were used: (1) clustering-

based feature; (2) distributional feature; (3) and word 

embeddings features. The list of word representation 

features is as shown below: 
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• Brown clustering. It is a clustering-based word 

representation algorithm that groups related words 

into clusters based on the context that these words 

are in. Then the algorithm partitions the words and 

outputs the partitions into clusters of words. Lastly 

it generates an agglomerative hierarchical cluster 

which is a cluster that implements a bottom up 

approach [37]. 

• Word embedding. Word embedding feature has the 

capability to represent words as vectors. Words that 

are contextually related to one another are 

represented closer while nonrelated words appear far 

apart from each other. For instance, tobacco, alcohol 

and smoking are paired closer to one another on a 

vector space. We have used a pre-trained word 

vector “Wikipedia 2014+Gigaword” dataset from 

the https://nlp.stanford.org/projects/glove website. 

The dataset was trained through the unsupervised 

GloVe word embedding model. This model has been 

reported to outperform other models for word 

analogy, word similarity and NER tasks [38]. 

• Random indexing. This is a form of a distributional 

word representation technique that has been reported 

to have human cognitive features such as the ability 

to make judgements about the quality of an essay or 

any text-based material that one wants to analyse. 

[39] have used it for assessing the coherence of 

words used in a student’s essay.  

 

 
Figure 2. Extracted and the representation of 
featured from clinical text 

 

4.3. Conditional Random Fields 
 

Conditional Random Fields (CRFs) is task-specific 

type of a probabilistic graphical modelling framework. 

It is used for classifying sequential data through 

segmentation and annotation. CRFs train a model 

discriminatively, meaning it learns how to make a 

conditional prediction of a class (or hidden state) from 

the given features (or observable states). The framework 

employs the “BIO notation” whereby “B” indicates the 

beginning of the named-entity phrase, “I” indicates the 

inside or the end of the named-entity phrase and “O” is 

other, which indicates that the word is not part of the 

named-entities [40]. We have also used the above 

mentioned word representation features. In addition, we 

also used lexical features where words are represented 

by their lemmas, part-of-speech, chunking, tokens and 

the presence of a negation tag for training the CRF 

classifier. 

  

4.4. Setup and Evaluations 

 
The experiments were executed on Windows 10 

Lenovo machine, with the following specifications: 

Intel (R) Core (TM) i7 7500U CPU, at 2.90GHz; 8GB 

RAM; 64-bit Operating System. We used the training 

and test data that was annotated according to the defined 

gold standard. Then we measured the performance of 

the CRF classifier using recall, precision, f-measure, 

macro and micro-average. Recall is the proportion of 

true positives against the proportion of the sum of true 

positives and false negatives. True positives and true 

negatives show agreement between the classifier’s 

predictions and the gold standard, whereas false positive 

and false negative is an indication of a disagreement. 

Then precision is the proportion of true positives against 

the proportion of the sum of true positives and false 

positives. However, there is a trade-off between recall 

and precision. An algorithm that achieves a very high 

precision has low recall and vice versa [41]. Therefore 

f-measure is used to combine the measures of both 

precision and recall and calculates the harmonic means 

of each. Now since task 4 is multi classification 

problem, therefore we used macro and micro-averaging. 

Macro-averaging is used for calculating the average 

precision and recall for all the classes (current-smoker, 

non-smoker and past smoker). Whereas micro-

averaging is used for summing up all the true positives, 

false positives, and false negative for each class, and this 

sum is further computed for effectiveness on large 

classes on the test data [42]. From the annotated corpus, 

we partitioned the training data into 65%, and the test 

data to 35% in order to train the CRF classifier. 

 

5. OpenEHR data models to FHIR profiles  

 
We propose the use of openEHR model as a guideline 

for creating the smoking details FHIR profile. For 

instance, the extracted details would be represented as 

shown in Table 2. Table 2 shows data type, value, 

coding standard code, and the source coding standard. 
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Temporal information could be parsed via SUTime and 

stored on the database. 

 

Table 2. FHIR profile data elements 

 
 FHIR profile 

Element 

Name 

Type Value Code Standard 

Amount int 1 C126561

1 

SNOME

D-CT 

Frequency Date day P1D ISO 8601 

Temporal Date 20 

years 

P20Y ISO 8601 

Substance Value

Set 

Tobac

co 

C004032

9 

SNOME

D-CT 

Smoking 

status 

Codea

ble 

Smoke

r 

72166-2 LOINC 

  

6. Results 

 
Table 3. Smoking status results from CRF classifier 
 

 Output from customized rules 

 P R F1 TP Prd G 

Past 

Smoker 

0.72 0.75 0.73 84 116 112 

Current 

Smoker 

0.57 0.68 0.62 39 68 57 

Non-

Smoker 

0.71 0.65 0.68 60 84 92 

Macro 

Avg. 

0.67 0.69 0.68    

Micro 

Avg. 

0.68 0.70 0.69    

 
In this section of the study, the researchers aim to show 

the results obtained from the application of 

classification rules and the machine learning sequence 

classifier. The tasks involved extracting smoking details 

from clinical notes and classifying each note to one of 

the three smoking statuses. Therefore the classifier is 

evaluated on its ability to correctly assign an appropriate 

class on the correct document based on the established 

gold standard. If the gold standard matches with the 

predictions made by the classifier, then that is regarded 

as a correct prediction. The CLAMP software uses the 

CRFSuite library to train the CRF classifier, it outputs 

precision, recall and F1-measure score [43]. We ran five 

folds of cross-validation for selecting the best model and 

for optimizing parameters. In each fold, Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

algorithm was used for estimating the CRF parameters, 

and the default settings were used for the CRF 

parameters. Table 3 represents the summarized results 

which executed for a minimum of three hours for each 

model. Since our predictions focused on multiple 

classes. Therefore micro and macro-averaging for the 

precision, recall and f-measure scores were used instead 

of a confusion matrix. The results show precision (P), 

recall (R), f-measure (F1), true positives (TP), predicted 

(Prd) and the gold standard (G). There were 112 past 

smoker annotations that met the gold standard. It can be 

observed on Table 3 that the past smoker had the highest 

f-measure of 0.73 as compared to the other classes. 

While the lowest was the current smoker class. The 

precision and recall results give more information about 

the class distribution and the correctness of the methods 

used for identifying correct classes. The class with both 

the highest precision and recall was a sign that the rules 

we used were able to detect the smoking statuses in the 

given corpus. In addition, the test data had enough tests 

for the calculation of predictions for the same class, 

meaning there was a good class coverage.  

 

Table 4. Smoking details results from CRF classifier 

 

 Output from customized rules 

 P R F1 TP Prd G 

Type 0.83 0.91 0.87 291 350  319 

Amo

unt 

0.78 0.38 0.52 109 139 280 

Freq

uenc

y 

0.90 0.62 0.73 480 536 773 

Tem

poral 

0.80 0.71 0.75 922 1155 1303 

 

Table 4 represents results that were obtained when 

smoking details were extracted. The results of the 

second task yielded the highest measure for the type of 

substance smoked. While the duration measure 

remained low, however the number of temporal values 

that met the gold standard was high. One can also 

observe from these results that micro and macro-

averaging was not used since task two is based on a 

binary classification problem.  

 

7. Discussions 
 

In this study, we had two tasks whereby we needed 

to classify patient’s smoking status from clinical text, 
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and thereafter extract smoking details where applicable. 

For both tasks we used a CRF sequence classifier to 

train the annotated corpus. Few of the things we 

discovered for task one was that there were sometimes 

two classes representing the same corpus as shown 

Figure 4. This reduced the accuracy of the produced 

model because the number of gold standard records 

would increase. In return this increased the number of 

false negatives and ultimately making the recall value 

lower than what it is supposed to be. Therefore, the 

researchers had to revise the rules, and also improve the 

training time so that it becomes easier and efficient to 

train the model. For the double class annotation 

problem, we wrote rules for identifying only two classes 

at a time. 

 

 
Figure 4. Double class annotation where a single 

document is represented by two classes 

 

Thus, the first set of rules were between non-smoker 

class and current smoker. Then non-smoker and past 

smoker class, and lastly between current smoker and 

past smoker. Another problem was the length of time it 

took to train the model. This was due to long documents 

with an average of 3500 words when we were only 

interested in two or less paragraphs. Therefore, we 

wrote a small program for extracting smoking 

information from the clinical notes. Extracting relevant 

information did not only help with the inefficient 

processes, however it also gave us the opportunity to 

train with more and relevant data, since it is known from 

a classic study by [44] that the classifier’s performance 

improves as more relevant data is added.  

The training time was shortened to less than 2 

minutes for more than 300 records. We noticed that 

when more relevant data was added the accuracy of the 

results improved, the f-measure score for the non-

smoker increased to 0.95, while current smoker 

increased to 0.82 and the only decrease was from past 

smoker class with 0.54. The performance of our 

algorithm for the non-smoker class has surpassed that of 

[35] for document-level classification by a percent. [35] 

did a similar study where they focused on transferability 

of the smoking status detection module at different 

institutions, however they only covered smoking status 

without focusing on smoking details. On the other side, 

an earlier study by [34] had obtained a much higher f-

measure of 97% for the non-smoker detection class at a 

document-level. As we were adding more training data, 

the f-measure of the past smoker increased from 0.54 to 

0.66, we also noticed that the rules were robust because 

we were able to reuse the same rules for an unknown set 

of test data. This implied that they could be 

implemented for extracting smoking status from other 

health institutions. However, it is worth mentioning that 

these results were as good as the data that was used, in 

this case the MIMIC-III data. Therefore, the results 

might be influenced or biased by the manner in which 

the health clinician captured the data. As for the 

smoking details extraction task, we observed that the 

classes were properly balanced for the type of substance 

smoked, and frequency had a high precision because it 

is usually represented as “ppd” which made it simple to 

extract. However, it was more challenging to identify 

the amount because it is often concatenated to the 

frequency value, e.g. “1ppd”, hence the low recall. Low 

recall means that there were not enough training 

examples for the amount tag. Our result come short 

when comparing with those obtained by [17] for the 

smoking details except the temporal which in our case 

was 80% while they obtained 78.4%. More time of this 

study was spent in writing the rules in UIMA Ruta, in 

addition the learning curve for this engine was steep, 

and it contributed to the results obtained in this study.  

 

8. Conclusion 

 
This study was aimed at extracting smoking details 

and classifying clinical notes to non-smoker, current 

smoker and past smoker classes, then ultimately 

standardize the data. The researchers have used NLP 

methods to create value from data that is difficult to use 

for secondary purposes. We have explored various data 

modelling standards and we ended up using openEHR 

models because of their accessibility, interoperability, 

and openness. However, we used the openEHR as a 

guideline for creating a FHIR profile. In Future we 

would like to cover abstinence goals in substance abuse 

which includes alcohol, smoking, and drug, and then 

map the extracted information to CIMI model and to a 

FHIR profile. Furthermore, since the grammar used to 

represent smoking information is sometimes incorrect 

and this study did not cover grammar issues in clinical 

notes. However, this could be a future study where one 

uses sentence-level grammatical error identification 

concepts. 
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