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Abstract 
 
Demand response is a key aspect of managing 

uncertainty and reducing peak loads in electric grids. 
This paper considers the capability of a datacenter to 
provide responsiveness to grid signals through 
cooling system control.  The strategy is based on pre-
cooling the center for provision of load reduction 
during demand response events, and is evaluated 
using a numerical model of a cooling system, validated 
against experimental data obtained from a small 
telecommunication data center. The pre-cooling 
strategy is applicable to a wide-range of demand 
response programs, but is illustrated on the example 
of an established critical peak pricing program; 
specifically the 4 coincident peak (4CP) program in 
the ERCOT ISO. Precooling reduced the annual cost 
of electricity used by the cooling system by 7.8 % to 
8.6 %, while increasing the total energy use only by 
0.05%. This translated into 2 % to 2.6 % reduction in 
the electric bill of the whole data center. The 
developed demand response strategy is suitable for 
data centers with power densities below 500 W/m2 
which do not use server air containment systems.   
 
Nomenclature 
 
a – thermal constant [-] 
C – thermal capacitance [J/ºC] 
COP – coefficient of performance for cooling (equal 
to cooling capacity divided by work input) [-] 
h – time step [s] 
m – constant determining whether cooling system is 
on (m = 1) or off (m = 0) [-] 
n – number of active heat pump cooling stages: n = 1 
for part-load and n = 2 for full-load [-] 
QIT – internal heat gain from the IT equipment [W] 
QC – cooling power of the heat pump [W] 
R – overall thermal resistance [ºC/W] 
t – time [s] 
W – power consumption of the cooling equipment 
[W] 

 
γ – ratio of the nominal cooling power to the IT load 
(γ = QC,nom·n/QIT) [-] 
θ – indoor temperature [ºC] 
θa – ambient temperature [ºC] 
θmin – minimum thermostat set point [ºC] 
θmax,1 – maximum thermostat set point (for part-load 
cooling) [ºC] 
θmax,2 – maximum thermostat set point (for full-load 
cooling) [ºC] 
 
Subscripts 
 
avg – average 
dr – demand response 
nom – nominal (corresponding to 26.7 ºC indoor dry 
bulb temperature and 50% relative humidity) 
pc – precooling 
t – time 
 
1. Introduction  
 

Currently, there are a significant number of 
generators in the U.S. power system that exist to serve 
peak loads, mostly corresponding to periods when 
cooling demands are very high. At these times, 
electricity generating resources are scarce and the 
peaking plants are required to cover electricity 
shortages. The outcome is high electricity prices and 
output from power plants that are relatively inefficient 
and have higher emission levels [1].  

Reduction in the grid-wide peak electric load (also 
known as coincident peak) can be accomplished 
through demand response. Demand response 
programs incentivize customers to alter their 
electricity use at specific times to improve reliability 
of the grid, for example by reducing coincident peak 
load. This is typically accomplished by charging 
customers a higher rate for electricity used during 
coincident peak periods [2] or by making the 
transmission charge dependent on the consumer’s load 
during these times [3]. The coincident peak charge 
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may constitute upwards of 20% of the electric bill, 
providing a strong incentive for customers to reduce 
their demand during these periods [4]. The definition 
of what constitutes customer’s contribution to the 
coincident peak varies by the regional transmission 
organization (RTO) or Independent System Operator 
(ISO). For example, the 4 coincident peak (4CP) 
program in ERCOT ISO defines it as the average of 
customer’s loads during 15-minute system-wide peaks 
in each of 4 months from June to September [3,5]. The 
5CP program in PJM RTO considers customers’ 
contributions to the top 5 peak hours occurring on 
separate weekdays from June to September [5,6]. 
While it is impossible to predict the timing of the 
coincident peak events with certainty, many system 
operators, utilities, and consulting companies provide 
forecasts and alerts for customers participating in these 
programs [3]. 

The characteristics of data centers make them 
particularly suitable for participation in demand 
response programs including coincident peak pricing. 
Data centers represent approximately 1.8% of the total 
U.S. electricity consumption [7]. They are large, 
centralized loads which can provide substantial 
flexibility to the grid either by shifting their workload, 
or by temporarily adjusting the operation of their 
cooling systems [2]. In the latter approach, data 
centers act as thermostatically controlled loads (TCLs) 
and can be used to enhance grid reliability by 
providing ancillary services [8], load following, or by 
participating in energy arbitrage [9]. Cooling systems 
in data centers offer numerous advantages over 
residential TCLs: their cooling load is relatively 
constant year-round, they can provide fast response 
due to being oversized for reliability, and they may 
allow larger indoor temperature fluctuations compared 
to comfort-oriented residential heating and cooling 
systems. The large capacity data center cooling 
systems compared to residential air conditioning 
would also reduce the costs of control systems and 
load integration required for demand response [9].  

Despite their large potential, most data centers 
don’t actively participate in demand response [4]. The 
primary reasons are low financial incentives for many 
types of demand response and the fear of sacrificing 
the reliability of the IT equipment. The risk-averse 
data center operators are also not willing to give up 
any control over the cooling system to load aggregator 
or the utility, which is required by some demand 
response strategies [9].  

The most common demand response program 
currently available to data centers in coincident peak 
pricing [4]. Data center demand response under 
coincident peak pricing programs has been studied for 
workload shifting and using local power generation 

[2], but not for shifting data center cooling loads. The 
latter approach is evaluated in this paper.  

 
1.1. Scope of this paper 
  

The goal of this paper is to develop a demand 
response mechanism for reducing coincident peak 
loads in low- to medium-power density data centers 
and server rooms. Such facilities typically use 30% to 
50% of their energy demand for cooling IT equipment 
[10]. The proposed approach relies on precooling the 
data center prior to demand response events and 
reducing the cooling load during the peak. In the case 
of coincident peak programs, events are typically 
forecasted several hours in advance. If a coincident 
peak event is likely to occur on a given day, the data 
center operator can lower the indoor temperature 
ahead of the expected peak – a process referred to as 
precooling. During the predicted period of coincident 
peak, the cooling system can either be switched off or 
its output can be reduced, while only maintaining air 
circulation needed to avoid hot spots in the computer 
room. 

The proposed approach has several advantages 
over alternative demand response mechanisms, 
making it more likely to be adopted by the risk-averse 
data center operators. It does not require expensive 
energy storage devices, it is easy to automate, and does 
not require surrendering the control over the cooling 
system to a distribution system operator or a load 
aggregator. The indoor temperature is always 
maintained below the allowable maximum, which 
alleviates the risk of overheating the IT equipment. In 
addition, the proposed strategy does not require an 
advanced communication platform between the 
systems operator and the data center. Instead, it relies 
on coincident peak forecasts, which are widely 
available. For example, in the ERCOT ISO such 
forecasting services were offered by 13 retail 
electricity providers, 8 municipal utilities, and a 
number of consulting companies [3].  

The main limitation of the proposed control 
strategy is that it is applicable primarily to low- to 
medium- power density data centers and server rooms 
without server air containment systems. In order to 
provide sufficiently high demand response times, the 
power density calculated based on the total area of the 
server room should be below approximately 500 
W/m2. Such low power densities are characteristic of 
computer rooms, but may also be encountered in 
telecommunications data centers and other facilities 
with low floor utilization [10,11]. Our analysis shows 
that facilities with significantly higher power density 
do not have sufficient thermal storage capacity to 
provide extended demand response times. 
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This analysis begins with Section 2 discussing the 
numerical model used to simulate thermal behavior of 
data centers. This model is introduced in Section 2.1 
and its parameters are fitted to the data acquired from 
a small telecommunications data center in Section 2.2. 
The results of the simulations are validated using 
experimental data in Section 2.3. Section 3.1 describes 
the control algorithm used for reducing coincident 
peak load. This algorithm is evaluated using a case 
study of the 4CP program in ERCOT. The 4CP 
program is discussed in Sections 3.2 and 3.3. The 
results of the case study are presented in Section 4 and 
sensitivity analysis is provided in Section 4.1. Lastly, 
concluding remarks are included in Section 5. 
 
2. Modeling approach 
 
2.1. Numerical model of telecommunications 
data center 
 

To simulate the thermal behavior of a data center 
building and its cooling system we used a discrete time 
model adopted from previous work [8,12,13]. The 
parameters of the model were fitted to the data 
collected from a geothermal heat pump cooling system 
installed in a small telecommunications data center in 
Ithaca, NY. The model represents the data center as a 
homogenous thermal mass, which temperature is 
controlled by the heat transfer through the building 
envelope, the internal heat gains from the IT 
equipment, and the operation of the cooling system. 
The thermal inertia of the building is described by a 
dimensionless parameter a calculated as a function of 
the time step h, thermal capacitance C (in J/ºC), and 
thermal resistance R (in ºC/W): 

 𝑎 = 𝑒𝑥𝑝&− (
)∙+
, (1) 

The indoor temperature θ at time t+1 is calculated 
using Equation 2:  

 𝜃./0 = 𝑎 ∙ 𝜃. + (1− 𝑎)5𝜃6,. + 𝑅9𝑄;< −𝑚.𝑄),.>?  (2) 

Where θa is the ambient temperature (in ºC), QIT is 
the constant internal heat gain form the IT equipment 
(in W), and QC is the cooling power of the heat pump 
(in W). The binary constant m determines whether the 
cooling system is on or off depending on the minimum 
and maximum indoor temperature set points θmin and 
θmax,1. The difference between θmax,1 and θmin is the 
thermostat dead band.  

 𝑚./0 = @
0		𝑖𝑓		𝜃. ≤ 𝜃FGH		
1		𝑖𝑓		𝜃. ≥ 𝜃F6J,0

𝑚.	𝑖𝑓	𝜃FGH < 𝜃. < 𝜃F6J,0		
 (3) 

The power consumption of the cooling system W 
(in W) is calculated based on its cooling capacity QC 
(in W) and the coefficient of performance COP: 

 𝑊. =
0

)MNO
∙ 𝑄),. ∙ 𝑚.  (4) 

The COP and the capacity of the cooling system 
QC are expressed as functions of the indoor 
temperature using Equations 5 and 6: 

 𝐶𝑂𝑃. = 𝐶𝑂𝑃HSF ∙ (0.022 ∙ 𝜃. + 0.406)  (5) 

 𝑄),. = 𝑄),HSF ∙ 𝑛 ∙ (0.024 ∙ 𝜃. + 0.361) (6) 

where n is the number of active cooling stages of a 
heat pump (n = 1 for half-load and n = 2 for full-load). 
The second stage of the heat pump compressor (n = 2) 
is activated if the indoor temperature exceeds θmax,2 and 
deactivated if it drops below θmax,1. Both the nominal 
cooling capacity of the heat pump Qc,nom and the 
functional forms of Equations 5 and 6 were obtained 
from the heat pump specifications [14]. The overall 
coefficient of performance COPnom at nominal 
conditions (i.e. 26.7 ºC indoor dry bulb temperature 
and 50% relative humidity) was obtained from a 
numerical model of the cooling system developed in 
TRNSYS software and validated using experimental 
data. The TRNSYS model was described in detail in 
our previous publication [15]. Equations 5 and 6 are 
applicable to geothermal cooling systems, in which 
heat sink temperature remains nearly constant 
throughout the year. The performance of conventional 
air-cooled computer room air conditioning (CRAC) 
systems would vary with the weather conditions, 
resulting in lower COP and cooling capacity at high 
ambient temperatures.  

 
2.2. Fitting model to experimental data 
  
2.2.1. Model calibration. An accurate depiction of the 
transient thermal behavior of the data center is 
essential for the validity of this study. For this reason, 
the parameters of the numerical model were estimated 
from the data collected from a small, 93 m2 (1000 ft2) 
telecommunications data center located in Ithaca, NY. 
The data center had IT power demand of about 14 
kWe, indicating a low power density of 150 W/m2 

based on the computer room floor area. This is about 
one third of the median used power density in data 
centers worldwide [11]. The data center was equipped 
with a geothermal heat pump (GHP), which 
maintained the computer room temperature between 
θmin of 25.6 and θmax,1 of 26.4 ºC (78 to 80 ºF). The 
second stage of the heat pump compressor was 
activated at θmax,2 of 27.2 ºC (81 ºF). 
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The schematic of the cooling system is shown in 
Error! Reference source not found.. The heat pump 
removes heat from the indoor air and transfers it 
through two hydronic loops connected by a heat 
exchanger to a series of 140 m deep borehole heat 
exchangers (BHEs). BHEs dissipate the heat to 
subsurface, providing a nearly constant temperature of 
liquid returning to the GHP independent of the 
weather conditions. The indoor air cooled by the GHP 
is distributed by a network of underfloor ducts and 
perforated tiles to the server room and returned 
through a system of vents located in the ceiling. The 
air flow is not contained to the IT equipment and the 
cold supply air is allowed to mix with the indoor air. 

The geothermal heat pump provides a higher COP 
than air conditioning systems typically used in data 
centers and its performance is less sensitive to the 
ambient temperature. The dynamic thermal behavior 
of the data center, however, does not depend on the 
source of cooling and is expected to be the same for 
both geothermal and air-source systems.  

  

 
Figure 1: Schematic of the geothermal data center 

cooling system consisting of: 1) borehole heat 
exchangers, 2) wellfield glycol circulation pump, 3) 
glycol heat exchanger, 4) building circulation pump, 
5) geothermal heat pump, 6) air blower, 7) hot air 
return, 8) cold air supply, 9) IT equipment, and 10) 

computer room. 
 

The data center cooling system was equipped with 
a comprehensive monitoring and data acquisition 
system, which recorded relevant temperature, flow, 
and power consumption data in 5-minute intervals 
over a period of 43 days from August 15 to September 
27, 2017. This data was used to estimate the values of 
parameters used in Equations 1 to 6, which were listed 
in Table 1. The nominal cooling capacity of heat pump 
per stage QC,nom was calculated as an average over all 
times when the heat pump was on and the indoor 
temperature was within 1 ºC from 26.7 ºC. The heat 
pump can operate in two stages: at half-load (n = 1) or 
full-load (n = 2), with respective cooling capacities of 
approximately 15.8 kW and 31.6 kW. The electricity 

use of IT equipment was not directly measured, so the 
amount of heat generated by the IT equipment QIT was 
inferred from other measurements. The following 
procedure was used to calculate QIT and the thermal 
resistance R: for each time interval, the difference in 
the temperature of the ambient and indoor air ∆T was 
calculated. All recoded data were categorized into 2 ºC 
bins based on ∆T and the average cooling load for each 
bin was calculated. The data was binned to reduce the 
noise due to transient start up behavior of the heat 
pumps. The average cooling load was then plotted as 
a function of ∆T and a linear function was fitted to the 
data providing a coefficient of determination R2 of 
0.99. The QIT was set equal to the y-intercept of this 
function i.e. the cooling load for no heat transfer 
through the building envelope. The slope of the linear 
fit indicated the sensitivity of the cooling load to ∆T, 
and therefore R was calculated as the inverse of the 
slope. Lastly, thermal capacitance C was calculated by 
fitting the frequency of indoor temperature 
fluctuations from the model to experimental data for a 
period when the ambient temperature was stable and 
within 1 ºC from the indoor temperature. Due to 
negligible heat losses during this time, the heat load 
from equipment was set equal to the average cooling 
duty.  
 
Table 1: Values of the model’s parameters obtained 

from the experimental measurements. 
Symbol Parameter Value 
h Time step 10 [s] 
C Thermal capacitance 15.7·106 

[J/ºC] 
R Thermal resistance 4.67·10-3 

[ºC/W] 
QC,nom Nominal cooling 

capacity of heat pump 
per compressor stage 

15767 [W] 

QIT Average heat gain from 
IT equipment 

14040 [W] 

θmin Minimum thermostat set 
point 

25.6 [ºC] 

θmax,1 Maximum thermostat set 
point for the part-load (n 
= 1) cooling 

26.4 [ºC] 

θmax,2 Maximum thermostat set 
point for the full-load  (n 
= 2) cooling 

27.2 [ºC] 

COPnom Coefficient of 
performance at nominal 
conditions 

3 

N Number of active heat 
pump compressor stages 

1 or 2 
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2.2.2 Model validation. Figure 2 shows a comparison 
of the results from the numerical model to the data 
recorded at the telecommunications data center in 
Ithaca, NY. The dynamic thermal behavior simulated 
by the model is in good agreement with the data, as 
illustrated by similar period of fluctuations in the 
indoor temperature θ. Most importantly, the rate at 
which the indoor temperature increases when the 
cooling system is off is accurately captured by the 
model. The cumulative cooling load and electricity use 
are also in a good agreement, with approximately 2% 
and 4% difference between data and model results, 
respectively. 

 
Figure 2: Validation of the results from the 
numerical model (red dashed line) with the 

experimental data (blue continuous line). Top: 
indoor temperature; middle: cumulative cooling 
duty; bottom: cumulative electricity used by the 

cooling system. 
 
3. Approach to reducing coincident peak 
demand  
 

This section discusses the proposed approach to 
reducing coincident peak load by precooling data 
centers or computer rooms ahead of the anticipated 
coincident peak events. The benefits and tradeoffs of 
this strategy are evaluated using an example of a 
telecommunications data center participating in the 
4CP (4 Coincident Peak) program in ERCOT. This 
program serves as a useful example, given its relative 
maturity and accessible data.   
 
3.1. System control 
  

A schematic of the proposed demand response 
mechanism is presented in Figure 3. Both the predicted 
start time tdr and the duration of the coincident peak 
warning ∆tdr are obtained by the data center using a 
forecasting service [5]. Based on the value of ∆tdr, the 
required indoor temperature to which data center 
needs to be precooled θmin,pc is calculated using 
Equation 7: 

𝜃FGH,Z[ = 𝑒𝑥𝑝 &\.]^
)∙+

, _𝜃F6J + &𝑒𝑥𝑝 &
`\.]^
)∙+

, − 1, ∙

9𝜃6,ab + 𝑅 ∙ 𝑄;<>c  (7) 

where 𝜃6,ab is the maximum dry bulb ambient 
temperature forecasted for the demand response 
period. If this information is not available, 𝜃6,ab can be 
conservatively estimated as the highest ambient 
temperature recorded in a given month during several 
recent years. In the example presented in Section 4, 
using a maximum monthly temperature from the last 
decade as 𝜃6,ab would lower the precooling 
temperature 𝜃FGH,Z[  only by 0.12 ºC and increase 
demand response time from 60 to 62 minutes.  

Both the precooling temperature 𝜃FGH,Z[  and the 
rate of change in indoor temperature dθ/dt are subject 
to safety constraints. The ASHRAE A1 class has a 
recommended indoor temperature range of 18 to 27 ºC 
(64.4 to 80.6 ºF) and allowable range of 15 to 32 ºC 
(59 to 89.6 ºF) [16,17]. The ASHRAE A1 allowable 
class has a maximum indoor temperature change of 20 
ºC in an hour [16], but some IT equipment vendors 
recommend dθ/dt below 5.5 ºC/hr [18].  

The time needed to precool the data center ∆𝑡Z[ can 
be then calculated using Equation 8: 

∆𝑡Z[ = 𝐶 ∙ 𝑅 ∙ 𝑙𝑛 g
hO`hi,O/+∙9jk,ilm`jno>

hpqr,st`hi,O/+∙9jk,ilm`jno>
u (8) 

where QC,avg is the average cooling capacity during 
the precooling period: 

 𝑄),6vw = 0.5 ∙ &𝑄),.st + 𝑄),.]^, (9) 

Figure 3 illustrates, that the precooling begins at 
time tpc, which is ∆tpc before the beginning of the 
coincident peak alert at tdr. If the indoor temperature 
𝜃FGH,Z[  is achieved before tdr, it is maintained at this 
low value until the beginning of the demand response. 
At time tdr the cooling system is switched off and only 
the blower in the air handler is operated on a cyclic 
basis, as necessary to avoid hot spots in the computer 
room. This work assumed that the air blower would be 
switched on for 2 minutes for each 10 minute interval. 
The cooling system is activated again at the end of the 
coincident peak alert period tdr + ∆tdr or if the indoor 
temperature exceeds 𝜃F6J,0.  
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Figure 3: Schematic of the proposed demand 

response approach for reducing coincident peak 
demand in data centers 

 
3.2. Case Study of Coincident Peak (4CP) 
program in ERCOT 
  

The proposed demand response mechanism was 
evaluated using an example of the 4 Coincident Peak 
(4CP) program in ERCOT ISO. 4CP is a capacity 
charge program under which large commercial 
customers (>100 kW peak load) equipped with 
interval data recorders (IRDs) are charged 
transmission charge based on their average 
contributions to coincident peaks. The coincident 
peaks are four 15-minute periods with the highest grid-
wide load, one during each of the months of June, July, 
August and September. The transmission charge is 
calculated based on the average consumer load during 
these four 15 min events in the previous calendar year 
[3,19].  

The 4CP program was selected as a case study for 
this analysis because it is particularly suitable for the 
proposed demand response scheme. The 4CP alerts are 

infrequent, last a short time and can be accurately 
predicted due to the strong correlation between the 
ambient temperature and load. During the recent 6 
years (2012 to 2017) all 4CP events in ERCOT 
occurred on weekdays between 4 PM and 5 PM, 
indicating that the required demand response time ∆tdr 
should not exceed 1 hour [19]. This compares 
favorably with the typical coincident peak alert 
durations of 2 to 6 hours issued in other markets [2,20]. 
The 4CP events can also be accurately predicted. A 
company offering 4CP forecasting services issued 
only 11 alerts in 2015, correctly predicting all 4 peak 
events [5]. So far, the customer response to the 4CP 
program did not result in significant peak shifting. Of 
the 28 4CP events between 2009 and 2015, only 5 
were shifted by 15 minutes and 1 was shifted by one 
day due to demand response [21]. The high annual 
coincident peak charges of $18 to $23 per kW provide 
additional motivation for participation in the 4 CP 
program [22]. The installation of Interval Data 
Recorders needed for participation in the 4CP program 
is, however, required only for large consumers with 
non-coincident peak demand above 700 kW [3,23]. 

The challenge with coincident peak pricing 
programs, from the perspective of providing grid 
services, is in the limited number of events that can be 
called annually, which may become insufficient in 
particularly hot years, or unnecessary in cooler 
summer seasons, and does not take full advantage of 
the flexibility offered by data centers [4]. In addition, 
coincident peak programs may lead to peak-shifting 
under large scale deployment. However, for the case 
of large consumers, the 4CP program has been 
relatively effective for peak reduction, and provides a 
useful illustrative example for this strategy [3]. 
 
3.3. Methodology and assumptions used in 
4CP case study 
 

In this work, operation of a small 
telecommunications data center actively participating 
in the 4CP program was compared to the same data 
center not participating in demand response. The 
hypothetical data center was located in Houston, TX 
and the analysis was performed for the year 2017. 

The thermal characteristics of the building and the 
cooling system were the same as in the experimental 
system Ithaca, NY. The nominal coefficient of 
performance of the system COPnom was set at 2.7 and 
the nominal cooling capacity per heat pump per stage 
QC,nom was set at 15 kW to reflect the higher heat sink 
temperature in Houston, TX compared to Ithaca, NY. 
Due to the higher ambient temperature, the heat pump 
operates more often on its full capacity rather than on 

Predict the start time tdr and duration 
∆tdr of the demand response event

Calculate precooling temperature 
Θmin,pc (Eq. 7)

Calculate duration of precooling ∆tpc
(Eq. 8)

Begin precooling at time tpc = tdr -
∆tpc

Switch off cooling system at time tdr

Switch on cooling system at time 
tdr + ∆tdr or when θt ≥ θmax,1
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part-load. During precooling, only the main heat pump 
is used. Activating the backup cooling capacity would 
reduce the precooling time, but could also increase the 
non-coincident peak charge.  

Two data center sizes were investigated: 
a) 25 kWe - a base case facility with a maximum 

combined load of approximately 25 kWe and 
a constant IT load of 14 kWe, identical to the 
experimental system installed in Ithaca, NY 

b) 250 kWe - a scaled up facility with 10 times 
greater maximum combined load 

Under the current ERCOT regulations only the 
latter system would have a sufficient peak load (>100 
kW) to qualify for the 4CP program, but this work 
assumed that both systems would be eligible for 
participation in 4CP. 

To represent the accuracy and frequency of the 
4CP alert services [5],  this work assumed that the data 
center would need to respond to 11 peak warnings per 
year, each lasting 60 minutes, from 16:00 to 17:00. 
Four alerts predicted the actual 4CP events and the 
remaining seven were scheduled at non-4CP days with 
the highest ambient temperatures (2 warnings in June, 
July, and August and 1 in September). 

The electricity prices for 2017 were obtained from 
two utilities participating in the 4CP program and are 
listed in Table 2. The combined monthly bills were 
calculated as sums of the transmission, distribution, 
and fixed charges determined by the utility [22], as 
well as real-time locational marginal prices for the 
Houston hub [24]. For simplicity, the transmission 
charge was determined based on the current, rather 
than previous year’s 4CP load. The hourly ambient 
temperature records for Houston Intercontinental 
Airport were obtained from the National Oceanic and 
Atmospheric Administration [25]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Generic monthly electricity cost 
components from two utilities for >10 kW 

customers equipped with Interval Data Recorders 
(ITD) and participating in the 4CP program. 

Calculations assume a power factor of one [22]. 
Energy charge is the locational marginal price for 

the Houston hub [24]. 
Monthly charges CenterPoint 

Energy 
AEP 
Texas 

Customer charge  
($ per customer) 

65.83 26.52 

Metering charge  
($ per customer) 

63.07 15.81 

Transmission charge 
($ per 4CP kW) 

2.24 1.79 

Distribution charge 
($ per kW) 

3.06 3.31 

Energy charge  
($ per kWh) 

Real-time 
prices; avg.  
of 0.028 

Real-time 
prices; avg. 
of 0.028 

 
4. Results and discussion  
 

Figure 4 illustrates the operation of the proposed 
demand response strategy during an actual 4CP event 
which occurred on July 28, 2017 from 16:45 to 17:00. 
The simulated response to a 4CP warning issued for 
the period from 4 to 5 pm (red dashed lines) was 
compared to the operation with no demand response 
(blue continuous lines). As a result of a heat gain 
through the building envelope and a lower cooling 
capacity in the hot climate, the heat pump remained on 
during the whole afternoon. In the system not 
participating in demand response, the heat pump 
oscillated between part-load and full-load from 15:00 
to 19:30 to maintain the desired indoor temperature. 
The system participating in demand response began 
precooling at tpc of 14:26, about 1.5 hour ahead of the 
4CP warning period. During precooling, the indoor 
temperature was lowered to 22.5 ºC (72.5 ºF) at a rate 
of 2.8 ºC/hr, after which it increased at a rate of 3.9 
ºC/hr during the 4CP warning period. Both  the indoor 
temperature and its rate of change were well within 
industry safety standards [16–18].  During precooling, 
both the COP and the cooling output of the heat pump 
dropped as a result of the lower indoor temperature. 
The precooling strategy increased the electric 
consumption of the cooling system by 1.6% during the 
24 hour period as a result of the lower COP and the 
cyclic operation of air blower.  
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Figure 4: Simulated operation of a data center 

cooling system during a 4CP event on July 28, 2017. 
The operation with no demand response (blue 
continuous lines) is compared to the proposed 
precooling approach (red dashed lines). Figures 
(from the top): (1) ambient temperature θa,t; (2) 

indoor temperature θt; (3) cooling output QC,t; (4) 
coefficient of performance COP. 

 
As a next step, the whole year of operation of data 

centers with and without precooling was simulated. 
Demand response increased the total annual energy 
use of the cooling system by only 0.05 %, which is a 
very small tradeoff for increased load flexibility. The 
reduction in the energy bills, illustrated in Figure 5 was 
much more significant. In the 25 kWe data center, 
electric bills were reduced by approximately 2 %, 
which corresponds to $125 to $155 per year. In a 250 
kWe data center, the corresponding reduction was 2.1 
% to 2.6 % ($1250 to $1550 per year). These savings 
correspond to 7.8 % to 8.6 % of the cost of electricity 
used by the cooling system, not accounting for the 
customer and metering charges. Such reduction is 
impressive given that the cooling system was 
deactivated for only 0.13 % of the total time. While a 
2 % to 2.5 % reduction in the electric bill of a whole 
data center may not seem high, the approach may be 
profitable, particularly if automated and integrated 
with other demand response mechanisms. In addition, 

the cost reduction for traditional air-cooled CRAC 
systems would be about 50% higher than for 
geothermal heat pump (i.e. 3 % to 3.7 %) as a result of 
their lower COP [15]. 

  

 
Figure 5: Percentage reduction in the electric bills 

due to precooling data centers prior to 4CP events. 
 
4.1. Sensitivity to power density of the data 
center  
 

The feasibility of precooling is largely dependent 
on the power density of data centers. The previous 
section discussed results for a data center with a 
computer room power density of 150 W/m2. 
According to the 2011 survey of data centers, this 
value is below the median (437 W/m2) and the 25th 
percentile (288 W/m2) of the actual (used) power 
densities in data centers. This section evaluates 
precooling of data centers with power densities from 
50 W/m2 to 500 W/m2 using example of the 4CP event 
on July 28, 2017. The precooling temperature θmin,pc, 
precooling time ∆tpc, and the maximum rate of change 
in indoor temperature dθ/dt were calculated by 
varying the IT load and cooling capacity and by 
assuming indoor temperature of 26 ºC at the beginning 
of precooling.  

Figure 6 shows the precooling temperature θmin,pc 
and the maximum rate of change in indoor temperature 
dθ/dt as a function of the power density, calculated as 
the ratio of IT load to the computer room floor area. 
The θmin,pc remains in the ASHRAE’s recommended 
range of temperature (18 to 27 ºC, continuous blue line 
in Figure 6) at power densities up to 350 W/m2 and in 
the allowable (A1) range (15 to 32 ºC, dashed blue 
line) up to 490 W/m2

. The maximum rate of change in 
indoor temperature dθ/dt exceeds 5.5 ºC/hr 
recommended by some IT equipment vendors [18] for 
power densities above 230 W/m2 (dashed red line in 
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Figure 6) but does not reach 20 ºC/hr allowed by the 
ASHRAE allowable (A1) class even at 500 W/m2

. 
Overall, precooling can provide one-hour demand 
response in data centers with power densities up to 490 
W/m2 and without server air containment systems if 
the ASHRAE’s allowable (A1) class is adopted.  

 

 
Figure 6: Sensitivity of the precooling temperature 
θmin,pc and the maximum rate of change in indoor 
temperature dθ/dt to the power density of the 

computer room.    
 
Figure 7 shows the precooling time ∆tpc presented 

as a function of the power density for various values 
of parameter γ, which is defined as the ratio of 
nominal cooling power used during precooling to the 
IT load. While most data centers have at least 100% 
backup capacity (corresponding to γ = 2), the use of 
excessive cooling capacity may increase the non-
coincident peak load of the facility. Even a small 
amount of cooling capacity (γ of 1.1 to 1.2) available 
beyond what is needed to balance the heat generated 
by the IT equipment is sufficient to provide acceptable 
precooling times, typically below 2 hours. For a given 
value of γ, an increase in power density reduces the 
precooling time, as the impact of the heat gain through 
the building envelope becomes less meaningful. 

 

 
Figure 7: Sensitivity of the precooling time to the 

power density of the computer room. Parameter γ 
is the ratio of the nominal cooling power used 

during precooling to the IT load (γ=QC,nom·n/QIT) 
 
4.2. Limitations of this study and 
consideration for future work  
 

Precooling proved to be a simple and cost effective 
way of reducing coincident peak charges in data 
centers with low- to medium-power density (<500 
W/m2), but this approach is less applicable to high 
density facilities. High-power density data centers 
often use air containment systems, which thermally 
isolate the IT equipment from the rest of computer 
room and drastically reduce the effective thermal 
capacitance [26,27]. As a result, switching off the 
cooling in high power density facilities can locally 
increase the indoor temperature at rates as high as 5 ºC 
per minute, making the proposed demand response 
mechanism infeasible [27]. High power density data 
centers could more effectively reduce their coincident 
peak loads by load shifting, using chilled water storage 
systems, or by running backup generators.  

In addition to reducing coincident peak loads, 
precooling can be implemented as a response to price 
fluctuations in a real-time market. Our analysis of the 
2017 marginal locational prices for the Houston hub 
indicated, that 10% of the total annual energy charge 
was incurred during 22 hours for which the electricity 
price was the highest. More than half of this time, the 
high price of electricity was sustained for 45 minutes 
or less [24], indicating that data centers could reduce 
these costs by implementing the proposed precooling 
approach. Data center precooling can also offset the 
instabilities resulting from the intermittent electric 
output of wind and solar plants and reduce both the 
curtailment of renewable resources and the ramping 
requirements for dispatchable generation.  
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5. Conclusions  
 

The proposed demand response strategy can be 
used to reduce the coincident peak load in data centers 
and computer rooms. It relies on precooling the data 
center prior to a forecasted coincident peak event and 
switching off the cooling system during the peak, 
while only maintaining air circulation needed to avoid 
hot spots. The proposed strategy was evaluated using 
a case study of a small telecommunication data center 
with a power density of 150 W/m2 participating in the 
4CP program in the ERCOT ISO. Provided a 
coincident peak warning issued at least 1.5 hours prior 
to a 4CP event, the cooling system could deliver 1 hour 
long demand response, sufficient to avoid coincident 
peak charges in ERCOT. The proposed strategy 
provided a 7.8 % to 8.6 % reduction in the cost of 
electricity used by the cooling system, which 
corresponded to 2 % to 2.6 % reduction in the total 
electric bill of the data center. As a result of 
precooling, the total annual energy use of the cooling 
system increased only by 0.05 %. The proposed 
demand response strategy can be used in data centers 
and computer rooms without server air containment 
systems and with power densities below 500 W/m2. It 
does not require existence of any advanced 
communications platforms between the distribution 
system operator and the end-users, and it can be 
integrated with other demand response mechanisms. 
The use of a pre-cooling control strategy provides a 
promising approach to load flexibility for data centers, 
wherein operators maintain control of the center loads. 
This strategy is also applicable to other types of 
demand response programs, and may provide 
increased cost savings, and grid benefits, under 
program structures.  
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