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Abstract

We present a coordination mechanism that reduces
peak demand coming from EV charging, supports
grid stability and environmental sustainability. The
proposed mechanism accounts for individual commuting
preferences, as well as desired states of charge by
certain deadlines, which can serve as a proxy for
range anxiety. It can shape EV charging toward a
desired profile, without violating individual preferences.
Our mechanism mitigates herding, which is typical
in populations where all agents receive the same
price signals and make similar charging decisions.
Furthermore, it assumes no prior knowledge about
EV customers and therefore learns preferences and
reactions to prices dynamically. We show through
simulations that our mechanism induces a less volatile
demand and lower peaks compared to currently used
benchmarks.

1. Introduction & Background

Electric vehicles (EVs) are important contributors
to a sustainable future. They are independent from
oil prices and are more energy efficient [11], which
makes them more environmentally-friendly since they
have reduced carbon footprint. More importantly, if
EVs are charged with renewable energy, they contribute
to environmental sustainability even more: both by
emitting less CO, from their engines and by requiring
carbon-free energy for their charging. Their ability to
increase sustainability levels makes them very popular
in societies that strive to reduce their negative impact on
the environment.

With rising EV adoption, new challenges arise for
sustainable societies. All these new EVs added to
the electricity grid will put its infrastructure under
critical strain, since extra demand will be added to
the grid. This demand was previously covered by
gasoline, but now the electricity grid operators need
to be able to cover the demand coming from this new
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customer segment, namely EV owners. In order for
the grid to be stable, reliable and able to service all
EV customers, new infrastructure needs to be installed,
able to accommodate this extra electricity demand [11].
However, this solution is unsustainable since more raw
materials need to be consumed and the investment
costs can be excessive: the European Network of
Transmission System Operators for Electricity foresees
€150 billion of investments in grid infrastructure in the
coming 10 years [6].

To address this challenge, academic literature
has proposed a variety of EV charging coordination
mechanisms, that can reallocate the EV charging
demand over time, so that electricity peaks are
reduced and the capacity utilization of the infrastructure
increases. These coordination mechanisms are clustered
into two categories. On the one hand, top-down
coordination mechanisms assume the presence of a
central entity (such as a grid manager or a system
operator) that can exogenously intervene to induce a
desired demand profile in an area. This intervention
might be the interruption of consumption in some
areas so that the total grid remains balanced. These
type of approaches offer the benefit of fast grid
stabilization, since a third party intervenes. The main
disadvantage of these methods is that they do not
always respect customer preferences and might end up
violating people’s comfort (e.g. with interruption of
consumption).

On the other hand, bottom-up charging coordination
mechanisms assume no formal coordinator. These
approaches communicate price signals to the EV
customers and observe their reactions. These signals
are most of the time designed to incentivize energy
consumption during low demand periods and provide
counter-incentives for consuming during high demand
periods. A typical example is the night tariff schemes
that are available in numerous EU and US areas.
These approaches allow customers to decide based
on their schedule without violating their preferences.
An important disadvantage is, however, that since all
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customers receive the same price signals, they behave
in a similar way. This means that they are inclined
to consume electricity when prices are low, creating
new peaks during these periods. This phenomenon is
known as herding or avalanche effect [14]. In Table 1
we present a summary of EV charging coordination
mechanisms, categorized as bottom-up and top-down.

Table 1. Top-down and bottom-up EV charging
coordination literature summary.

Top-down Bottom-up

[1]: Aggregated EV [2]: EV coordination for
capacity coordination voltage regulation

[3]: Dual implementation for [5]: Decentralized EV
EV charging shifting based coordination using
on a central auctioneer temporal and

locational flexibility

[21]: Online auction-based EV [9]: (A)synchronous
charging mechanism EV charging

[12]: A fleet operator manages [10]: Locally optimal EV
EV charging scheduling protocol

[22]: Pre-commitment auctions [15]: EV coordination for

for EV charging coordination frequency regulation

In addition to all previous pure top-down or
bottom-up approaches, there is a set of hybrid methods,
which assume the presence of a coordinating entity
combined with high degree of decentralization on
the EV owner’s side. [20, 19] present a general
framework of decentralized EV charging in which the
objectives of the coordinator and the individual EV
owners are weighted accordingly, toward a valley-filling
or a cost-minimizing objective. Furthermore, [8, 9]
present a decentralized charging coordination protocol
combined with the presence of EV aggregator (grid
manager/utility). The objective of this protocol is to
achieve valley-filling or to track a given profile, after
observing customer reactions.

The last set of hybrid methods has the ability
to overcome herding by combining bottom-up and
top-down objectives, making them very powerful and
easily applicable. One shortcoming of those approaches
is the modeling limitations when it comes to EV owner
heterogeneous preferences. For example, EV owners,
besides requiring sufficient electricity to drive, they
also desire a certain state of charge in their battery
so that they feel they have enough electricity to cover
unexpected or spontaneous driving. This desired state
of charge could serve as a proxy for range anxiety [7],
since it varies across EV owners and expresses the
desired maximum amount of energy in the battery by
a certain time. EV owners with high range anxiety
will require a higher desired state of charge than others
with lower range anxiety. This parameter is important
to study because, as [16] conclude, there is a need for
extra infrastructure to accommodate this anxiety without
threatening grid stability.

To address the above challenges, we present a

coordination mechanism based on [23], which combines
benefits from both bottom-up and top-down approaches
and prevents herding in EV charging, while at the same
time satisfies the heterogeneous customer preferences
(driving deadlines, desired state of charge, etc.). Unlike
previous work (e.g., [23]) which assumes that EV
customers decide on EV charging based only on
minimizing their costs, we use multiple objectives, since
in reality EV customers have two conflicting objectives:
satisfy their desired state of charge objective and
minimize charging costs. We show how heterogeneous
preferences (such as different levels of desired state
of charge) influence peak demand and volatility. We
observe that the desired state of charge is a key
determinant for peak demand since higher levels of
this parameter result in higher peaks and consequently
higher needs for grid expansion.

Our coordination mechanism uses price functions of
charging rate, rather than simple price values. It assumes
that the energy price each consumer faces, is a function
of the charging rate (speed). Consequently, a more
impatient consumer that wants an EV charged quickly,
will select a higher charging rate and will pay a higher
price per energy unit (e.g. price/kWh). A more patient
consumer can select a lower charging rate and reduce
her cost for EV charging. With this approach, a grid
manager can create disincentives for high demand peaks
in EV charging. Unlike prior work that assumes one
charging rate available [8, 9], we integrate the charging
rate variable in the price function, allowing EV owners
to select the rate which satisfies their heterogeneous
preferences. Furthermore, our mechanism is adaptive
and can quickly adjust the price functions to the needs
of the particular consumer portfolio. This is done
purely by observing and learning consumer behaviors,
without assuming any prior knowledge about individual
customer preferences.

2. Model Description

We assume that each individual EV owner wants to
minimize her EV charging cost and at the same time
reach a desired state of charge by a certain deadline (e.g.
by the end of the day so that she has enough energy to
drive the next morning). These two goals are conflicting
since reducing costs means reducing EV charging
and satisfying the desired state of charge objective
increasing EV charging to the desired battery level.
Therefore, we model the problem as a multi-criteria
decision making and we present the decision maker,
EV owner, with the full solution spectrum. Afterwards,
the EV owner can decide about the desired charging
plan (solution). In this way, we account in real time
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for the human behavior and heterogeneous preferences
for different charging plans. A schematic overview of
the proposed mechanism is displayed in Figure 1 (the
sequence of steps is numbered in parenthesis). The
dashed lines in Figure 1 indicate multiple instances of
intelligent agents, assisting EV owners.

First, (1) the grid manager broadcasts price
functions of power (kW). Second, (2) the EV agent
representing the EV owner, retrieves arrival and
departure preferences from its owner, so that it can
schedule EV charging at the minimum cost. Then,
(3) it receives as input the desired state of charge for
this particular EV owner (e.g. up to 90% of the EV’s
nominal capacity). Having all required inputs, (4)
the EV agent schedules the charging so that cost is
minimum but also the state of charge satisfies the desired
state of charge by a certain deadline. Finally, the agent
presents the set of optimal solutions to the EV owner
and (5) she selects the preferred one.

Smart Grid Manager
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Figure 1. EV charging coordination overview.

As shown in Figure 1 the two decisions an EV agent
has to make (minimize costs and satisfy the desired
state of charge objective) are conflicting. Therefore,
there are many solutions that satisfy this multi-criteria
decision problem. These solutions constitute the Pareto
optimal frontier of the problem and the EV owner
herself decides on the preferred solution. To solve
this multi-criteria decision problem we implement a
multi-objective optimization problem which we solve
with a genetic algorithm (GA) approach. Specifically,
we implement an elitist GA [4] which selects the best
solution for each point on the Pareto optimal frontier.
This approach (unlike single objective problems) allows
the decision maker (EV owner) to decide about the
preferred solution choosing from the full solution
space, rather than reducing it to one single optimal
solution. Therefore, it allows for representing all types

of heterogeneous preferences such as people that want
higher state of charge and are willing to pay more or
people that want to have reduced electricity costs and are
willing to compromise their comfort by reducing their
desired state of charge.

Modeling the heterogeneity of EV owners does not
allow for single objective optimization and is better
solved by metaheuristics such as GAs. However,
GAs do not provide guarantees for convergence.
NSGA-II [4], the variant of GAs we are deploying
to solve this problem, is generally performing very
well in providing the optimal solution spectrum and
in all our simulation scenarios converged fast, but still
it does not have convergence guarantees. Therefore,
in the future, we plan examine the trade-off between
richness of heterogeneous preferences and guarantees
for convergence.

2.1. Modeling Assumptions

Below we describe the assumptions that draw the
boundaries of our coordination mechanism.

1. EV owners are represented by self-interested
intelligent agents that do not exchange information
among each other. They only interact with the grid.

2. The interaction of the EV agents with the grid is
limited to receiving price signals (retail prices) and
decide on EV charging speed and duration, based on
these prices. The prices are communicated to the EV
agents in advance of their planning horizon.

3. EV owners have preferences regarding
departure/arrival times and desired state of charge,
that are unknown to the grid. The grid only observes
their charging demand in reaction to prices.

4. All EVs are located and driving under the same
distribution network, to avoid charging in other
distribution networks.

5. The granularity of our analysis is 1 hour. This
parameter is configurable and can be adjusted based on
the problem’s needs to e.g., 1-min or 15-min, etc.

6. The grid manager is in control of steering the
aggregate EV charging consumption towards a desired
profile which might be either a less volatile demand
curve or a demand curve that follows the production
pattern of a renewable production unit (e.g. wind
turbine).

2.2. EV’s Decision Problem

EV customers are represented by intelligent agents
i € I that are self-interested (they represent their owners
preferences) and wish to minimize energy cost over
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a time horizon T = {1...T}, while at the same time
maximize the EV battery’s state of charge to the
desirable level. This level is different among individuals
and can depend on their range anxiety [7]. The time
horizon T is discretized to time intervals r € {1...T} of
equal or non-equal duration.

The energy cost over T for each EV customer is i the
sum of costs for each interval:

el-P() (1)

M~

i_
c, =
1 t

M~

t 1

where ¢ is the cost of energy during time ¢, e! is the
energy consumed in kWh during the interval, and P;(-) is
the (possibly rate-dependent) price of energy during this
time. If we assume time intervals of duration At # 0 and
charging at a constant rate ri in kWh, then e/ = ri - At.
Each EV agent i has a set of preferences 6;, including

arrival #7; and departure times t} ,over the horizon T

a
during which the vehicle i is connected to a charger

based on the user’s driving profile. The timing of each
interval (i.e. {t;;1;;}, as well as the cardinality of

6; = {t,,1" .} Vn € Ni, where N! is the set of intervals

the set (N?) are different across individuals i. The EV
customer’s decisions over a time horizon T are described
by the following double objective:

min[rli*'_'r,-;]):”N; Zjd:"itgirf -At-P,(rf) : Objective 1
: Objective 2
2)

. n
N owldio g
MAX(,is ri*}zn:lzl:‘tn ri- At
1T a,i

subject to (3)-(5).

Constraint (3) ensures that the total amount charged
in the EV battery by a certain deadline (7') is maximized
up to reaching each agent’s i desired state of charge,
Soni. This desired state of charge is not a hard
constraint, instead it represents an upper bound of
electricity the customers are willing to purchase so that
they can cover unexpected or spontaneous driving. The
hard constraint which ensures a minimum electricity
in the battery so that the driving needs are covered is
described by (5).

Nl ' ‘
Y Y A< soc 3)
n=lt=t;
Constraint (4) sets the bounds for charging rate per
timeslot # (maximum charging speed):

0<r <rpex WVtET 4)

where 1,4, is the highest allowable rate offered by the
charging infrastructure and it may vary per locations.
The vector [r{*...ri¥] has zero elements when ¢ ¢ 6;.
Each EV agent spends energy E! during the times ¢
the EV is driving. These timeslots can be V¢ ¢ 6; but
not necessarily, because the car might be unplugged but
also not driving. The state of charge of the battery for
every timeslot 7 is SoC! = SoC!_, +ri - At — E/, which is

equal to the state of charge in the timeslot r — 1, S()Ct"_ 1

and the amount charged during timeslot 7, r,i - At, (if the
EV is available for charging) reduced by the amount of
energy spent for driving during this timeslot, E/, (if the
EV is driving). Therefore, the amount charged at every
timeslot # should be:
ri-At > SoCl—(SoCl_| —El) YteT (5
Constraint (5) ensures that an EV agent charges at
least an energy E; per timeslot ¢ that the EV is available
for charging. The minimum amount required to charge
at every timeslot 7 should be 7! - At = SoC! — (SoC!_| —

E!) Vt € T so that the estimated driving needs of the EV
owner are covered. We assume the SoC' is at a starting
value SoCé at the beginning of horizon 7.

Based on the presented multi-objective optimization
problem the EV agent decides on a set of charging rate
vectors in the form r'* = [ri*.../*]. When the EV is not
available for charging V¢ ¢ 6;, the respective ri* are zero.

The problem described by equations (2)-(5) has
more than one optimal solutions. These solutions - in
absence of any further information - cannot be said to
be better than the other. All these solutions constitute
the efficient Pareto frontier of the problem and the
decision maker has to select the preferred solution.
To solve this multi-objective optimization problem we
deploy a genetic algorithm (GA), and specifically,
we implement the Non-Dominated Sorting Genetic
Algorithm-II (NSGA-II) [4], which can provide the full
spectrum of optimal solutions with low computational
complexity and fast convergence.

2.3. Smart Grid Manager’s Decision Problem

The grid manager steers the EV customer demand
toward a desired profile. Therefore, we propose a
pricing mechanism which is a function of charging rate
and provides disincentives for EV customers to charge at
high speeds when it is not urgent. This pricing scheme
(Equation (6)) varies across time, and redistributes parts
of the peak demand so that herding is prevented.

Pt(rt):PO,t+at'rt (6)
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The variable r; is the charging rate (power consumption)
during timestep ¢ and Fy, is the price for zero
demand and can either be constant, or be exogenously
determined as e.g. a) the wholesale price of electricity
at time ¢ or b) another variable price that is known ahead
of time. The grid manager’s goal is to determine ¢ at
each timestep ¢ that will produce the desired aggregate
demand profile. The coefficient o; determines the slope
of the price curve with respect to the charging rate.

The coefficient ¢ is the steering parameter of the
pricing mechanism, since by increasing ¢; the smart
grid manager can increase the prices of the various
charging speeds, increasing the prices of energy, as
well.  With this mechanism we introduce fime as
an extra dimension in the EV customers’ decision:
customers can reduce their electricity costs by reducing
the charging speed, instead of reducing their actual
energy consumption (which is the case with the
traditional pricing schemes). Furthermore, by adjusting
oy dynamically, our pricing mechanism achieves peak
demand redistribution without creating new peaks.

Since the grid manager is in control of steering the
aggregate demand (D = [D;...Dr]), she sets prices so
that the summation of all individual demand profiles for
every time ¢ comes as close as possible to the desired
demand (D, ~ {»:1 rf*). The EV drivers’ preferences are
unknown to the grid manager and therefore it is unlikely
to achieve an exact match of the desired aggregate
demand and the summation of individual demands (i.e
D, = Y!_,#*). Thus, next we present an adaptive
component whereby the grid manager observes the
outcome of its actions on the EV driver population and
adjusts future actions accordingly.

2.3.1 Adaptive Component Since grid managers
have no prior knowledge about the heterogeneous EV
owner preferences, they observe reactions to prices and
adjust the parameters o;. We introduce an adaptive
component in the coordination algorithm that makes it
converge to the desired profile, D = [D;...Dy], without
having knowledge about the EV agent population. This
makes our mechanism flexible, since potential additions
of agents with different preferences or drop-outs
of existing agents can be observed online and the
mechanism can adapt its behavior.

We build our adaptive component based on Iterative
Learning Control (ILC) theory [18], modified to
account for multiplicative adjustment factors, since this
expedites convergence to the desired demand profile.
Our algorithm acts in real-time and, therefore, it is
crucial to react quickly and adapt on time to changes
in the consumer portfolio. Specifically, the smart
grid manager observes and stores the deviations of the

observed demand and the intended profile. Based on
these observations it updates the error function over
horizons T, Y & =Y" D, ~ ¥, Y., r;, and adjusts
the value of & for the next period T based on an agent’s
learning factor A € [1,M] (where M sufficiently large
number) so that the observed demand approximates the
intended demand profile. The learning factor A varies
across grid managers and we experiment with different
values in our simulation. The adaptive component
updates the next value of 047 based on the following
rule:

iy = { Ao B <o)

7% Yi1& > Y1 & min

This decision rule is repeated by the control agent until
the error term Y./, & gets reduced to the desired error
level ZrT=1 gl,mim

3. Evaluation

To evaluate our mechanism’s performance we build
a simulation environment based on Power TAC [13].
Power TAC is a smart grid simulation platform, where
energy brokers compete to attract electricity customers
and make profits. We display scenarios with various
heterogeneous EV customer preferences and price
function attributes (Table 2).

Table 2. Simulation Scenarios.
Scenario Attributes

S()Céi =50% nom. cap.
SoCy =15% nom. cap.
SOCZ =100% nom. cap.

o; = constant, Py ; = R,

Soni =50% nom. cap.
SoC, =15% nom. cap.
SoC; = 100% nom. cap.

o; = variable, Py ; = R;

First, we present results with the coefficient o =
constant in the price function. We run this scenario
in EV populations with 50%, 75% and 100% of the
nominal battery capacity as the desired state of charge
(Sonl). The 50% is selected as the lowest scenario,
because with a state of charge below 50% the driving
needs of EV owners might not be covered. Second,
we present results with ¢ = variable in populations
with 50%, 75% and 100% of the nominal battery
capacity as the desired state of charge (Sonl). The
constant factor of price function (6), Fy;, is calibrated
with the corresponding energy price in each hour (R;),
representing the electricity generation costs, taxes and
network fees.
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3.1. Simulation & Data Description

Below we describe the data we use to build our
simulation environment.

3.1.1 Individual Preferences We calibrate our
simulation with arrival and departure preferences
obtained by the Bureau of Statistics in an EU country.
This data includes different population clusters
(full-time employees, part-time employees, students,
retired persons, etc.) with a variaty of habits and driving
behaviors (business commuting, leisure time driving,
vacation, visits to relatives, shopping etc.). For each
individual we get a driving profile with certain activities
and driving demand for each activity, combined with
arrival and departure times.

3.1.2 Electricity Prices To calibrate the Py, factor
of function (6), we use as an example of wholesale
prices offered by the European Power Exchange (EPEX)
adjusted to account for network fees, taxes and VAT
for the EU country in question. In Figure 2 we show
3 weeks of retail price data, as they are used in the
simulation.
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Figure 2. Retail prices (€/kWh) over 3 weeks.

3.1.3 Household Demand without EVs Finally, we
want to evaluate the effect of EV charging on top of
each EV customer’s household demand. To calibrate
this parameter we use data from households in the EU
country in question obtained in collaboration with a
European energy utility. In Figure 3 we show exemplary
individual power demand curves (anonymized for
privacy reasons). We observe that there are differences
across households in the peak demand and the time
intervals that this peak demand appears.
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Figure 3. Examples of household power demand of
some customers in the population on a random day.

3.2. Numerical Example

Next, we demonstrate how our mechanism works
on a randomly selected EV customer. We assume an
EV customer who owns a Nissan Leaf and her EV
battery has storage of 24kWh. This user indicates to
the agent (handling the EV charging) that she ideally
would like her battery up to 100% charged per day. The
intelligent agent, after getting this input together with
her arrival/departure preferences (that can be inserted
directly or learned from past behavior), schedules EV
charging using equation (2), subject to constraints
(3)-(5). For this example we also assume that the grid
manager broadcasts price functions with ¢4 = constant,
vVt € T. The parameters of this scenario are: o4 =
constant, Py; = R;, SoC!; = 100% of nominal capacity
(24kWh).

The intelligent agent, after accounting for the
preferences the EV owner provided as inputs, presents
the following EV charging solution spectrum to the user
(Figure 4). The y axis in Figure 4 is intentionally
inversed so that it shows that a higher state of charge
will incur higher costs. The GA converged after
creating 187 generations of solutions and the Pareto
frontier consists of 77 points (77 possible solutions).
All these candidate solutions together with the EV
customer’s household demand profile (Figure 3) give the
demand curve in Figure 5. The error bars outline the
spectrum of solutions the EV customer can choose from.
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Figure 4. Pareto frontier with optimal EV charging
plans (y-axis inversed).
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Figure 5. Example demand profile (household and
EV demand).

3.3. Impact of SoC’; on Energy Demand

In this section we examine how different levels of
desired state of charge, SoCil influence the demand curve
and consequently the need for extra infrastructure on
the smart grid. We display results from the scenarios
described before. The SoCé, numbers are just used as
examples and can be substituted with others without
loss of generality of our results. We first start with
assuming oy = constant and we show that even constant
o, achieves redistribution of charging over time. Next,
we show how adjusting ¢ over time based on observed
demand shapes the demand toward a desired profile.

3.3.1 Desired state of charge up to SoC;'Z = 50% of
nominal capacity In this simulation scenario, the GA
converged after creating 147 generations of solutions
and generated the Pareto frontier consisting of 70 points
(70 possible solutions). The steady state curve of all
these solutions combined with the household demand
of these customers is presented on the first graph of
Figure 7. We observe in this graph that the error bars
are either small or non-existent. This is a person who
desires a charging up to 50% per day. This amount
will just satisfy her driving needs leaving little energy
for unexpected/spontaneous driving. Therefore, for this
population segment the boundaries of Equations (3)
and (5) are almost identical, yielding a narrow solution
spectrum. This narrow solution spectrum can be also
observed on the y-axis of Figure 6. The general
intuition we get from the Pareto frontier solutions for
this customer segment is that these customers do not
charge any redundant amounts of energy since they only
want to have just enough battery to drive. Also, for
this type of customers both objectives have the lowest
values because they charge the least amount of energy
and, therefore, they have the lowest costs. This explains
why this solution spectrum is located on the upper left
part of Figure 6.
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Figure 6. Pareto frontier with optimal EV charging
plans, for customer segments with Soni =50%,
SoCi; =75% and SoC', = 100% of nominal capacity
(y-axis inversed).

3.3.2 Desired state of charge up to Soni = T75% of
nominal capacity In this simulation scenario, the GA
converged after creating 228 generations of solutions
and generated the Pareto frontier consisting of 70 points
(70 possible solutions). In this population segment,
we observe that the spectrum of possible solutions is
broader (error bars second graph in Figure 7). In
this graph, we see that the error bars create higher
peak demand compared to a population of customers
with Soni = 50% of nominal capacity (first graph in
Figure 7) during peak hours 18:00-21:00. In Figure 6,
we observe that the solutions of this scenario are located
in the middle of the graph. As expected, customers
with a desired state of charge up to S()CZ = 75% of
their nominal capacity charge more than customers with
a desired state of charge up to SoC, = 50% of their
nominal capacity (higher values for Objective 2) and
consequently, will pay more for energy (higher values
for Objective 1).

3.3.3 Desired state of charge up to SoCZ = 100% of
nominal capacity In this simulation scenario, the GA
converged after creating 110 generations of solutions
and generated the Pareto frontier consisting of 70
points (70 possible solutions). Here, we observe the
highest peak demand of all three cases, since this EV
customer segment desires their EV batteries charged
up to full capacity at the end of each day (last graph
Figure 7). Consequently, the EV agents increase
the charging rates to achieve this goal within a day.
Looking at Figure 6 we see that the solution spectrum
for this customer segment is the broadest of all three
customer segments. This happens because they require
up to 100% battery charged and the agent has more
options for charging (and creates a broader solution
spectrum). Furthermore, we observe that some solutions
overlap with some solutions from the previous customer
segment. This happens again, because the 75% and the
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100% of battery charged have an overlap in the spectrum
of [lowest state of charge — 75% of nominal capacity].
Because of the broadest solution spectrum in this
scenario, in the bottom graph of Figure 7 we observe
the highest volatility, as well.
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Figure 7. Household and EV demand, for customer
segments with SoC("l =50%, SoC("l =75% and
Soni = 100% of nominal capacity.

3.4. Energy demand reshaping under variable
price slope o,

Next, we show how adjusting ; over time creates
different incentives and EV customers modify their
charging accordingly. For the variable ; scenarios we
do not display the Pareto frontier for each iteration due
to space limitations. After each period, though, a Pareto
frontier is calculated and each EV customer selects one
solution. We assume that EV customers have consistent
preferences and each time they select the same type
of solution (e.g., each time the same customer prefers
the solution with the lowest cost or the highest battery
capacity). In Figure 8 we display the EV charging
demand disentangled from the household. We must note
that after 31 iterations the changes in the EV charging
demand are very small or non existent due to the

individual arrival and departure preferences which are
immutable constraints, together with the desired state of
charge preferences. Also, the problem includes a lot of
stochasticity (arrival and departure times, GA solution
generation, etc.) and this leads to some volatility in the
outcome after 31 iterations.

In Figure 8 we display the steady state curve
of each customer population segment (Sonl = 50%,
SoC; = 75% and SoC}; = 100% of nominal capacity).
We see that in all three cases, after 31 iterations
(31 times of adjusting the price slope o ), part of
the charging demand is scheduled during the time
interval [00:00-00:06] when the household demand is
low and therefore, the EV and household combination
yields an overall flatter curve. Also, we observe
that after 31 iterations, the absolute peaks are reduced
compared to iteration 1 (peak reduction for SoC', =
50%: 14.90%, SoCi, = 15%: 12.00%, SoC’, = 100%:
8.01%). We observe that increasing SoC; brings lower
peak reduction, which is expected since with higher
SOCZ the customers tend to charge more and at higher
charging rates. However, the overall peak reduction
shows that by adjusting the price slope o; and learning
from the EV customers’ behavior, the grid manager
can steer the demand towards a less volatile curve.
There is still volatility in the demand that cannot be
eliminated because of the immutable heterogeneous
customer preferences (such as arrival and departures
and desired state of charge). In future work, we will
examine how to make the induced demand entirely flat,
influencing the immutable customer preferences.

3.5. Benchmarks

To measure our mechanism’s overall performance,
we compare the peak demand and demand volatility
induced by our mechanism and currently used
benchmarks. To measure the demand volatility we use
the peak-to-average ratio (PAR) [17]: (PAR = r’:ﬂ =

Frms

"peak

ﬁ), which is also known as crest factor and
th:lrl

measures the intensity of peaks or valleys in a curve.
The results of this comparison are shown in Figure 9
and quantified in Table 3. The benchmarks we are using
are listed below.

Benchmark 1: Real-world charging - Flat Pricing
This benchmark accounts for EV charging during the
period January 2013 - December 2013. This data
set includes charging observations from 1500 charging
poles in the whole EU country, from which the rest of
our data comes. It has recordings of 10,462 EV owners
and includes in total 231,976 transactions with the grid
operator. All these transactions are completed under a
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Figure 8. EV charging demand reshaping with
variable o;, for customer segments with SoCﬁ, =50%,
SoCly =75% and SoC', = 100% of nominal capacity.

flat pricing regime, which means that EV drivers were
paying the same price per electricity unit, irrespective of
the time of the day.

Benchmark 2: Rate-independent scenario
- Variable Pricing This benchmark assumes
self-interested agents, minimizing their costs based
on a given variable retail price signal, which does not
depend on the charging rate (o = 0,V¢ € T), similarly
to the flat pricing benchmark. However, in the variable
pricing benchmark the prices of electricity vary across
time intervals, i.e. P = Fy; non-constant over time.

These two benchmarks are representative of two
different situations. The first one represents the current
regime where no intelligent software is in place and
therefore, the consumers charge based on convenience
without price incentives. In our data we observed
that in the EU country in question EV owners mostly
charge during the day at their employers premises. This
happens because modern companies incentivize their
employees to adopt EVs by offering different benefits.
Hence, the Benchmark 1 in Figure 9 has a peak that
starts in the morning and continues till the evening.

The second benchmark represents the other extreme
of the spectrum where all EV owners have intelligent
software in place and decide on charging based on
minimized costs. However, in this situation (dashed line
in Figure 9) all EV owners receive the same prices and
are incentivized to shift their EV charging in similar
ways. Thus, we observe a significant peak during the
night (00:00 till 05:00) which indicates all people shifted
their EV charging during that time. This is an example
of herding in charging. For this simulation experiment
we assumed a heterogeneous EV owner population with
all types of preferences represented.

Figure 9 and Table 3 show that our algorithm
reduces both peak demand and PAR compared to the
currently used benchmarks. Especially compared to
the variable pricing benchmark, our mechanism reduces
peak demand by almost 20% and volatility by 10%. We
also observe that the variable pricing benchmark creates
higher peaks than the current EV charging under flat
pricing (negative values in Table 3).
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Figure 9. Benchmarking of the proposed
coordination mechanism (household and EV demand).

Table 3. Energy PAR and Peak Reduction (negative
values indicate increase).

PAR red. Peak red.

(%) (%)

Coordination vs. Benchmark 1 3.50 15.85
Coordination vs. Benchmark 2 10.31 19.31
Benchmark 2 vs. Benchmark 1 —7.60 —4.29

4. Conclusions & Future Work

We presented a coordination mechanism that
reduces peak demand coming from EV charging,
supports grid stability and environmental sustainability.
The proposed mechanism accounts for individual
commuting preferences as well as desired state of
charge, which can serve as a proxy for range anxiety. It
can shape EV charging toward a desired profile, without
violating individual preferences, while it mitigates
herding. Furthermore, it assumes no prior knowledge
about EV customers and, therefore, learns preferences
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and reactions to prices dynamically. We observed
that increasing desired state of charge, and potentially
increasing range anxiety on the EV customer’s side
creates higher demand volatility.  Therefore, our
mechanism can induce a smoother demand profile by
observing and dynamically learning these attributes.
In addition, we showed through simulations that our
mechanism induces a less volatile demand and lower
peaks compared to currently used benchmarks.

In the future, we plan to examine the trade-off
between heterogeneous preferences and guarantees for
convergence. Furthermore, currently EV chargers do
not support continuous power intervals, therefore, to
increase the practical applicability of our mechanism,
we plan to examine the discrete optimization case of the
presented continuous space solution.
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