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Abstract

We present a physics-informed Gaussian Process
Regression (GPR) model to predict the phase
angle, angular speed, and wind mechanical power
from a limited number of measurements. In the
traditional data-driven GPR method, the form of
the Gaussian Process auto- and cross-covariance
functions is assumed and its parameters are found
from measurements. In the physics-informed GPR,
we treat unknown variables (including wind speed
and mechanical power) as a random process and
compute the auto and cross-covariance functions
from the resulting stochastic power grid equations.
We demonstrate that the physics-informed GPR
method is significantly more accurate than the
standard data-driven one for immediate forecasting of
generators’ angular velocity and phase angle. We also
show that the physics-informed GPR provides accurate
predictions of the unobserved wind mechanical power,
phase angle, or angular velocity when measurements
from only one of these variables are available.
The immediate forecast of observed variables and
predictions of unobserved variables can be used for
effectively managing power grids (electricity market
clearing, regulation actions) and early detection of
abnormal behavior and faults. The physics-based GPR
forecast time horizon depends on the combination of
input (wind power, load, etc.) correlation time and
characteristic (relaxation) time of the power grid and
can be extended to short and medium-range times.

1. Introduction

Real-time monitoring and immediate forecasting of
the power grid dynamics is important for efficient
operation of the power grid, including electricity market
clearing and regulation actions [1]. Other applications
that require forecasting include early detection of
faults and instabilities and the effective operation of
controllers. Despite the fact that modern power grids

are heavily instrumented, directly measuring all power
grid states remains impractical. Inherent high-frequency
oscillations of the power grid dynamics, compounded
by increasing penetration of renewable energy sources,
make immediate forecasting very challenging.

Here, we present a “physics-informed” Gaussian
Process Regression (GPR) method for monitoring
(computing unobserved states) and immediate
forecasting of power grid dynamics from measurements
of (observed) states. We demonstrate that when partial
(past) observations of variables are available, the
proposed physics-informed GPR is significantly more
accurate for forecasting than the standard “data-driven”
GPR. When observations of the variables (states) of
interest are not available, the physics-informed GPR
still can provide equally good predictions based on
measurements of other states, while the data-driven
GPR becomes inapplicable.

Short-term forecasting in power grids has
been addressed with various methods, including
machine learning (support vector machines [2], Deep
Neural Networks [3, 4, 5]) and statistical (e.g., the
autoregressive integrated moving average method [6])
methods. GPR [7], another machine learning method,
has been used for forecasting observed states with the
model hyperparameters learned from measurements
[8, 9]. In this work, we refer to this standard GRP
method as the “data-driven” GPR. Challenges with
the data-driven GPR include: 1) it requires a large
amount of data collected at high frequency (relative
to the process’ correlation time), 2) the estimation
of hyperparameters can be affected by the noise in
measurements, and 3) it cannot predict unobserved
states. Unlike some engineered and natural systems,
power grid dynamics is well understood, and equations
governing power grid dynamics have solid theoretical
foundations. Using this characteristic of power grids,
we propose a novel physics-informed GPR approach
with the auto- and cross-covariance functions computed
as a solution of stochastic power grid equations. We
consider a grid with wind-powered generators. Because
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wind mechanical power is oscillating in time and
deterministically unknown, it must be modeled as a
correlated-in-time random process to properly describe
the effect of wind fluctuations on the power grid
dynamics and small signal and transient stability [10].
Random mechanical wind power transforms power
grid equations into stochastic equations [11, 12]. To
compute the covariance function, we solve stochastic
power grid equation using the strong stability preserving
Runge-Kutta (RK) scheme for different realizations of
mechanical wind power [13, 12].

2. Problem description

To introduce the physics-informed GPR approach,
we consider a power system with a single wind-powered
generator and infinite bus, described by the swing
equations [14, 11]:

dθ

dt
= ωB(ω − ωS),

dω

dt
=
ωS
2H

[Pm − Pe −D(ω − ωS)], (1)

subject to the initial conditions θ(t = 0) = θ0 and
ω(t = 0) = ω0. Here, θ ∈ [0, 2π) is the phase
angle between the axis of the generator and the magnetic
field, ω ∈ (−∞,∞) is the angular generator speed,
H is the generator inertia, ωB is the base speed, ωs is
the synchronization speed, and Pe is the electric power
supplied by the generator to the infinite bus and is related
to the phase angle θ as

Pe = Pmax sin θ, (2)

where Pmax = EV
X , E is the internal energy, V is the

bus voltage, and X is the total reactance in the system.
The mechanical power of wind,

Pm(t) = Pm + P ′m(t), (3)

is modeled as a stochastic process, where Pm(t) > 0 is
a known deterministic function of time and P ′m is a zero
mean Gaussian process with variance σ2, correlation
time λ, and the auto-covariance function

P ′m(t)P ′m(s) = σ2 exp

(
−|t− s|

λ

)
. (4)

To solve the governing equations, we model P ′m(t)
as an Ornstein-Uhlenbeck (O-U) process, satisfying the
stochastic ordinary differential equation (ODE) [13]:

dP ′m = − 1

λ
P ′mdt+

√
2

λ
σdW, (5)

subject to the initial condition

P ′m(0) = P ′m,0, (6)

where W is the standard Wiener process.
The resulting equations are solved using a

second-order strong stability preserving RK scheme
[13] (described in Section 3). The initial condition (6) is
obtained from the stationary Gaussian distribution with
variance σ2. The initial conditions for θ and ω are set to
θ0 = arcsin Pm

Pmax
and ω0 = ωS .

3. Strong stability preserving
Runge-Kutta scheme

To introduce the RK scheme, we define the vector
y = [θ, ω]T and scalar z = P ′m functions of time and
rewrite the governing equations as

dy = f(y)dt+ g(y)zdt,

dz = −azdt+ bdW, (7)

where f(y) =

[
ωB(ω − ωS)dt

ωS

2H [Pm − Pmax sin θ −D(ω − ωS)]

]
,

g(y) =

[
0

ωS

2HP
′
m

]
, a = 1

λ , and b =
√

2
λσ. The RK

discretization of Eq (7) is [13]:

yk+1 = yk +
h

2
{(f + gz)k + (f + gz)k̄}+

1√
12
gkbh

3/2ηk,

zk+1 = zk + bξkh
1/2 +

h

2
a(zk + zk̄) +

1√
12
abh3/2ηk,

(8)

where h is the time step, ξk and ηk are the realizations of
independent standard Gaussian random variables ξ and
η at time step k, fk̄ = f(yk̄), gk̄ = g(yk̄), yk̄ = yk +
(f + gz)kh, and zk̄ = zk + bξkh

1/2 + azkh.

4. Gaussian Process Regression model

GPR gives an unbiased estimate of variable xf =
[xf1 , ..., x

f
Nf ]T (xfi = xf (ti)) at different times ti

and associated uncertainty given observations xo =
[xo1, ..., x

o
No

]T (xoi = xo(t̃i)). Here, xo and xf

can represent the same power grid states, where, for
example, xo is the observed ω, xf is the forecasted
ω, and tNo

< t̃1. Alternatively, xo and xf could
be different states, e.g., xo is observed ω, and xf is
predicted θ at the same times when ω is observed (i.e.,
ti = t̃i) or at different times.
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Let us define x = [xo, xf ]T . Next, we assume that x
is the Gaussian process with[

xo

xf

]
∼ N

([
x̄o

x̄f

]
,

[
Coo Cof
Cfo Cff

])
, (9)

where x̄o and x̄f are the so-called prior (or,
unconditional) mean of xo and xf , respectively, and
Coo, Cof , Cfo, and Cff are the respective prior
covariances between xo and xo, xo and xf , xf and xo,
and xf and xf . Then, GPR defines the conditional (or
posterior) estimate of xf given xo as

x̂f (t) = CfoC
−1
oo x

o (10)

and the conditional covariance as

Ĉff = Cff − CfoC−1
oo Cof . (11)

The main challenge in GPR is to obtain prior statistics,
i.e., prior mean and covariance functions. In the
standard data-driven GPR method, prior statistics is
found from measurements of xo and xf using the
so-called marginal likelihood [8, 9]. Usually, a
form of the covariance function is assumed, and the
parameters (variance and correlation length) are found
by minimizing the negative marginal likelihood of the
Gaussian process. Such a purely data-driven approach is
impossible to implement for reconstructing unobserved
states from observed states without making assumptions
about the correlation between unobserved and observed
states.

Our proposed physics-informed GPR approach
combines GPR and power grid equations. Specifically,
we use Eqs (1) - (6) to compute the mean and auto- and

cross-covariance functions in Eq (9). Let ω(n)
k , θ(n)

k , and

P
′(n)
m,k k = 0, 1, ...,K be numerical solutions of Eqs (1)

- (6) at time tk with the initial condition P
′(n)
m,0 (n =

0, 1, 2, · · · , N ) drawn from the Gaussian distribution.

Then, the mean of the state x(n)
k (x = ω, θ, P ′m) in in

Eq (9) is computed as

x̄(tk) = x̄k =
1

N

N∑
n=1

xnk , k = 1, · · · ,K (12)

and the auto-covariance function in Eq (9) as

Cxx(tj , tk) =
1

N − 1

N∑
n=1

(xnj − x̄j)(xnk − x̄k),

j, k = 1, · · · ,K. (13)

The cross-covariance between different variables (e.g.,
between ω and θ) in in Eq (9) is computed as:

Cωθ(tj , tk) =
1

N − 1

N∑
n=1

(ωnj − ω̄j)(θnk − θ̄k),

j, k = 1, · · · ,K. (14)

5. Numerical results
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Figure 1. One realization of θ(t), ω(t), and P ′
m(t).

The numerical solutions are obtained with Pmax =
2.1 p.u., H = 5 s, D = 5 p.u., 〈Pm〉 = 0.9 p.u., ωB =
120π rad/s, λ = 0.026 s, and ωS = 1.0. This parameters
are taking from a recent study on small signal stability
analysis in [11]. The solutions are computed for a total
time of T = 25 s with a time step h = 0.0025 s.
The initial conditions are assumed to be θ0 = 0.45,
ω0 = 1.0. One thousand Monte Carlo realizations are

performed with P
′(n)
m,0 = ξn, (n = 0, 1, ..., 999), where

ξn is a Gaussian random variable with zero mean and
variance σ = 0.1.

Figure 2. 50 realizations of θ(t) and ω(t).

Fig. 1 shows one realization of θ(t), ω(t), and
P ′m(t). It illustrates that θ and ω have higher-frequency
oscillations on the scale of 1 s caused by the
high-frequency oscillations in P ′m and lower-frequency
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oscillations on the scale of 10 s that are proportional to
the relaxation time of the system H

ωsD
. In this work,

we focus on modeling higher-frequency dynamics. Fig.
2 shows 50 realizations of θ(t) and ω(t). Mean and
standard deviation of θ and ω approach asymptotic
values after approximately 20 s, which are shown in
Figs. 3 and 4.
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Figure 3. Mean of θ and ω.
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Figure 4. Standard deviation of θ and ω.

We consider three different cases for time series
forecasting. In the first case, we assume that partial
measurements of θ and ω up to a certain time are
available and forecast of θ and ω beyond this time using
conditional estimation of mean and standard deviation
from the Gaussian process model. In the second case,
we assume that partial measurements are available only
for θ and predict θ, ω, and P ′m. In the third case, we
predict θ, ω, and P ′m when only partial ω measurements
are available.

5.1. Case 1: Forecast of θ and ω given past
measurements of θ and ω

In this case, we assume that the θ(t) and ω(t)
measurements are available until time t = 8.3375 s
every 0.0025 s. Our objective is to forecast θ(t) and ω(t)
for times greater than 8.3375 s. To test our approach, we
compute prior statistics as described in Section 4 and
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Figure 5. Forecast for θ and ω (magenta line) and

the error bounds (gray area) corresponding to two

standard deviations of θ and ω, respectively. The blue

dashed line shows the ground truth (realization one).

use two randomly selected solutions of the governing
equations as ground truth. Specifically, we treat the
solution for t < 8.3375 s as observations of θ(t) and
ω(t) and use these observations as input for the GRP
model to predict θ(t) and ω(t) for t > 8.3375 s. The
second part of the solutions is used to validate the GPR
predictions.

For these two synthetic observation sets, Figs. 5
and 6 show the forecast (mean values) of θ and ω
(magenta line) and uncertainty, represented by the gray
area corresponding to two standard deviations of θ and
ω. The blue dashed line shows the ground truth. In
both cases, the physics-informed GPR method is able
to provide an accurate deterministic forecast of θ and
ω for the time horizon of at least 2 s or 50λ, i.e., the
mean prediction of the GPR closely agrees with the
ground truth for at least 20λ, after which the mean
prediction quality deteriorates. More importantly, the
“statistical forecast” is accurate for at least 4 s or 80λ,
i.e., the ground truth lies within the predicted uncertainty
envelope.

For comparison, we also forecast θ and ω using the
standard data-driven GRP method with the covariance
obtained from the marginal likelihood method (Fig.
7). The comparison of the two methods demonstrates
that the the physics-informed GPR performs much
better than the data-driven GPR. The data-driven GPR
provides an accurate mean prediction for less than 5λ
and statistical prediction for less than 20λ.

5.2. Case 2: Forecast θ, ω, and P ′
m given

measurements of θ

In this case, we assume that θ(t) measurements are
available for t < 8.3375 s every 0.0025 s. Our goal is
to predict θ(t) for t > 8.3375 and ω(t) and P ′m(t) for
the entire time interval t ∈ [0, 12.5] s. As in Case 1, we
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Figure 6. Forecast for θ and ω (magenta line) and

the error bounds (gray area) corresponding to two

standard deviations of θ and ω, respectively. The blue

dashed line shows the ground truth (realization two).
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Figure 7. Forecast for θ and ω (magenta line) and

the error bounds (gray area) corresponding to two

standard deviations of θ and ω, respectively,

computed using the standard data-driven GPR with

covariance obtained from the marginal likelihood

method. Red line shows the ground truth.

compute prior statistics by solving the stochastic power
grid equations and use a randomly selected solution as
observations of θ(t) for t < 8.3375 s and ground truth to
validate the physics-informed GPR predictions of θ(t)
(for t > 8.3375), ω(t), and P ′m(t). Fig. 8 shows
the predictions of θ, ω, and P ′m and the ground truth
results. Notably, the forecast of ω is exactly the same
as in Case 1 (Fig 6) because the ω observations are
the same in these two cases. The prediction for θ(t) is
excellent for t < 8.3375 when ω(t) measurements are
available. This is evident by the mean prediction being
very close to the ground truth and very small standard
deviation (i.e., the narrow gray “uncertainty” area). For
t > 8.3375, the agreement between mean prediction and
ground truth is almost as good as in Case 1. Also, as in
Case 1, the ground truth remains within the uncertainty
envelope. Similar results are observed for Pm. These
results demonstrate that the physics-informed GPR is
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Figure 8. Forecast of θ, ω, and P ′
m with no

observations of θ for t > 8.3375.

very accurate for computing unobserved variables. This
is important because some variables, including Pm, are
difficult to measure directly.

5.3. Case 3: Forecast of θ, ω, and P ′
m given

measurements of ω
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Figure 9. Forecast of θ, ω, and P ′
m process with no

observations of ω for t > 8.3375.

This case is similar to Case 2, except instead of
θ(t) measurements, we have ω(t) measurements for
t < 8.3375. Our objective is to predict ω(t) for t >
8.3375 and θ(t) and P ′m(t) for the entire time interval
t ∈ [0, 12.5] s. Fig. 9 presents measurements of ω
and predicted ω(t), θ(t), and P ′m(t), as well as the
ground truth solutions for these variables. As in Case
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Figure 10. Forecast of θ, ω, and P ′
m with 333

observations of ω for t > 8.3375.

2, physics-informed GPR provides excellent predictions
of θ(t) and P ′m(t) for t < 8.3375 and a similarly good
prediction for t > 8.3375 s as in Case 1 where the θ(t)
measurements for t < 8.3375 are available.

Next, we assume that 333 ω(t) measurements
(shown by red circles in Fig. 10) are available for
t > 8.3375. Fig. 10 shows that these measurements
significantly improve prediction of the (unobserved)
θ(t) and P ′m(t) variables.

Fig. 11 depicts a comparison of the
physics-informed GPR prediction of P ′m based on
measurements of θ and ω. This comparison reveals that
the predictions of P ′m(t) are reasonably good in both
cases and better when θ measurements are available
instead of ω measurements. This shows that θ is
correlated more strongly with P ′m than ω.
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Figure 11. Forecast of P ′
m process when

observations of a) θ and b) ω are available.

6. Discussion and conclusions

We have presented a physics-informed Gaussian
Process Regression (GPR) model to predict the phase
angle, angular speed, and wind mechanical power when
past measurements of all or some of these states are
available. In the traditional data-driven GPR method, a
form of the covariance matrix of the Gaussian Process
model is first assumed and then its parameters are
found from measurements. In the physics-informed
GPR, we treat unknown variables, including wind
speed and mechanical power, as a random process
and compute the covariance matrix of the GPR model
from the resulting stochastic power grid equations.
We have demonstrated that the physics-informed GPR
method is significantly more accurate than the standard
data-driven GPR method for forecasting generators’
angular velocity and phase angle. We also have
shown that the physics-informed GPR provides accurate
predictions of the unobserved wind mechanical power,
phase angle, or angular velocity when measurements of
only one of these variables are available.

One advantage of GPR over neural-network-based
methods is that its predictions come with uncertainty
bounds, i.e., GPR predicts the mean value and
standard deviation of quantities of interest. We
have demonstrated that the physics-informed GPR
accurately and reliably (with small uncertainty) predicts
unobserved variables from observed ones for the entire
time interval where observations of other (correlated)
variables are available. For forecasting, the uncertainty
in predicted values slowly increases with the time
horizon. In the considered cases, the forecasted mean
values were accurate in the time horizon equal to
as many as 200 correlation times of the wind power
fluctuations. For larger time horizons, we have noted
the predicted values to be within two standard deviations
from the ground truth.

In this study, we have modeled high-frequency
power grid dynamics produced by high-frequency wind
oscillations. The correlation length of the wind
mechanical power in the simulated data was λ =
0.026 s, and the accurate mean values were obtained
for up to 2 s time horizon. Such high-frequency
oscillations have been shown to have a significant
effect on small signal stability [10, 11, 12]. For
economic load dispatch and planning, the considered
wind oscillations are on the scale of minutes. Load
dispatch and planning require forecast for the 6 hr
time horizon and unit commitment, reserve requirement
decisions, and maintenance scheduling need 24 hrs to
one-week forecasts [1]. In our future work, we will
investigate if the physics-informed GPR can provide an
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accurate forecast on such time horizons by considering
low-frequency wind and load fluctuations with the
correlation time on the order of 2 - 30 min.

It is important to note that the proposed
physics-informed GPR approach is “non-intrusive,”
i.e., it does not require any modifications of equations
governing the power grid dynamics. Therefore, any
existing power-grid code can be used to compute
auto- and cross-covariance functions. Then, to apply
the proposed approach to a larger power network with
several generators and wind farms, the Gaussian process
(9) must be extended by including auto-covariance
functions for each generator and cross-covariance
functions between different generators.
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