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Abstract

This paper introduces a modal analysis approach
termed as the Iterative Matrix Pencil method. It uses
the Matrix Pencil Method as the primary tool for mode
identification, and adds to it by utilizing the concept
of a cost function in order to reduce the number of
signals needed to identify the modes for a large system.
The method is tested for a variety of large synthetic
power grids in this paper, with the cost function being
reported to measure accuracy. A sensitivity analysis is
also considered, showing how this new method behaves
when adjusting the two primary user-based inputs; the
number of iterations, and the SVD threshold.

1. Introduction

Modal analysis has been used in power systems
to assess small signal stability (the ability of a
system to withstand small disturbances), in addition
to determining the characteristics of electromechanical
oscillations [1, 2]. This involves calculating the
eigenvalues which yield the damping and natural
frequency, and eigenvectors (i.e. oscillation mode
shapes) for a system. Modal analysis methods can be
broadly categorized into two types. First, model-based
methods involve linearizing the system at a particular
operating point. A detailed dynamic representation
of the system is needed, including all its components
such as generators, exciters, governors, loads, etc.
This can be challenging for large systems. The
second type are the signal-based methods which make
use of measurements from the grid, such as phasor
measurement unit (PMU) data. This can be done totally
independent of the model. With the proliferation of
PMU’s, signal-based methods are gaining more traction,
in addition to their advantage of working with data
compared to models [3, 4, 5].

The goal of signal-based modal analysis techniques

is to approximate a set of signals, y(t), where:

y(t) ≈
M∑
i=1

Rie
zit + n(t), 0 ≤ t ≤ T (1)

where M is the number of modes associated with the
signal. Each mode zi is defined by its’ damping bi and
angular frequency ωi. Each signal is also associated
with its’ residue, Ri, defined by its’ magnitude |Ri| and
phase θi. Finally, all signals are determined to have
some amount of noise, n(t), associated with them.

There are a myriad of signal-based techniques
used, each with its own merits. Prony analysis
was established as one of the fundamental polynomial
analysis techniques [6], and has been used for decades.
However, due to constraints such as its lack of resiliency
against noise, new methods were developed to handle
cases where Prony Analysis could not accurately
identify modes [7]. One such matrix-based method
is the Matrix Pencil method [8], which estimates the
modes of a system using eigenvalues and matrices that
are constructed from system measurements [7]. This
method will be used in this paper as the main tool for
modal analysis.

While the Matrix Pencil method is more robust
against noise, the modes are used to identify the
mode shapes using a linear-least squares fit [9]. Due
to the highly non-linear properties of power systems,
techniques such as the Variable Projection Method
(VPM) project the linear mode shapes into non-linear
modes, thereby solving for a non-linear optimization
problem [10, 11]. Other techniques that have been
proven to handle large, non-linear systems include
Dynamic Mode Decomposition (DMD), which reports
the modes of a large system in a computationally quick
manner [12, 13, 14].

Iterative approaches to modal analysis also exist,
which initially identify a set of modes, and begin to
improve on the guess with further iterations. The
aforementioned VPM is one of these methods, which
solves for the non-linear modes α, and iteratively
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improves on its guesses of α by utilizing the gradient
∇α [10]. Other iterative techniques in power
systems include selective modal analysis (SMA), which
iteratively identifies modes by adding more information
to the underlying data set that determines the modes,
until the modes converge [15].

Many of these methods use a variety of metrics to
judge the quality of the estimated modes. One common
method is to employ the signal-to-noise ratio (SNR),
given in (2), which measures the degree to which a
signal is affected by noise [7].

SNR = 20 log10

||y(t)||
||y(t)− ŷ(t)||

(2)

This metric is primarily used in linear modal analysis
techniques such as Prony Analysis and the Matrix
Pencil method. Methods such as VPM utilize a
different metric, known as the cost function, defined
as an optimization problem in (3). Here, ŷ(α) is the
reproduced data given an initial data set y, while the cost
function is the normalization of the residuals r(α).

min
α

1

2
||r(α)||22 = min

α

1

2
||y − ŷ(α)||22 (3)

The cost function will be used as the metric of choice
for considering the accuracy of the modes. Finally, SMA
utilizes a different metric from all other methods, known
as the participation factor ρ [16], defined as

ρ =

∣∣∣∣∣wTr vrwTz vz

∣∣∣∣∣ (4)

where v and w are the left and right eigenvectors of
the matrix A, which contains data in regards to relevant
variables r and less relevant variables z [16].

While a majority of the methods previously
discussed allow for accurate identification of modes
for single signals and smaller systems, there remains a
need for more modal analysis techniques that accurately
identify modes in a timely fashion for large systems.
Concerns with both the stability of the system after
events and the ability to control the system as events
occur demand that the identification of the modes
happens as fast as possible [14]. As a result of
these concerns, the Iterative Matrix Pencil method was
created, which allows for the handling of significantly
large systems by only considering a small subset of
signals to most accurately identify the modes.

The remainder of the paper is structured as follows.
Section 2 breaks down the theory behind the Iterative
Matrix Pencil (IMP) method, discussing in detail how

the modes and mode shapes are calculated, along with
how they are used to generate cost functions and
consider further iterations of the IMP method. Section 3
applies the method to a variety of large bus cases.
Section 4 discusses the sensitivity of the method to a
variety of inputs, giving insight on how to best utilize
the Iterative Matrix Pencil method for numerous cases.
Finally, Section 5 concludes the paper.

2. Iterative Matrix Pencil Method

The IMP method is an iterative approach to
approximating (1) for a large number of signals, using
the Matrix Pencil method for mode estimation and cost
functions as criterion for signal inclusion. IMP begins
with a single signal, and calculates the modes following
which the mode shapes and cost functions for all signals
in the system may be calculated.

The signals are sorted by their cost function, and
the signal of interest for an iteration is the one with
the highest cost function. The highest cost function
represents the worst fit given the existing modes, which
indicates that the signal with the highest cost function
contains information pertinent to the oscillations that
were not accurately represented in the current set of
modes. As a result, the IMP method will select the
signal with the highest cost function, and add it into
the set of signals being considered for the Matrix Pencil
method. The procedure is repeated m times, where m is
a user-defined amount of iterations.

Before any analysis, however, we must first detrend
the signals to ensure accurate mode estimates. Without
detrending, data sets may look as if there are fewer
to no oscillations that occur after an event, due to
the scale of the oscillation relative to the scale of the
entire data set [10]. As a result, performing modal
analysis on a data set that is not detrended may result in
identifying modes that are not due to the oscillation, but
due to other components of the signal. While constant
detrending is useful in situations where oscillations have
a low magnitude, the oscillations in the large systems
being considered do not all have a low magnitude.
Therefore, each case will have linear detrending applied
to emphasize the oscillations that occur.

2.1. Matrix Pencil Method

We approximate a signal y(t) using the following
equation

ŷ = d(t) +

M∑
i=1

|Ri|ebit cos(ωit+ θi) (5)
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The first term, d(t), is the detrend function, which varies
case by case. The remaining variables are similar in
definition as stated in (1), where the modes zi are
defined by their damping bi and angular frequency ωi,
and the residues, also known as mode shapes [17], Ri,
are defined by their amplitude |Ri| and phase θi.

The Matrix Pencil method begins with calculating
the modes zi through the use of a Hankel Matrix. The
Hankel matrix, which we denote using the variable [Y ],
is constructed using the data for y(t) as seen in (6).
Here, L is known as the pencil parameter, and has been
shown to remove some of the effects of noise in the
data being considered [18]. [Y ] is an (N − L) × L
matrix, and is used to determine both the eigenvalues
and eigenvectors of the signal.

[Y ] =


y(0) y(1) . . . y(L)
y(1) y(2) . . . y(L+ 1)

...
...

. . .
...

y(N − L− 1) y(N − L) . . . y(N − 1)


(6)

The pencil parameter L is assigned to the value N/2,
whereN is the number of sampled data points. With this
substitution, the Matrix Pencil method has been shown
to reach the Cramer-Rao bound, which is a measure of
the best result that may be achieved when considering
noisy data [7].

In general, the Matrix Pencil method utilizes the
Hankel matrix in (6) by creating another matrix whose
eigenvalues correspond to the poles zi. The resulting
matrix used by the Matrix Pencil method is known as
the pencil, and is seen in (7).

[Y2]− λ[Y1] (7)

It should be noted that for noiseless data, n(t) = 0
for (1). As a result of this, [Y1] and [Y2] are defined as

[Y1] =


y(0) y(1) . . . y(L− 1)
y(1) y(2) . . . y(L)

...
...

. . .
...

y(N − L− 1) y(N − L) . . . y(N − 2)


(8)

[Y2] =


y(1) y(2) . . . y(L)
y(2) y(3) . . . y(L+ 1)

...
...

. . .
...

y(N − L) y(N − L+ 1) . . . y(N − 1)


(9)

However, in the presence of noise, we reformulate
[Y1] and [Y2] using singular value decomposition
(SVD) [18]. Singular value decomposition is a

technique that is primarily used for reducing a data set
to a lower dimension. This lower dimension matrix
is still representative of the original, but is easier to
computationally handle. The result of SVD is three
matrices, [U ], [S], and [V ]. While [U ] and [V ] are
unitary matrices that contain eigenvectors of [Y ][Y ]T

and [Y ]T [Y ], respectively, [S] is an M × N diagonal
matrix that contains the square root of the eigenvalues
of [U ] and [V ]. In general, we also implement a
user defined threshold to remove singular values that
fall below a desired threshold. This is to remove any
variations in the data that are more likely linked to minor
noise variations rather than actual oscillations of the
system.

Here, we define the threshold as a variable q, and
consider the ratio of all singular values compared to
the largest singular value. All ratios that fall below
the threshold q are removed from consideration. The
right singular matrix [V ] is used in conjunction with q to
define two new matrices, [V1] and [V2], in (10).

[V1] =
[
v1 v2 v3 . . . vq−1

]
[V2] =

[
v2 v3 v4 . . . vq

]
(10)

These definitions are then used to define a new [Y1] and
[Y2] in (11). The eigenvalues of the pair of matrices
{[Y2], [Y1]} are give us the poles of the system, which
in turn allow us to calculate the damping and angular
frequency of each mode.

[Y1] = [V1]T [V1] [Y2] = [V2]T [V1] (11)

The eigenvalues of the poles zi are calculated using

zi = eλi∆t =⇒ λi =
ln (zi)

∆t
(12)

where ∆t is the spacing between the points in the data
set. The poles are also used to calculate the mode shapes
Ri, through (13), which can be written as the simple
matrix equation ZR = Y . Due to the fact that R is a
M×N matrix, (13) must be solved using a least squares
method [7].

z0
1 z0

2 . . . z0
M

z1
1 z1

2 . . . z1
M

...
...

. . .
...

zN−1
1 zN−1

2 . . . zN−1
M



R1

R2

...
RM

 =


y(0)
y(1)

...
y(N − 1)


(13)

2.2. Considering Multiple Signals

The Matrix Pencil method described in 2.1 is
primarily written as a process for a single signal.
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However, this method may be extended to utilize
multiple signals and calculate a set of modes that best
represent the set of signals. If we consider any number
of signals yk(t), where k ∈ [1, n], there is a set of
modes (bk,i, ωk,i) which best fit all of the signals and
their respective mode shapes (|Rk,i|, θk,i).

The Matrix Pencil method for k signals yk(t) begins
with a construction of Hankel matrices for each signal.

[Y ′k] =


yk(0) yk(1) . . . yk(L)
yk(1) yk(2) . . . yk(L+ 1)

...
...

. . .
...

yk(N − L− 1) yk(N − L) . . . yk(N − 1)


(14)

The matrices are then vertically concatenated into one
matrix [10], which we denote as [Y ′] .

[Y ′] =


[Y ′1 ]
[Y ′2 ]

...
[Y ′n]

 (15)

From here, the procedure follows the same methodology
as the original Matrix Pencil method, where a SVD is
applied to our large Hankel matrix, and the resulting
matrices are all used to identify the poles zi and their
respective eigenvalues λi. These poles are then used
to individually calculate the mode shapes of each signal
approximation ŷk(t), through usage of an equation very
similar to (13).


z0

1,k z0
2,k . . . z0

M,k

z1
1,k z1

2,k . . . z1
M,k

...
...

. . .
...

zN−1
1,k zN−1

2,k . . . zN−1
M,k



R1,k

R2,k

...
RM,k

 =


yk(0)
yk(1)

...
yk(N − 1)


(16)

2.3. Cost Function

The cost function defined in (3) is a minimization
problem, seeking to use the cost function as a metric
to minimize the guess of the modes, α. In the IMP
method, however, the cost function is used as a metric to
determine which signal will be added for consideration
in the next iteration. As a result, we reformulate (3),
defining the cost function as c(t).

c(t) = ||r(t)||N = ||y(t)− ŷ(t)||N (17)

The primary difference between (17) and (3) is that
the cost function is no longer a minimization problem,

but simply a mathematical definition dependent not on
an initial guess α, but on the time t. We have also
normalized the residual to the number of points N ,
instead of simply applying a Euclidean norm. Because
we are looking to measure how accurate our reproduced
signal is, the cost function is chosen due to its direct
comparison between the reproduced data and the actual
data. It should also be noted that while applying a
Euclidean norm would imply that the residuals may be
described using linear relationship, invoking a p-norm
would more accurately help to consider the non-linear
nature of the residuals.

Through this definition of the cost function, and
its use in the IMP method, computation times may
be considerably shortened. By quickly calculating the
cost functions for all signals, the IMP method selects a
significantly smaller subset of signals that are used to
calculate the modes and the mode shapes.

3. Case Studies

We apply the IMP method to four different case
studies. These are performed on synthetic power
networks, which are test systems representing properties
of actual large-scale power systems, without revealing
confidential information [19, 20, 21, 22]. Because
the IMP method was designed to accurately determine
modes for large systems, we start with a 1200 bus
system, which is a subset of a larger 2000 bus system
based on the footprint of Texas. The second set of cases
contain 5000 and 10,000 buses, respectively. Again, the
5000 bus case is a subset of the larger 10,000 bus case
representing the western United States. The number of
buses per area is again dependent on the size of the area.
Because the IMP method is a measurement based modal
analysis technique, non-linearities are embedded in the
data gathered from the synthetic cases.

The statistics of the cost function may be used to
measure the accuracy of our reproduced signals. The
average cost function measures the overall fit of the
reproduced data, while the maximum and minimum cost
functions measure the best and worst fits, respectively.
All measured values are gathered through the use
of PowerWorld Simulator, which has a commercially
available implementation of the IMP method.

3.1. 1200 Bus Case

In the 1200 bus simulation, the contingency
considered is a generator being opened, one second into
the simulation. The frequency at each bus is recorded
for 20s, at a sampling rate of 5 Hz beginning at 1s.
Each frequency is linearly detrended and scaled by its
respective standard deviation. The SVD threshold which
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Table 1. 1200 Bus Case Cost Function
# of Iterations

1 10 40
Average c(t) 0.00672 0.00225 0.00220
Maximum c(t) 0.01363 0.00326 0.00550
Minimum c(t) 0.00260 0.00107 0.00095
Time Taken (s) 2.93 9.29 56.1

Table 2. 2000 Bus Case Cost Function
# of Iterations

1 10 40
Average c(t) 0.00684 0.00229 0.00226
Maximum c(t) 0.01386 0.00425 0.00555
Minimum c(t) 0.00260 0.00106 0.00095
Time Taken (s) 4.39 12.7 62.22

we use to determine the number of singular values is set
to be 0.025.

Table 1 presents the metrics of interest for three
different sets of iterations. When there is only one
iteration, we are attempting to reproduce all 1200 signals
depending only on the first available signal in the data
set. With 10 and 40 iterations, we reproduce the signals
with a larger set of sampled signals.

From 1 iteration to 10 iterations, the average cost
function decreases 66.5%, indicating an overall better fit
at 10 iterations. Likewise, the maximum and minimum
cost functions see a decrease of 76.1% and 58.9%,
respectively. However, the time taken for the IMP
method to determine the modes increases from 2.93s to
9.29s.

When increasing the iteration count from 10 to 40,
the average and minimum cost function continue to
decrease, although at a lower rate. The maximum cost
function, on the other hand, sees an increase of 68.7%.
This indicates that there is an upper limit to the number
of iterations that should be used, as there is an increase
in computation time, from 9.29s to 56.1s.

3.2. 2000 Bus Case

The frequencies for all 2000 buses are again
measured for a period of 20s, at a sampling rate of 5
Hz. The frequencies are linearly detrended and scaled
by their standard deviation, similar to the 1200 bus case.
The SVD threshold is set to be 0.025 as before.

The results of the IMP method are seen in Table 2.
We see similar trends as the 1200 bus case, with a
66.5% decrease in the average cost function, a 69.3%
decrease in the maximum cost function, and a 59.2%
decrease in the minimum cost function. Also like the
1200 bus case, there is an indication that an upper limit
for the number of iterations exists, as the maximum

Table 3. 5000 Bus Case Cost Function
# of Iterations

1 10 40
Average c(t) 0.0124 0.0027 0.0026
Maximum c(t) 0.0324 0.0041 0.0044
Minimum c(t) 0.0013 0.0011 0.0010
Time Taken (s) 10 27.89 102.98

Table 4. 10,000 Bus Case Cost Function
# of Iterations

1 10 40
Average c(t) 0.01194 0.00279 0.00238
Maximum c(t) 0.03244 0.00499 0.00930
Minimum c(t) 0.00121 0.00179 0.00098
Time Taken (s) 19.82 58.72 170.33

cost function increases when considering 10 iterations
versus 40 iterations. The need for an upper limit on the
number of iterations is exacerbated by the increase in
computation time, from 12.7s to 62.22s.

3.3. 5000 Bus Case

The 5000 bus case is a subset of a larger, 10,000 bus
synthetic power grid, which models the Western US.
The contingency considered is again the opening of a
generator at time t = 1s. The measurement parameters
remain the same as in the previous two scenarios, so
does the detrending and SVD threshold. The results are
shown in Table 3, which confirm the same trends as seen
in the 1200 and 2000 bus case.

It is important to note that as we continue to increase
the number of buses, the difference in computation time
between the iterations begins to increase at a rate higher
than previously considered cases. While the 2000 bus
case had a 49.52s increase in computation time from
10 to 40 iterations, resulting in a 1.3% decrease in the
average cost function, the 5000 bus case has a decrease
in the average cost function of 4.1%, but an increase in
computation time of 75.09s.

3.4. 10,000 Bus Case

The final case considered is the synthetic 10,000
bus power grid. The bus frequencies are measured for
20s, and sampled at a sampling rate of 5 Hz. The
data is linearly detrended and scaled by the standard
deviation before implementing the IMP method. The
SVD threshold for this case is also set to 0.025. The
results of the IMP method are recorded in Table 4.

The cost functions may further be visualized through
the use of a contour [23], seen in Figure 1. Here, a
color scale has been set on the range [0,0.005], for the
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Figure 1. Contour of Cost Functions for 10,000 Bus

Case

10 iteration case, to capture the extreme values of the
cost functions observed at two generators; the minimum
cost function of .00179 being at Bus 28919, and the
maximum cost function of .00499 being at Bus 40838.
These buses are enclosed by the green and blue circles,
respectively. In addition to the small nodal cost function
values, the narrow range of wide-area cost function
variation across the grid is indicative of the strong signal
matching ability of the proposed IMP method.

The most notable behavior of the cost function for
the 10,000 bus case is the increase of the maximum
cost function when transitioning from 10 iterations to
40 iterations. Further analysis into this reveals that the
increase in the maximum cost function of 86.4% is due
to a single signal whose fit is negatively impacted by the
number of iterations, while all other signals see trends
similar to those of smaller cases. As such, we explore
why this trend exists further in Section 4.1.

4. Sensitivity Considerations

The results of the IMP method can be highly
dependent on two primary user-based inputs; the
number of iterations, and the SVD threshold. The
behavior of the cost function as the number of iterations
increases was briefly explored in Section 3, and it was
found that there exists an appropriate range for the
number of iterations which minimizes the cost function
and the time taken.

The same analysis may be applied to the SVD
threshold. The SVD threshold q is also user-dependent,
and as such, different thresholds may produced different
results. While the SVD threshold was maintained to be
0.025 in all case studies for consistency, it is important

to explore how the different metrics are affected by
changes in the SVD threshold.

4.1. Number of Iterations

Figure 2 shows how the average cost function of
each of the four case studies changes with the number
of iterations. The average cost function decreases
exponentially until 10 iterations, after which it begins
to stabilize. In the 1200 bus case, after 10 iterations, the
average cost function has an average value of 0.00221,
with a standard deviation of 3.2×10−5, or about 1.5%
of the average. This indicates that in the smallest case
considered, the average cost function does not fluctuate
much after 10 iterations. It is also important to note that
the average cost function drops 63.91% in the 1200 bus
case by 5 iterations, with similar decreases occurring for
other cases considered.

A similar trend is observed in the 2000 bus case,
where the measured values begin to converge to an
approximate value of 0.00225 with a standard deviation
of 3.2×10−5. The 5000 bus and 10,000 bus cases
behave similarly, with a rapid decrease in the average
cost function as we approach 10 iterations. However, the
behavior after 10 iterations is not entirely consistent with
that of the smaller cases. In the 5000 bus case, we see
that the average cost function actually begins to steadily
increase again after 10 iterations, and only decreases
after 34 iterations. In the 10,000bus case, however, the
average cost sees a decrease after 17 iterations, which is
when the cost function averages out to a value of .00241,
with a standard deviation of 1.01×10−5, or about 4.2%.

The results of the average plot indicate that there is
not a substantial difference in the average cost function
when considering 10 iterations versus 40 iterations.

Figure 2. Average c(t) vs # of Iterations

As a direct result of this, we may state that for
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large bus cases, having a minimum of 10 iterations
is a benchmark which would provide accurate results.
However, while the average cost function gives an
indication of the lower limit of the number of iterations,
it does not provide enough insight on the upper limit.

Figure 3 provides insight on how the maximum cost
function varies with the number of iterations. We see
the same trend as seen in the average cost function; after
10 iterations, the maximum cost functions for the 1200,
2000, and 5000 bus case do not vary as much as they did
before 10 iterations. The 10,000 bus case, however, sees
an increasing maximum cost function as the number
of iterations increases. Tracking the maximum cost
function shows that the same signal is associated with
it after 10 iterations. As a result, while the average
cost function continues to maintain a value within a
small range, the maximum cost function increasing is
attributed to a single signal which sees an increase in
the maximum cost function, while all other signals obey
a similar trend to smaller bus cases. When looking
at the physical location of the signal, we see that it is
located close to the location of the contingency; this
would imply that while adding more signals improves
the overall quality of the approximation, signals with
a high number of oscillations that were already being
considered may have a worse representation as we
increase the number of iterations.

Figure 3. Maximum c(t) vs # of Iterations

While Figure 3 indicates that large changes can
occur when considering a varying number of iterations
for the maximum cost function in large cases, Figure 2
still shows an unsubstantial change in the overall quality
of fit. As a consequence of this, we look to Figure 4
helps to provide insight into another consideration for
modal analysis; the time taken to determine the modes.
When considering the time for smaller bus cases such as

Figure 4. Time Taken (s) vs # of Iterations

the 1200 bus and 2000 bus case, the time taken increases
quickly as the number of iterations increases, while
large cases see a slower increase between the number
of iterations and the time taken to determine the modes.

When considering time and the cost function
simultaneously as in Figure 4, several conclusions may
be drawn about a recommended number of iterations
that minimize both the cost function and the amount
of time that the IMP method requires. For the 1200
and 2000 bus case, 10 iterations suffice, as there are
no significant improvements in the average or maximum
cost function beyond this point, while the time increases.
When increasing the number of buses to 5000, the
recommended number of iterations increases to 13, as
after this point, the maximum cost function achieves a
minimum and remains within a small range of values.
Finally, for the 10,000 bus case, while 18 iterations
increases the maximum cost function by 21.2% from 17
iterations, the overall fit sees an improvement of 15.6%.
This point may be further emphasized by visualizing the
reproduced signals of the 10,000 bus case.

Figures 5 and 6 show the reproduced data from the
IMP method, and compare it to the original data for
the minimum and maximum cost function, respectively.
Here, the conditions of the IMP method are the same
as previously stated, but the iteration count is set to
18. We see that the minimum cost function sees almost
no discrepancies between the reproduced data and the
actual data, indicating a strong fit. Even in the worst case
scenario shown in Figure 6, the discrepancies are more
pronounced, but the overall fit still shares a majority of
the points with the actual data.

The number of iterations is noted to have minor
impacts on the overall fit for cases of roughly equivalent
size to the 2000 bus case, but creates much more impact
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Figure 5. Reproduced Data and Original Data of

Minimum c(t) for # of Iterations = 18

Figure 6. Reproduced Data and Original Data of

Maximum c(t) for # of Iterations = 18

when considering how long the IMP takes. In larger
systems, the number of iterations plays a vital part in
maintaining the balance between accurate results and
time minimization. The sensitivities of the cost function
to the number of iterations indicate that if one does not
carefully choose the number of iterations, results may
take longer to achieve, and may not even show any
tangible benefits. This is especially important in real
time analysis, where the most accurate results must be
achieved in the shortest amount of time.

4.2. SVD Threshold

When discussing the sensitivity of the average and
maximum cost function to the SVD threshold, an initial
threshold range from 0.025 to 1 shows increases in the
cost function without an appreciable difference in the
time saved after a SVD threshold of 0.2. As a result,

we consider a narrower range of 0.025 to 0.2 for a more
thorough discussion on the SVD threshold.

Figure 7 shows how the average cost function
evolves as we change the SVD threshold. Here, we see
that as we increase the value of the SVD threshold, the
average cost function begins to increase, with a large
amount of oscillations.

Figure 7. Average Cost Function vs Reduced SVD

Threshold

Figure 8. Maximum Cost Function vs Reduced SVD

Threshold

These oscillations are also apparent in Figure 8,
which shows how the maximum cost function behaves
on the same reduced scale. As such, in order to
determine an appropriate SVD threshold for each case
study, we must weight the magnitude of the oscillations
versus the amount of time saved by increasing the SVD
threshold, seen in Figure 9.

For the 1200 and 2000 bus case, we see a similar
trend persist. While the cost functions continue to rise
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Figure 9. Time Taken vs Reduced SVD Thresold

as we increase the SVD threshold, the time needed to
determine the modes does not present a notable change.
In the 1200 bus case, the average cost function has
more than tripled in magnitude, increasing from 0.00224
to 0.00807, while the time difference between the two
thresholds is only 2.56s. Likewise for the 2000 bus case,
the average cost function increases from 0.00229 to to
0.00817, while the time only decreases by 3.68s.

As Figure 9 shows, the 5000 and 10,000 bus cases
see much more significant reductions in time, relative to
the prior cases. However, there still exists a noticeable
amount of oscillations in the cost function curve. Setting
the SVD threshold to 0.105 in the 5000 bus case results
in an average cost function of 0.00599. While this
average cost function is larger than the average at a SVD
threshold of 0.025, there is a time difference of 5.2s.
Because contingencies and their effects on a power grid
can happen in very short amounts of time (e.g. ms), this
reduction in time can be of vital importance in helping to
determine how to best control and stabilize a large power
grid. The same effect is observed in the 10,000 bus case,
where increasing the SVD threshold to 0.115 increases
the average cost function from 0.00279 to 0.00565, but
saves 16.33 seconds, a reduction in computation time of
27.9%.

These trends may again be visualized for clarity
through Figures 10 and 11, where we consider the best
and worst reproduced data for the 10,000 bus case. The
number of iterations was maintained at 10, but the SVD
threshold was set to be 0.06. In this instance, we see that
the best case scenario still has a close fit to the original
data, even with an increase in the SVD threshold.
Likewise, while the worst case scenario in Figure 11 has
noticeable differences between the reproduced data and
the actual data, there is still a close fit for a majority of

Figure 10. Reproduced Data and Original Data of

Minimum c(t) for SVD Threshold = 0.06

Figure 11. Reproduced Data and Original Data of

Maximum c(t) for SVD Threshold = 0.06

the data points, indicating an accurate reproduction of
the original data.

While adjusting the SVD threshold has been
shown to have overall negative effects on the average
and maximum cost function, the value of reducing
computation time during contingencies may sometimes
outweigh said negative effects. In smaller bus cases
such as the 1200 and 2000 bus case, increasing
the SVD threshold holds very little merit; decreases
in computation time are far outweighed by the
effects on the overall quality of the reproduced data.
However, when handling significantly larger power
grids, adjusting the SVD threshold may potentially
have more pronounced effects on the overall fit, but
careful consideration may lead to minimized negative
impacts, while improving the speed at which modes are
determined.
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5. Conclusion

The paper introduced a modal analysis method,
which builds on existing techniques, termed as the
Iterative Matrix Pencil method. The significance of this
method lies in the quick calculation of modes for a large
system involving multiple signals. The accuracy of the
method was tested through comparisons between signals
reproduced from the modes and their associated original
signals, showing a strong match between the two.

The IMP method possesses user-defined inputs, and
as such, the sensitivity of the method to both the number
of iterations and the SVD threshold must be considered.
Maintaining the number of iterations in the tens has
shown to minimize the average cost function for cases
in which there are thousands of buses. Likewise,
maintaining the SVD threshold at 0.025 also minimizes
the average cost function, but increasing it to 0.06
greatly improves the time taken for the IMP method.
Visualizations of the cost function across large grids and
its evolution provide a clearer understanding of how the
IMP method works. Future work seeks to test the IMP
method in scenarios of poor data quality, along with
considering how the IMP method performs compared
to other modal analysis techniques designed to handle
a large number of signals, such as DMD.
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