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Abstract

The flexibility of active (p) and reactive power (q)
consumption in distributed energy resources (DERs)
can be represented as a (potentially non-convex) set of
points in the p-q plane. Modeling of the aggregated
flexibility in a heterogeneous ensemble of DERs as a
Minkowski sum (M-sum) is computationally intractable
even for moderately sized populations. In this article,
we propose a scalable method of computing the
M-sum of the flexibility domains of a heterogeneous
ensemble of DERs, which are allowed to be non-convex,
non-compact. In particular, the proposed algorithm
computes a guaranteed superset of the true M-sum, with
desired accuracy. The worst-case complexity of the
algorithm is computed. Special cases are considered,
and it is shown that under certain scenarios, it is
possible to achieve a complexity that is linear with the
size of the ensemble. Numerical examples are provided
by computing the aggregated flexibility of different mix
of DERs under varying scenarios.

1. Introduction
As the penetration of low-inertia renewable genera-

tion increases, various forms of distributed energy
resources (DERs), including flexible and responsive
electrical loads, will be increasingly integrated into
the grid operations to support ancillary services. In
this context, DER refers to any load and distributed
generation that can offer flexibility in net active and
reactive power consumption (equivalently, generation).
Real-time coordination and control of DERs requires
an appropriate modeling and quantification of the loads
behavior and their available flexibility. Modeling of
aggregated flexibility in an ensemble of flexible loads
for ancillary services (in particular, frequency regulation
and ramping) have been explored in the literature in
recent years [1–7]. The proposed approaches are gen-
erally applicable to ensembles of similar loads, such
as a collection of residential air-conditioners, or a

collection of plug-in electric vehicles. The aggregation
of flexibility for a heterogeneous group of DERs,
however, remains a challenging task.

In order to efficiently coordinate tens of thousands
of flexible loads in distribution systems, while also
satisfying line-flow and node voltage constraints, hier-
archical modeling and control frameworks have been
proposed [8, 9]. Hierarchical architectures alleviate the
computational complexity of the optimal DER dispatch
problem, by having resource aggregators to participate
in the network optimization problem, instead of the
individual DERs. Resource aggregators, referred to
here as the aggregate device controller (or ADC),
are tasked with the responsibility of aggregating the
flexibility, in active (p) and reactive power (q), of
the neighboring DERs locally at the level of a couple
of service transformers (tens of residential customers).
The mix of such DERs is likely to be heterogeneous,
e.g. a random collection of air-conditioners, electric
water-heaters, batteries, solar photovoltaic inverers,
wind inverters, etc. Flexibility of each DER can be
represented as a union of points or domains in the p-q
plane. Aggregated (p, q)-flexibility of such an ensemble
is a Minkowski sum (M-sum) of the flexibility sets of the
individual DERs, and can be non-convex, non-compact.
In recent work, [10], authors presented a geometric
approach to approximate the aggregated flexibility
domain of an ensemble of heterogeneous DERs using
convex polygons. However, approximation of the true
aggregated flexibility domain via computation of the
exact M-sum of the individual flexibility domains still
remains a computational challenge, with computational
time increasing exponentially with the ensemble size.

Efficient computation of 2D M-sum of arbitrary
polygons (convex/non-convex) have generated interest
(primarily) in the field of computational geometry
[11–15], resulting in publicly available tools [12, 16].
Convolution based methods [12,14,15] have been shown
to perform better than polynomial-decomposition based
methods [13]. However, applicability and performance
guarantees of such algorithms for M-sum of large

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59805
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 3689

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


number of arbitrary non-polygon 2D domains is not
obvious. In this paper we propose a computationally
tractable method of approximating the aggregated flexi-
bility for an arbitrary collection of DERs. The rest of
the paper is organized as follows. In Sec. 2 we describe
the problem of aggregating flexibility of heterogeneous
DERs. Sec. 3 presents the key idea behind the proposed
approach, while the detailed algorithmic steps along
with an analysis of its computational performance is
discussed in Sec. 4. Numerical examples are presented
in Sec. 5, before we conclude the article in Sec. 6.

2. Problem Description

In the context of this article, any energy (consuming
or generating) resource which offers certain flexibility
in active (p) and/or reactive (q) power, possibly over
a reasonably short time window (such as a 5-15 min
long control period), is considered as a DER. We use
the notation F to represent the flexibility domain as a
collection of (p, q)-points that are physically admissible
by the DER (possibly via some local device-level
control). Note that the flexibility domain (F) could be
a continuous or a discrete domain. For example, a solar
photovoltaic (PV) inverter that can modulate its active
and reactive power over a continuous range will have
a continuous flexibility domain, while the flexibility
domain for switching loads, such as an air-conditioner
or electric water-heater, will be discrete. Moreover this
flexibility is time-varying, and depends on exogenous
parameters as well as end-user preferences.

Figure 1 shows examples of flexibility domains
for certain types of DERs, with positive (negative)
values of p and q denoting consumption (generation).
Discrete flexibility domain of a switching load (e.g.
air-conditioner) that operates in two discrete operational
states (‘on’ and ‘off’) is shown in Figure 1(b), while
the rest of the plots represent continuous flexibility
domains. Batteries (Figure 1(a) offer full four-quadrant
flexibility, while PV (Figure 1(c)) and wind (Figure 1(d))
inverters offer flexibility only on the left half-plane
(active power generation). Note that the flexibility off-
ered by the DERs is dynamic, and change based on
end-usage and exogenous influence. For example, if
there is a cloudy sky, the PV inverter output might only
be restricted to a small fraction of its rated generation.
Similarly, the air-conditioner may be operating mostly
in ‘on’-state when the outside air-temperature is high.

Let us assume that there are N DERs within some
heterogeneous ensemble. The flexibility domain of
the i-th DER is denoted by Fi , such that its active
and reactive power consumption (with negative value

signifying net generation)

(pi, qi) ∈ Fi , i ∈ {1, 2, . . . , N} .

The goal of the flexibility aggregation task is to find the
net flexibility domain FΣ in the form of a Minkowski
sum of the individual DER flexibility domains (Fi),
such that,

FΣ :=

N⊎
i=1

Fi =

(p, q)

∣∣∣∣∣∣
p =

∑N
i=1 pi

q =
∑N

i=1 qi
(pi, qi) ∈ Fi ∀i

 .

Calculating the exact M-sum of the individual flexibility
domains is computationally complex, especially as the
number of DERs increases. Thus, from a practical
point-of-view, a desirable approach is to construct
approximations of the aggregate flexibility domain
in a scalable way. In this paper, we propose a
computationally tractable method to approximate, with
arbitrary accuracy, the aggregate flexibility of the
(heterogeneous) ensemble of DERs.

3. Flexibility Aggregation: Key Idea
In general, the flexibility domains of DERs can be

represented in the form of:

F =

K⋃
k=1

Fk (1a)

∀k : Fk =

{
(p, q)

∣∣∣∣ p ∈
[
pk, pk

]
q ∈

[
gk(p), gk(p)

] }, (1b)

where K is some positive integer; and gk(p) and gk(p)
represent the flexibility in reactive power at any given
active power value within the range between pk and

pk. This representation can be used to represent the
continuous and discrete flexibility domains of the types
depicted in Figure 1, as illustrated below.

Example 1 (BATTERIES) The flexibility domain of a
battery, with a maximum charge/discharge rate of pmax

and the apparent power rating of s>pmax , is given by

F=
{

(p, q)
∣∣∣p ∈ [−pmax, pmax], |q| ≤

√
s2 − p2

}
.

Example 2 (WIND INVERTERS) The flexibility domain
of a wind inverter, with a maximum active power
generation of pmax and the apparent power ratings s1>√
αpmax (due to rotor current limits) and s2>

√
αpmax
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Figure 1: Representation of continuous and discrete flexibility domains for an individual DER of certain types.

(due to stator current limits) , is given by [17–19]

F = F1
⋃
F2
⋃
F3

F1 =
{

(p, q)
∣∣ p ∈ [−p0, 0] , q ∈ [−q0, q0]

}
F2 =

{
(p, q)

∣∣∣∣ p ∈ [−pmax,−p0)

0 ≤ q ≤
√
s2

2 − αp2

}

F2 =

{
(p, q)

∣∣∣∣ p ∈ [−pmax,−p0)

−
√
s2

1 − αp2 ≤ q ≤ 0

}

where p0 and q0 are much smaller than the rated
capacities, and α > 0 .

Example 3 (AIR-CONDITIONERS) The flexibility
domain of a residential air-conditioner with an active
power consumption rating of pmax (equal to the power
consumed in ‘on’ state) is represented by

F = F1 ∪ F2 , F1 = {(0, 0)} , F2 = {(pmax, γpmax)}

where γ > 0 is related to the power factor.

Note that the individual flexibility domains can be
continuous and discrete, as well as of arbitrary shape
and size. Unfortunately, computation of the exact
M-sum is possible only in some specific cases. For
example, the M-sum of two (semi-)circles is another
(semi-)circle with a radius equal to the sum of the
radii of the individual (semi-)circles and its center
at the vector sum of the centers of the individual
(semi-)circles. As another example, the M-sum of
two discrete (on/off) loads with individual flexibility
domains {(0, 0), (p1, q1)} and {(0, 0), (p2, q2)} , is
given by {(0, 0), (p1, q1), (p2, q2), (p1 +p2, q1 +q2)} .
However, there does not exist a generic algo-
rithm with guaranteed performance for computation
of M-sum of continuous sets with arbitray shape
(non-polygons). Moreover, the computational time re-
quired to compute the M-sum of discrete on/off loads

increases exponentially rendering the exact computation
intractable even for moderately sized populations.

Therefore it is important to devise a scalable app-
roach that computes a sufficiently close approximation
of the M-sum of diverse/heterogeneous set of individual
domains, including both continuous and discrete do-
mains. Let us first explain the key idea before going into
the details of the algorithm in the next section. Note that
it is easy to compute the exact M-sum of two domains
each of which is modeled as a rectangle. Consider

F1 =
{

(p, q)
∣∣∣ p ∈ [p

1
, p1], q ∈ [q

1
, q1]

}
F2 =

{
(p, q)

∣∣∣ p ∈ [p
2
, p2], q ∈ [q

2
, q2]

}
.

Note that we allow the boundaries of the rectangle to be
non-unique, i.e. it is possible to have p

i
= pi and/or

q
i

= qi . Their M-sum is simply given by

FΣ = F1 ∪ F2

=

{
(p, q)

∣∣∣∣ p ∈ [p
1

+ p
2
, p1 + p2]

q ∈ [q
1

+ q
2
, q1 + q2]

}
Extension of this to aggregation of domains which are
unions of multiple (≥ 1) rectangles is possible as
follows. Suppose

F1 =

m1⋃
i=1

{
(p, q)

∣∣∣ p ∈ [pi
1
, pi1], q ∈ [qi

1
, qi1]

}

F2 =

m2⋃
i=1

{
(p, q)

∣∣∣ p ∈ [pi
2
, pi2], q ∈ [qi

2
, qi2]

}
,

then

FΣ = F1 ∪ F2

=

m1⋃
i=1

m2⋃
j=1

{
(p, q)

∣∣∣∣∣ p ∈ [pi
1

+ pj
2
, pi1 + pj2]

q ∈ [qi
1

+ qj
2
, qi1 + qj2]

}
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The computational complexity of the above M-sum is
O(m1m2) . This forms the basis of our proposed algo-
rithm for approximating M-sum of N (≥ 2) flexibility
domains of arbitrary size and shape.

Remark 1 The above can be extended to shapes other
than rectangles too, such as circles. However, in this
paper, we will focus our attention to rectangles only.

4. Minkowski Sum: Scalable Algorithm
Suppose that we have an ensemble of N DERs with

flexibility domains given by

Fi =

Ki⋃
k=1

Fk
i ∀i ∈ {1, . . . , N} (2a)

∀k : Fk
i =

(p, q)

∣∣∣∣∣∣ p ∈
[
pk
i
, pki

]
q ∈

[
gk
i
(p), gki (p)

] , (2b)

Let us denote by pinf
i and psup

i , respectively, the infimum
and supremum of the feasible p-points of the i-th DER,
while qinf

i and qsup
i represent, respectively, the infimum

and supremum of the feasible q-points, i.e.

pinf
i := inf{p | ∃ q so that (p, q) ∈ Fi } (3a)

psup
i := sup{p | ∃ q so that (p, q) ∈ Fi } (3b)

qinf
i := inf{q | ∃ p so that (p, q) ∈ Fi } (3c)

qsup
i := sup{q | ∃ p so that (p, q) ∈ Fi } (3d)

Note that for any given positive scalar ε > 0 , there
exist positive integers Mp(ε) and Mq(ε) defined as:

Mp(ε) :=

⌈
1

ε

N∑
i=1

(
psup
i −p

inf
i

)⌉
. (4a)

Mq(ε) :=

⌈
1

ε

N∑
i=1

(
qsup
i −qinf

i

)⌉
. (4b)

If we were to split the whole p-range in the aggregate
domain into equal-sized bins of length ε , we would need
Mp(ε) of such bins. Similarly to cover the q-range, we
need Mq(ε) bins. For reasons that will become clearer
later, we will refer to ε as the ‘tightness’ parameter -
with smaller ε implying tighter results.

We are now in a position to describe the algorithm
of approximate computation of M-sum. We will first
describe two critical steps of the process, the initial
discretization step and the pixelization step, and then
move on the describe the complete algorithm.

4.1. Initial Discretization Step
At the start of the process each of the individual

flexibility domains Fi are discretized into sets of at
most Mp(ε) × Mq(ε) rectangular blocks. There are
several ways this discretization can be performed. To
be specific, in this paper we consider discretization of
the following form:

∀i : Fi 7→ FU
i (ε) =

mi⋃
j=1

{
(p, q)

∣∣∣∣∣ p ∈ [pj
i
, pji ]

q ∈ [qj
i
, qji ]

}

where, pji − p
j
i
≤

ε
(
psup
i −pinf

i

)∑N
i=1

(
psup
i −pinf

i

) ∀j=1, . . . ,mi

qji − q
j
i
≤

ε
(
qsup
i −qinf

i

)∑N
i=1

(
qsup
i −qinf

i

) ∀j=1, . . . ,mi

mi ≤Mp(ε) ·Mq(ε)

and Fi ⊆ FU
i (ε) .

Note that, for example, since the discrete switching
(on/off) loads have only two discrete points in the
feasibility space, for those loads Fi = FU

i (ε) .

Remark 2 The last condition ensures that the discrete
approximation is a superset of the corresponding actual
flexibility domain. This condition can be modified to
reflect a subset or any other type of approximation.

4.2. Pixelization Step
Let us consider the M-sum of two domains each of

which is represented as a union of at most Mp(ε) ×
Mq(ε) rectangular blocks, as follows:

∀i ∈ {1, 2} : FU
i (ε) =

mi⋃
j=1

{
(p, q)

∣∣∣∣∣ p ∈ [pj
i
, pji ]

q ∈ [qj
i
, qji ]

}

∀j=1, . . . ,mi : pji − p
j
i
≤

ε
(
psup
i −pinf

i

)∑N
i=1

(
psup
i −pinf

i

)
qji − q

j
i
≤

ε
(
qsup
i −qinf

i

)∑N
i=1

(
qsup
i −qinf

i

)
mi ≤Mp(ε) ·Mq(ε) .

We want to approximate their M-sum FU
1 (ε) ∪ FU

2 (ε)
as another union of at most Mp(ε)×Mq(ε) rectangular
blocks, denoted by FU

Σ such that

FU
Σ ⊇ FU

1 (ε) ∪ FU
2 (ε)

=

m1⋃
i=1

m2⋃
j=1

{
(p, q)

∣∣∣∣∣ p ∈ [pi
1

+ pj
2
, pj1 + pj2]

q ∈ [qi
1

+ qj
2
, qi1 + qj2]

}
.
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Clearly,

m1m2 ≤Mp(ε)·Mq(ε) =⇒ FU
Σ = FU

1 (ε) ∪ FU
2 (ε) .

When, however, m1m2 > Mp(ε) ·Mq(ε) , we propose
the following two steps for appropriate pixelization of
the M-sum FU

1 (ε) ∪ FU
2 (ε) .

4.2.1. (PIXELIZATION) STEP 1: We first compute
the estimated number of pixels on the p- and q-axes. In
order to maintain at mostMp(ε)×Mq(ε) pixels, we use
the pixel sizes on the p-axis and q-axis as:

ε̂p = ε

∑2
i=1

(
psup
i − pinf

i

)∑N
i=1

(
psup
i −pinf

i

) ≤ ε (5a)

ε̂q = ε

∑2
i=1

(
qsup
i − qinf

i

)∑N
i=1

(
qsup
i −qinf

i

) ≤ ε (5b)

With the appropriate pixel-sizes ε̂p and ε̂q determined,
the rectangular space defined by

{
(p, q)

∣∣∣∣ p ∈ [pinf
1

+ pinf
2
, psup

1 + psup
2 ]

q ∈ [qinf
1

+ qinf
2
, qsup

1 + qsup
2 ]

}
,

which is a superset of the aggregated flexibility space
FU

1 (ε) ∪ FU
2 (ε) , can be represented with the help of a

total ofMp(ε)×Mq(ε) equal-sized pixels,Mp(ε) pixels
on the p-axis and Mq(ε) pixels on the q-axis. Note that

⌈
1

ε̂

2∑
i=1

(
psup
i − pinf

i

)⌉
= Mp(ε)

⌈
1

ε̂

2∑
i=1

(
qsup
i − qinf

i

)⌉
= Mq(ε) .

The domain defined by each (k, l)-th pixel, where k ∈
{1, . . . ,Mp(ε)} and l ∈ {1, . . . ,Mq(ε)} , is defined by:

pixel(k, l) (6)

:=

(p, q)

∣∣∣∣∣∣ (k − 1) ε̂p ≤ p−
(
pinf

1
+ pinf

2

)
≤ k ε̂p

(l − 1) ε̂q ≤ q −
(
qinf

1
+ qinf

2

)
≤ l ε̂q


4.2.2. (PIXELIZATION) STEP 2: As the final step
in the pixelization step, we identify the pixels that have
some overlap with the sum FU

1 (ε) ∪ FU
2 (ε) . Recall

that the sum is a union of m1m2 rectangular blocks.
Thus, for every pair of (i, j) , i ∈ {1, . . . ,m1} , j ∈

{1, . . . ,m2} , there is a rectangular block in the sum
FU

1 (ε) ∪ FU
2 (ε) defined by{
(p, q)

∣∣∣∣∣ p ∈ [pi
1

+ pj
2
, pj1 + pj2]

q ∈ [qi
1

+ qj
2
, qi1 + qj2]

}
.

Associated with it are the following indexes:

k0 = max

{
1,

⌈
1

ε̂p

(
pi

1
+ pj

2
− pinf

1 − pinf
2

)⌉}
(7a)

kf = max

{
1,

⌈
1

ε̂p

(
pi1 + pj2 − pinf

1 − pinf
2

)⌉}
(7b)

l0 = max

{
1,

⌈
1

ε̂q

(
qi

1
+ qj

2
− qinf

1 − qinf
2

)⌉}
(7c)

lf = max

{
1,

⌈
1

ε̂q

(
qi1 + qj2 − qinf

1 − qinf
2

)⌉}
(7d)

such that the union of all the pixel(k, l) with k ∈
[k0, kf ] and l ∈ [l0, lf ] is a superset and an appropriate
pixelization of the corresponding rectangular block in
the sum FU

1 (ε) ∪ FU
2 (ε) . Repeating step 2 for every

pair of (i, j) in the M-sum, we readily obtain the
appropriately pixelated superset of FU

1 (ε) ∪ FU
2 (ε) .

Remark 3 The computational efforts in step 2 for the
pixelization are minimal, since it requires only algebraic
computation of the indexes (7) to obtain the overlap.
Moreover, the step 1 is to be done only once for
every sum FU

1 (ε) ∪ FU
2 (ε) , and involve only minimal

algebraic calculations. Therefore the computational
complexity of the steps 1-2 combined is O(m1m2) .

4.3. Complete Algorithm
We are finally in a position to state the complete

algorithm for scalable computation of the close superset
of the M-sum of a heterogeneous collection ofN DERs,

FU
Σ ⊇ FΣ :=

N⋃
i=1

Fi . (8)

The idea is to perform an N -step iterative process to
compute the M-sum, where each step t ∈ {0, . . . , N −
1} (we denote t = 0 as the initial step) involves the
computation of M-sum of a pair of domains. Let us de-

note by FU(t+1)
Σ the approximation of the M-sum FΣ ,

at the completion of step-t , such that

FU(1)
Σ ⊆ FU(2)

Σ ⊆ · · · ⊆ FU(N)
Σ := FU

Σ .

The algorithmic steps are outlined as below:
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4.3.1. (MINKOWSKI) INITIALIZATION STEP-0:
At this step, we perform two tasks. The first task is
to discretize each flexibility domain Fi into FU

i (ε) , a
set of at most Mp(ε) × Mq(ε) rectangular blocks, as

described in Sec. 4.1. Moreover we initialize FU(1)
Σ

as FU
1 (ε) (where the DERs are sorted in no particular

order), i.e. we perform the following:

compute FU
i (ε) ⊇ Fi ∀i . (9a)

initialize FU(1)
Σ ← FU

1 (ε) . (9b)

Note that, by construction, each of FU
i (ε)∀i and FU(1)

Σ

is represented by the union of at most Mp(ε) ×Mq(ε)
rectangular blocks.

4.3.2. (MINKOWSKI) ITERATIVE STEP-t (≥1): In
the following iterative steps-t , t = 1, 2, . . . , N−1 , we
perform the pixelization on the M-sum of FU

t+1(ε) and

FU(t)
Σ . Applying the two-steps pixelization procedure,

outlined in Sec. 4.2, on the M-sum of FU
t+1(ε) and

FU(t)
Σ , we obtain

pixelize FU(t+1)
Σ ⊇ FU

t+1(ε) ∪ FU(t)
Σ

By construction, FU(t+1)
Σ is also a union of at most

Mp(ε)×Mq(ε) rectangular blocks. Repeat until t=N−1.
Remark 4 It is unnecessary to perform the pixelization
at the final step (t = N − 1) at which a simple M-sum

of FU
N (ε) and FU(N−1)

Σ suffices.
At the conclusion of (N−1)-th step, we set

FU
Σ ← F

U(N)
Σ . (10)

4.4. Analysis
Recall that, by construction (enforced by both the

initial discretization as well as the pixelization steps),
the estimated flexibility domain (FU

Σ ) is a guaranteed
superset of the true M-sum (FΣ). Moreover, by def-
inition of the tightness parameter ε , for every point
(p∗, q∗) in the calculated M-sum, there always exists a
feasible point (p, q) with p ∈ [p∗−ε, p∗ +ε] and q ∈
[q∗−ε, q∗+ε] , i.e. within the Euclidean distance of

√
2 ε

from (p∗, q∗). Furthermore, because of the pixelization
step, the worst-case computational complexity of each
iteration step is O

(
Mp(ε)2Mq(ε)2

)
, which brings the

worst-case complexity of the complete algorithm down
toO

(
NMp(ε)2Mq(ε)2

)
. The performance of the algo-

rithm is summarized in the following result:

Theorem 1 (WORST-CASE COMPLEXITY) For any
tightness parameter ε , the algorithm in Sec. 4.3 gen-
erates a guaranteed superset of the true M-sum of N
arbitrary shaped 2D-domains, such that for every point
(p∗, q∗) in the calculated M-sum, there always exists a
feasible point (p, q) with

max (|p−p∗| , |q−q∗|)≤ε .

Moreover, the worst-case complexity is given by
O
(
NMp(ε)2Mq(ε)2

)
.

While Theorem 1 describes the worst-case complex-
ity of the proposed algorithm in the generic case, we
discuss some specific scenarios in the rest of this section.

4.4.1. SPECIAL CASE I: Consider the case when
the DERs in the ensemble are similarly sized, i.e.

∀i : psup
i − pinf

i = ∆p (i.e. uniform) (11a)

qsup
i − qinf

i = ∆q (i.e. uniform) (11b)

Proposition 1 In the specific case outlined in (11), the
computational complexity is O

(
N3/ε4

)
.

Proof According to the assumption of uniformity, the
flexibility domain of each DER in the ensemble is
discretized into ∆p/ε-bins on p-axis and ∆q/ε-bins on
q-axis, i.e. a total of (∆p∆q) /ε2 rectangular blocks
(or, pixels). The M-sum of first two DERs (in no
particular order) would result in (at most) (2∆p/ε) ×
(2∆q/ε)-pixels. It is not difficult to see that the M-sum
of first n < N DERs can be similarly represented by
n2 (∆p∆q) /ε2 pixels. Note that, as per (4) and (11)

Mp(ε)Mq(ε) ≥ n2 (∆p∆q) /ε2 ∀n ≤ N .

Complexity of the computation of the incremental M-
sum of the (n + 1)-th DER and the M-sum of the
first n DERs is proportional to n2/ε4 . Complexity
of computing the M-sum of N DERs is then
proportional to

∑N
i=1 n

2/ε4, resulting in a complexity
of O

(
N3/ε4

)
.

It can be argued that the above result holds for many
practical scenarios when the ensemble has similarly
sized DERs, while guaranteeing a desired accuracy.

4.4.2. SPECIAL CASE II: In certain scenarios, due
to limitations on the computing resources, it might be
necessary to put a bound on the number of bins used to
pixelize the p- and q-axes. For example, let us consider
the scenario when the number of bins on the q-axis
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is fixed to Mq while the bins on the q-axis are upper
bounded by Mp , i.e.

Mq = Mq but Mp ≤Mp , (12)

Proposition 2 In the specific case when (12) and (11)
hold, the complexity is: 1) O(N2/ε2) for sufficient-
ly large Mp , and 2) O(N/ε) when Mp is small .
Moreover, the tightness of the calculated M-sum
deteriorates linearly with the size of ensemble.

Proof Follows similarly as the one for Proposition 1.
Note that the flexibility domain of each DER can be
discretized in a total of

(
∆pMq

)
/ε pixels. The M- sum

of first n DERs can be represented by n
(
∆pMq

)
/ε pixels if n < Mp ε/∆p

and Mp pixels if otherwise.

Therefore, for sufficiently large Mp , the complexity of
computing the M-sum of N DERs can be shown to be
proportional to

∑N
i=1 n/ε

2 , resulting in a complexity
of O

(
N2/ε2

)
. On the other hand, for small Mp , the

complexity of computing the M-sum of N DERs can
be shown to be proportional to

∑N
i=1 1/ε , resulting in

a complexity of O(N/ε) . For the tightness argument,
note from (4) and (11),

ε ≥ max
(
N∆p/Mp, N∆q/Mq

)
,

i.e. for every point in the calculated M-sum, there exists
a feasible point within some Euclidean distance that
scales linearly with N .

5. Numerical Results
We start by illustrating in Figure 2 how M-sum

looks like in some arbitrarily generated ensemble
of DERs (including air-conditioners, wind inverters,
electric water- heaters and solar photovoltaic inverters).
In order to better demonstrate the dependence of the
computational complexity of the proposed algorithm
on the ensemble size and the tightness parameter,
we run a set of tests. First we randomly choose a
10 DER ensemble with of one air-conditioners, two
water-heaters, two batteries, two wind inverters and
three photovoltaic inverters. This population is then
replicated multiple times to create ensembles of larger
size (in the multiples of 10). Moreover, the tightness
parameter ε is varied from 0.01 kW (or, kVAR) to 0.64
kW (or, kVAR). The computation times are calculated
by running the algorithm for various combinations of
ensemble size and tightness parameters. Moreover, we
also run the tests for two different cases: one in which
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Figure 2: Aggregated flexibility domains for various
arbitrary sample cases.

Mp (in Proposition 2) is chosen to be 600, and another in
which it is chosen to be 4000 (very high). Figures 3 and
4 present the test results. It can be seen that the results
align with the analysis summarized in Proposition 2.
Specifically, the computational complexity is seen to be
roughly linear with the ensemble size when Mp is set to
600 (small), while it is O(N2) when Mp is set to 4000
(large).

Next, we generate representative DER scenarios,
that represent real world test cases to demonstrate the
proposed DER flexibility aggregation methodology. The
proposed approach entails the following three steps:
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Figure 3: Computational complexity with respect to ensemble size (N ) and tightness parameter (ε), under the
scenario (12) when Mp is set to 600 (small).
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Figure 4: Computational complexity with respect to ensemble size (N ) and tightness parameter (ε), under the
scenario (12) when Mp is set to 4000 (large).

5.1. Identify contributing factors

We include five different types of DERs that
were discussed previously - heating, ventillation and
air-conditioning (HVAC) units, electric water heaters
(EWHs), solar photovoltaic (PV) inverters, wind
generators, battery electric vehicles (BEVs). We limit
ourselves to the consideration of three factors - income
level, climate type, and economic policies (with regard
to incentives for renewables) - that can potentially affect
the penetration of each of these DERs in a certain
geographical region. In particular, we assume that the
income level and climate type affect the penetration of
HVAC and EWHs. For renewable DERs, i.e. PV and
wind generators, we assume that climate type and level
of incentives determine their prevalence. Lastly, for
BEVs, we consider income level and level of incentives
as the primary factors affecting their penetration.

We create combinations of the three factors ident-
ified above, such that each combination represents a
DER scenario. For this we consider the following bi-
nary variations of each of these factors: 1) climate
type - mild or extreme; 2) income level: high or low;

and 3) incentive level: high or low. To simplify
the analysis further, we assume that the climate type
classification is with regard to heat and humidity, and
correspondingly the HVAC type considered refers to
space cooling devices. The above variations result in
a total of 23 = 8 scenarios.

5.2. Generate a DER mix per scenario

For each of the above scenarios, we identify
a relative mix of DERs expressed as a percentage
assignment for each type of DER present in the mix.
We use several previous studies and surveys to estimate
these assigments, representing a futuristic scenario with
a generally high level of DERs. For HVAC, we use data
from Residential Energy Consumption Survey (RECS)
[20] for quantifying the impact of income level, and
the climate zone definitions in the Builing America
(BA) Program [21] for climate type classification. For
renewable DERs (solar and wind), we use data from
the Annual Energy Outlook (AOE) 2017 [22] which
provides projected levels of solar and wind capacity
installations expected to be in place by 2050, for 22 US
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regions classified by the the North American Electric
Reliability Corporation (NERC) [23]. For each of these
regions, the climate type classification was based on
BA, while the incentive level was assigned based on
the Database of State Incentives for Renewables and
Efficiency (DSIRE) [24]. For EWHs, similar to HVAC,
data from RECS and BA was used. For BEVs, data
from [25] was used to determine the incentive level
for 15 states in the US. The income level for each of
these states was obtained from [26]. These factors were
then mapped to projected sales of BEVs in these states
in 2040 based on [27]. The resulting scenarios are
shown in Table 1. In Table 1, the percentages for each
DER should be interpreted as follows: 1) [HVAC, EWH
and BEV]: percentage of consumers which use these
resources; 2) [solar and wind]: installed capacity as a
percentage of total installed electricity capacity. We use
the fact that the total installed electric capacity in the US
is about 1074.64 GW [28].

We use the procedure described in this paper to
approximate the aggregated flexibility associated with
various DER scenarios in Table 1. Using a total
population size of 20 DERs, we generate random
ensembles based on the percentages from the Table 1.
Specifically, we show the plots for scenarios 1, 3, 7 and
8 . Comparing between the scenarios 7 and 8, we see
that the increase in penetration of solar PVs show up,
for example, as a sharper boundary on the right-hand
side. On the other hand, the scenario 3 has a distinctive
narrower affine shape, which can be attributed to its
relatively higher penetration of air-conditioning loads
compared to other loads.

6. Conclusions
This paper is motivated from the need for distributed

control and optimization at the power distribution
networks. Specifically, the problem of modeling short-
term flexibility in ensembles of heterogeneous DERs
is addressed. We present a scalable algorithm to
approximate, within some specified error tolerance,
the aggregated short-term flexibility in an ensemble of
DERs. Performance analysis of the proposed algo-
rithm is presented in terms of complexity and accuracy
of the results. We show that the algorithm can ac-
hieve O(N) and O(N2) complexity in some special
scenarios, while achieving O(N3) complexity in likely
realistic scenarios. Numerical results are provided to
demonstrate the applicability of the algorithm.
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