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Abstract

Rrenewable generation, such as wind power, is com-

monly considered a must-take resource in power sys-

tems. In this work we show that, given the technical ca-

pabilities of current wind turbines, this approach could

lead to major economic inefficiency as wind integration

levels in power systems increase. We initially provide

intuition for cases in which the optimal operating point

involves shedding renewable generation, even though no

cost is associated with it in the optimization objective,

illustrated in small power systems. We then explore the

expected benefit from dispatching wind resources at a

lower level than their available output in a Stochastic

Unit Commitment (SUC) framework. The modeling and

evaluation approach adopted are described. A decom-

position technique based on recent literature that uti-

lizes global cuts and Lagrangian penalties to achieve

convergence is used to solve the resulting large scale

mixed integer optimization problem, in a high perfor-

mance computing environment. A reduced California

system is examined as a test case.

1. Introduction

The worldwide drive towards a cleaner and sustain-

able electricity generation mix has lead to increased re-

newable integration goals for the coming years. Cali-

fornia, for example, is on track for achieving its 2020
goal of 33% of energy needs satisfied by renewable re-

sources and now aims for 50% by 2030 [1]. Renew-

able resources have been traditionally treated - and are

still treated by many system operators - as must-take

resources (negative load), i.e. they are fully integrated

in the electricity network regardless of their level or

variability. Renewable curtailments only occur in cases

where operational feasibility is at risk. The increased

renewable integration, however, gradually brings about

new operating conditions, such as steeper power ramps,

overgeneration and decreased frequency response capa-

bilities. Conventional generation by itself is unable or

extremely costly to deal with these new conditions and

a paradigm shift is necessary, in which renewable gen-

eration is called upon to contribute to ancillary services

and grid flexibility by systematically dispatching at lev-

els defined by operational and cost considerations. The

need for such policies is already becoming apparent in

regions with increased renewable integration; the Cali-

fornia Independent System Operator (CAISO) curtailed

about 1% of the total potential renewable generation

during the first quarter of 2017, with solar curtailment

reaching up to 30% at specific times, while it has already

adopted market based curtailment mechanisms [2]. In

Europe, on the other hand, directive 2009/28/EC is cur-

rently in force and stipulates by law that “Member States

shall ensure that when dispatching electricity generating

installations, transmission system operators shall give

priority to generating installations using renewable en-

ergy sources in so far as the secure operation of the na-

tional electricity system permits and based on transpar-

ent and non-discriminatory criteria” [3].

We focus on mobilizing the flexibility of wind dis-

patch. Current wind generators and power plants have

advanced controls that allow them to operate practi-

cally at any point below their (maximum) available out-

put [4,5]. However, their available output itself depends

on the weather conditions, i.e. the availability of wind.

Consequently, they are considered semi-dispatchable (in

contrast to conventional resources for which complete

control over the output point is possible). These techni-

cal capabilities, however, enable us to consider the opti-

mization of the wind generation setpoint, instead of inte-

grating all of the available wind generation into the sys-

tem. The benefits from curtailing wind production have

been examined from various perspectives. In [6] and [7],

NREL provides a series of cases of wind curtailment in

systems in the US or abroad. In [8] and [9] CAISO uses

the software PLEXOS to simulate a rolling unit commit-

ment problem in the presence of wind curtailment for

high wind penetration. In [10] it is shown that allowing

for renewable curtailment enables significant reduction

of the required system storage size, in [11] the benefits

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59798
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 3617



are motivated mainly through solving a Security Con-

strained Optimal Power Flow (SCOPF) problem, in [12]

through a market coupling and a nodal pricing model of

part of the European system, in [13,14] through a Secu-

rity Constraint Unit Commitment (SCUC) Problem and

in [15] a dynamic interaction of wind curtailment with

storage is examined when the ramping rates of power

plants are considered. An overview of the motivation be-

hind wind curtailment is given in [16], whereas in [17]

wind curtailment is employed for active network man-

agement. A flexible wind dispatch margin for the joint

energy and reserves market and offline policies to obtain

it are examined in [18] and [19].

We decided to motivate flexible wind dispatch in

the context of the Stochastic Unit Commitment (SUC)

problem instead. The Unit Commitment problem is a

widely studied mixed integer program [20–22] that de-

termines the set of generators, among all the available

ones, that will be committed to satisfy the load dur-

ing the following day. The two stage Stochastic Unit

Commitment problem (SUC) formulates the same deci-

sion in the presence of uncertainty (renewable genera-

tion, faults, load), captured by a finite set of possible re-

alizations (scenarios) [23–27]. While wind curtailment

is a usual assumption when formulating the SUC prob-

lem, in this work we explicitly focus on calculating the

expected benefit from optimizing the wind output set-

point versus an approach that treats wind as a priority

resource. A similar approach appears in [28], where

coordination with storage is considered to illustrate the

benefits from dispatchable wind. The size of the op-

timization problem scales linearly with the number of

scenarios and for that purpose a large amount of research

has been devoted to decomposition techniques to itera-

tively approximate the solution of the problem. Among

these, in [29], the Progressive Hedging (PH) algorithm is

adapted to successfully solve the SUC problem. In [30]

a cutting plane algorithmic approach is used. In [31]

a parallel implementation of Lagrangian relaxation in a

high performance computing environment is employed.

In [32] an asynchronous parallelized algorithm based on

stochastic subgradient is utilized to efficiently solve the

problem.

In this work, we provide a complete framework to

understand and evaluate the expected benefit from flex-

ible wind dispatch in a SUC setting, while also intro-

ducing innovations in the implementation of the various

components of the model. To begin with, since wind

generation is not associated with any fuel costs in the

objective, it is not self evident why we could be better

off curtailing it and using costly conventional genera-

tion in its place. For this reason, we present small mo-

tivating examples to offer intuition regarding the most

common setups where such benefit may occur: opera-

tion during oversupply, ramping requirements, technical

minima of generators and congestion. We then proceed

to describe the complete evaluation framework, by intro-

ducing its basic components: the Uncertainty and Opti-

mization Modules.

The Uncertainty Module is responsible for generat-

ing sample scenarios that capture the underlying uncer-

tainty for renewables and system faults. It is based on

existing wind speed modeling techniques, which we ex-

tend by using a non parametric modeling methodology

for the aggregate power curve, i.e. the mapping of wind

speed to wind generation, utlizing local polynomial re-

gression [33]. The Optimization module, on the other

hand, is responsible for solving the SUC problem given

a set of scenarios. It specializes an algorithm presented

in [34] for general two stage stochastic programs with

binary first stage variables. The intuition behind the al-

gorithm is that, if the different scenarios of a stochas-

tic program are similar, then it is possible that a good

(first stage) solution to the full problem will come from

solving the significantly smaller subproblems that only

look at scenarios in isolation. By solving the scenarios

in isolation in the first phase of the algorithm, we obtain

lower bounds to the SUC optimal objective. Then, by

testing the various first stage solutions we got from the

individual scenario subproblems to the full problem, we

get feasible solutions to the full problem (upper bounds)

in the second phase of the algorithm. We proceed to

eliminate these solutions from consideration in the next

iterations, when we resolve the individual scenario sub-

problems. The algorithm is executed until the desired

optimality guarantee is obtained.

In the experimental results of [34, 35], the algorithm

is tested without implementing dual updates (just em-

ploying cuts to eliminate solutions already tested). Even

though SUC satisfies the technical requirements of the

algorithm, the cuts employed fail to efficiently reduce

the gap for the SUC problem on their own. To rem-

edy that, we combine the use of cuts with Lagrangian

penalties in the objective of the individual scenario sub-

problem to convey information from other scenarios, so

as to obtain scenario specific solutions that perform well

in the full problem. The exact penalties we use are the

same as the Progressive Hedging Lower Bounds [36], in

a way that the lower bounding property of the first phase

of the algorithm is preserved, and lead to a projected

subgradient descent optimization scheme at every itera-

tion (an update that lies within the general framework of

the algorithm in [34]). One advantage of the algorithm

from [34] is that termination of the algorithm with any

desired optimality gap is (at least in theory) guaranteed,

in contrast to a simple subgradient optimization scheme
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for the dual where the achievable accuracy is limited by

the duality gap between the primal and dual problems at

best.

We test our framework on a reduced model of the

Western Electricity Coordinating Council (WECC) sys-

tem from 2010 [37], consisting of 130 thermal genera-

tors, 225 nodes and 371 lines for three wind penetration

scenarios (low, medium and high). After the SUC prob-

lem is solved, we utilize its optimal solutions to com-

pare the cost of policies that treat wind as a must-take

resource versus ones that allow flexible wind dispatch.

Regarding the value of wind flexibility, our results indi-

cate negligible cost benefit in the low and medium in-

tegration case, but a 15% cost improvement in the high

integration case, supporting the argument that flexible

wind dispatch should be directly integrated in the oper-

ation of the power market.

The paper is structured as follows: In section 2, the

motivating examples are provided, in section 3, the gen-

eral modeling is described, in section 4 simulation re-

sults are shown, and in section 5 we conclude and dis-

cuss policy implications of the work.

2. Motivating Examples

In order to motivate the discussion and provide some

intuition on the cost benefits from allowing wind gener-

ation to deviate from the available wind power output,

four stylized examples are examined. These examples

try to illustrate that, even though wind generation is not

associated with any cost in the objective, it can still be

beneficial to spill wind resources for a cost efficient al-

location of conventional generation. Fig. 1 outlines the

parameters for these examples.

In example 1, if the 40MW of wind power are treated

as a must-take resource, the total residual load that

needs to be satisfied by conventional generation would

be 20MW. Due to the technical minimum 40MW of gen-

erator G2, we need to use the expensive G1, resulting in

a 1100 $/h cost of operation. If instead the output of

the wind generator is adjusted at 20MW, G1 can be used

and the cost drops to 1000 $/h.

In example 2, if wind power is a must-take resource,

it can fully satisfy demand for time period 2. A resid-

ual load of 20MW should be satisfied by conventional

generation in periods 1 and 3. That, however, means

that generator G1 must restart at period 3 and the startup

costs are incurred twice, leading to a total cost of 11000$

for the three periods. If, instead, 20MW of wind are

spilled during the second time period, G1 can stay on

and the total cost is now 8500$. Note that this intuition

could be extended for more time periods or for instances

with more conventional generators.

(a) Example 1. The generator specifications in this case are minimum
and maximum generation limits (Pmin, Pmax) and marginal costs Cg .
The available (maximum) wind power generation is Pw and the load is
PD .

(b) Example 2. The generator specifications are the minimum genera-
tion limit (Pmin), the startup cost Sg and the operating cost C(P ) as
a function of the generation level P . The available (maximum) wind
power generation Pwt and load PDt are given for three consecutive
time periods, t = 1, 2, 3. G1 is assumed turned off at the beginning.

(c) Example 3. The generator specifications are minimum and maxi-
mum generation limits (Pmin, Pmax), the startup cost Sg , the operating
cost C(P ) as a function of the generation level P and the ramping rate
RR. The available (maximum) wind power generation is Pw and the
load is PD . The generators are initially assumed turned off and we are
only interested in the first time period.

C1

g = 4 [k$/h]

Fmax
12

= 10 [pu]
B12 = 20 [pu]

G1 G2

Fmax
23

= 10 [pu]
B23 = 20 [pu]

B13 = 50 [pu]
Fmax
13

= 30 [pu]

Pw = 10 [pu]

PD = 40 [pu]

C2

g = 6 [k$/h]

1 2 3

(d) Example 4. The system consists of three buses and three branches
with susceptances B and capacities Fmax as provided in the figure.
The generator specifications are the marginal costs Cg , the maximum
available wind production is Pw and the load is PD .

Figure 1: Small examples to illustrate potential benefits of wind power
spilling.
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In example 3, the goal is to satisfy N − 1 security.

More specifically, if any of the generators fail, we should

be able to recover the lost generation within the next

time unit (an hour is used here, but a smaller time reso-

lution could be considered). Generators G1 and G2 are

identical and have a lower startup cost than generator

G3, however their ramping rates are limited to 60MW/h,

whereas G3 has a ramping rate of 100MW/h. In the case

where no wind spill is allowed, utilizing only the cheap

generators does not yield a feasible solution, since as-

suming they share the residual load of 130MW by gen-

erating 65MW each, the ramping capabilities of G1 are

not sufficient in case G2 fails (in case they share the load

unevenly, the same problem arises if the highest gener-

ating unit fails). So the costly generator G3 needs to be

utilized, leading to a total cost of $12900. Now, if in-

stead we dispatch the wind unit at 40MW, by spilling

10MW of wind power, we can satisfy the residual load

of 140MW by evenly sharing between G1 and G2, i.e.

70MW each. In case G2 suffers a fault, we can cover

60MW of its generation byG1 and the remaining 10MW

we can obtain by ramping up the wind generation to its

available output. For that, we exploit the fact that wind

turbine controls allow for very fast ramping. The second

dispatch amounts to a lower cost of $11200.

Finally, in example 4, a DC optimal power flow

problem is solved to illustrate how allowing for flexible

wind dispatch may lead to a more economical allocation

by alleviating congestion. In the case where the 10pu of

wind power are treated as a must-take resource, in the

optimum they all pass through branch 2 − 3 to satisfy

the load of bus 3, binding the phase angle difference be-

tween buses 2 and 3 as well. That means the flow of

branch 2 − 3 is at its capacity, so the flow on the line

1 − 2 must be zero. Because of that, the phase of bus

1 has to equal that of bus 2 and that constrains the flow

on line 1 − 3 to 25pu. We observe that both line 1 − 2
and line 1−3 are not utilized close to their full capacity,

whereas line 2 − 3 is congested. Also, 5pu of the load

is satisfied by the expensive generator G2, leading to a

total cost of $130000/h. If we instead dispatch wind at

8pu, we can satisfy the load without using the expen-

sive generator, by generating 32pu with G1 and the re-

maining 8pu through wind, leading to a lower total cost

of $128000/h. The flows are in this case P12 = 2pu,

P23 = 10pu and P13 = 30pu, which also corresponds

to a better utilization of the line capacities.

3. Model Outline

The examples of the previous section constitute fa-

vorable scenarios in which introducing flexible wind

dispatch allows for a lower cost of operation, due to

technical minima of conventional generation, efficient

scheduling, ramping requirements or congestion. In or-

der to make an argument for a more general case, how-

ever, we need to consider a large set of scenarios, gen-

erated based on a model of the underlying uncertainty

of an actual system. For that purpose, the procedure de-

picted in Fig. 2 is adopted. The developed model com-

prises of two basic components, the Uncertainty Mod-

ule and the the Optimization Module. The Uncertainty

Module tries to capture the underlying uncertainty of

the system, which in our case is assumed to come from

wind generation and line or generator faults. The mod-

ule is trained based on a data set and then used to gen-

erate scenarios whenever these are necessary. The Op-

timization Module, on the other hand, takes as input a

set of scenarios and solves a stochastic unit commitment

problem, providing in its output a commitment sched-

ule of the slow generators for the next day. The Opti-

mization Module can be treated as a black box that a

system operator uses to make the day ahead scheduling

based on a set of available scenarios. Furthermore, it has

two settings; in the first setting the optimization treats

wind generation as a must-take resource, whereas in the

second setting wind generation is allowed to dispatch at

lower levels.

Based on these modules, the testing process is the

following: Initially, the Uncertainty Module generates

a set of scenarios. These scenarios are treated as the

uncertainty information the system operator utilizes to

make the scheduling decision. Based on this informa-

tion, the Optimization Module makes one scheduling

decision for each of two cases: the one in which wind

is a must-take resource, and the one that it is not. In the

final step, we wish to evaluate the difference between the

costs associated with each case. To that end, we generate

a new set of scenarios from the Uncertainty Module, rep-

resenting possible actual realizations of the uncertainty

the next day, and compare the expected costs of each of

the two cases (Test Optimal Commitment Block).

3.1. Uncertainty Module

The underlying uncertainty of the problem consid-

ered consists of three main components: the wind

model, the power curve model and the reliability model.

The purpose of the wind model is to generate synthetic

wind speed time series with hourly resolution, repre-

sentative of the wind sites under consideration. Subse-

quently, the power curve model takes as input the wind

speed time series and outputs a wind power generation

series for every wind site. Finally, the reliability model

is a discrete (Bernoulli) distribution from where faults

of lines and generators are drawn, as in [23].
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Figure 2: General model outline. The Uncertainty Module generates
scenarios to be used as input for the Optimization Module, which de-
fines an optimal commitment. It also generates a new set of scenarios
to test this optimal commitment.

3.1.1. Wind Speed Model A wind model that cap-

tures the characteristics of wind speed from multiple

wind sites is implemented. The approach follows the

steps from [38], which builds upon work from [39] and

[40]. The input data used to train the model are wind

speed measurements ξtrain
gk , where g ∈ GW indicates the

different wind sites and k ∈ {1, 2, ... Ttrain} indicates

the Ttrain hourly measurements that are available at ev-

ery wind location. The goal is to train a model based

on these measurements and then use it to generate ar-

tificial wind series. The steps employed are divided in

two phases; in the first one (Learning Phase) the model

is trained using the time series data, whereas in the sec-

ond one (Time Series Generation Phase) randomly gen-

erated wind time series to be used in a Monte Carlo sim-

ulation are created based on the model. The output of

the process is a wind time series ξ
sample
gts with g ∈ GW

(for the various wind sites), t ∈ T (for the desired time

steps of the SUC problem), and s ∈ S (different scenar-

ios/samples used to capture the stochastic nature of the

problem).

3.1.2. Power Curve Model For every site of wind

generation an aggregate power curve that will provide

an estimate of the wind power generation given the wind

speed needs to be constructed. For that purpose, wind

data and the corresponding wind power generations are

used to train a power curve model. The power gener-

ation data points come from an aggregation of multi-

ple wind turbines in each site, with potentially differ-

ent individual power curves and characteristics. There-

fore, the use of the standard parametric power curve

model of a single wind turbine to describe the wind

speed and power relationship [41] would not be a satis-

factory approximation and a data driven non-parametric

fit is more suitable. The model should also be able to

capture the nonlinear behavior of the power curves, that

is dependent on the wind speed operating point. For the

aforementioned reasons, a local polynomial regression

scheme is proposed.

More specifically, for every fixed g ∈ GW the wind

speed and wind power measurement data
(

ξtrain
gk , P train

gk

)

,

k ∈ {1, . . . , Ttrain} are sorted (based on the lexico-

graphical ordering) in Lg wind speed intervals [agi, bgi],
where i ∈ {1, 2, ...Lg}, with approximately equal num-

ber of measurements, represented by a central wind

speed point cgi.We locally approximate the power curve

mapping for this site with a polynomial of degree p, i.e.

mgi(x) ≈ βgi0 + βgi1(x − cgi) + βgi2(x − cgi)
2 +

... + βgip(x − cgi)
p. The coefficients βgi0, . . . , βgip

are trained for each interval based on a weighted least

squares problem, where the weights are kernel functions

of the distance of a point from the center of its interval.

After an initial fit is obtained, the procedure in [33] is

adopted to ensure the fit is robust to outliers.

Following that process, we feed the wind speed sam-

ples ξ
sample
gts , obtained by the wind speed model, to the

trained power curve model, to obtain available wind

power samples PWgts, for g ∈ GW , t ∈ T , s ∈ S:

PWgts =

Lg
∑

i=1

mgi(ξ
sample
gts )I[agi,bgi](ξ

sample
gts ) (1)

3.2. Optimization Module

3.2.1. Stochastic Unit Commitment The generat-

ing units available to the system operator are divided

into slow and fast, based on how long prior to opera-

tion a commitment decision for that unit has to be made.

The output of the SUC problem is the commitment of

slow generating units. The challenge is that the commit-

ment decision for slow units has to be made a day before

operation, when the underlying uncertainty is still un-

known, i.e. the commitment decisions (binary variables)

for these units have to be the same across all scenarios

(first stage variables). On the other hand, the other vari-

ables of the problem, such as the commitment of fast

generating units and the generation levels, are allowed

to vary depending on which scenario of nature was real-

ized (the decision for them is made with knowledge of

the uncertainty), hence their value can be different for

every scenario (second stage variables).

Our formulation is that of [23], adapted to explicitly

model the flexibility of wind resources. The objective of
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the SUC problem is minimizing the expected, over the

different scenarios, operational costs (startup, minimum

load and fuel costs), as well as the highly penalized load

shed variables. Wind generation is not associated with

any fuel costs in the objective. The only modification

of our formulation, compared to the one in [23], is that

wind will be treated as a must-take resource when an

additional parameter iallin is set to 1. This is imposed

through the (additional) constraints:

pgts + pWSgts
= PWgts, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S,

(2a)

pWSgts
≥ 0, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S, (2b)

pWSgts
≤ (1− iallin)PWgts, ∀g ∈ Gw, ∀t ∈ T, ∀s ∈ S,

(2c)

where the wind spill pWSgts
is set to zero if iallin = 1

(forcing the wind generation pgts to equal the available

generationPWgts), or optimized to a value between zero

and the maximum available wind production PWgts, if

iallin = 0. Note, however, that the policy adopted by

the operators when prioritizing wind generation is that

they may still impose curtailments of wind generation, if

the system feasibility is compromised. This corresponds

to introducing constraint (2c) with a big-M penalty in

the objective instead (which will lead to positive wind

spill only in case enforcing (2c) as a hard constraint

would cause infeasibility). The impact of the penalty is

in that case subtracted from the objective cost reported,

since the big-M has no physical meaning for the prob-

lem costs.

3.2.2. Scenario Decomposition Algorithm The op-

timization problem described previously has the form of

a two-stage stochastic program. For concreteness, let x

be the vector of first stage variables, i.e. the slow gener-

ator (binary) commitment. Let fs, for s ∈ S, be the set

of (well defined) functions that, given the first stage vari-

ables, yield the optimal cost for the second stage. That

is, each evaluation of fs(x) accounts for solving an op-

timization problem for scenario s ∈ S and for first stage

variable x. Then, the SUC can be reformulated:

minimize
x∈X

∑

s∈S

πsfs(x) (3)

The binary nature of the first stage decisions in (3) al-

lows the decomposition scheme proposed in [34] and

elaborated in [35] to be employed in order to decom-

pose the problem and reduce the computational burden.

The form of decomposition utilized in this work is given

in Fig. 3. The main body of the algorithm is divided

Initialization Phase

t← 0, UB ←∞, LB ← −∞ , wt
s ← 0, ∀s ∈ S, W ← ∅

Main Body

repeat
t← t+ 1,
Lower Bounding and Lagrangian Update Phase

Solve scenario subproblems:
for s ∈ S do

x
t
s ∈ argmin

x∈X\W
{fs(x) + x

T
w

t−1
s }

end for
Update Lower Bound:
LB←

∑
s∈S πsfs(xt

s)
Update objective weights:
for s ∈ S do

x̂
t ←

∑
s∈S πsx

t
s

w
t
s ← w

t−1
s + ρt (xt

s − x̂
t)

end for
Upper Bounding and Cut Phase

Evaluate scenario solutions for Upper Bounds:
for s ∈ S do

UBs ←
∑

i∈S πifi(xt
s)

end for
Update Upper Bound:
UB← min{UB, {UBs}s∈S}
Exclude points tested:
for s ∈ S do

W ←W ∪ {xt
s}

end for
until UB−LB

UB
≤ eps

Figure 3: Decomposition scheme proposed in [34], adapted to solve
the SUC problem. The Lower Bounding Phase involves solving
smaller optimization problems than the original, since the scenario is
fixed, whereas the Upper Bounding Phase involves smaller problems
since the first stage and the scenario are fixed. As discussed in subsec-
tion 3.2.2, not both phases are necessarily executed at every iteration.

into two phases, the Lower Bounding and Lagrangian

Update Phase and the Upper Bounding Phase and Cut

Phase. In the Lower Bounding Phase, we fix every sce-

nario s ∈ S and solve for the optimal first stage decision

given that scenario, over a space X \W . This yields |S|
scenario specific solutions for the first stage variables

x
t
s at iteration t. In the first iteration, the set W is empty

and the penalty coefficients wt
s are zero, so we are es-

sentially solving |S| scenario subproblems without any

interaction, i.e. we are solving the initial problem af-

ter relaxing the non anticipativaty constraints. Since we

are solving a relaxation, at least for the first iteration,

we are guaranteed to get a lower bound on the optimal

solution to (3). For the next iterations, it is still straight-

forward [36] to show we get lower bounds for (3) solved

in the restrained space of first stage variables X \W .

Following that, the objective value penalties ws for

every scenario s ∈ S are updated. These penalties aim

to drive the scenario solutions together. Intuitively this

is achieved in the following way: say that x is just an

one dimensional x and for some iteration t we have that

the mean of the scenario specific solutions is x̂t. If for

some scenario s ∈ S, the scenario specific solution xt
s

is away from the mean of the scenarios x̂t (say xt
s = 0

and x̂t = 0.9), we would like to penalize this deviation
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in the objective of the scenario subproblem the next time

we iterate, at time t+1. So, at iteration t+1 a term (xt
s−

x̂t)x will appear in the objective of scenario s, so that

the new solution x of the scenario will be driven towards

the mean of the scenarios (in the arithmetic example, the

penalty in the objective would be (0 − 0.9)x = −0.9x
which will drive x to be 1 in the minimization, i.e. closer

to the mean of the scenarios at the previous iteration).

In the Upper Bounding Phase of the algorithm, the

|S| scenario specific solutions for the first stage variables

found during the previous phase are tested into the full

problem. If feasible, each one of them yields an upper

bound to (3). That way, we can possibly update the up-

per bound and the first stage solution that yields it. We

then add the points {xt
s}s∈S in the set W . Our objec-

tive function value has already been calculated for all of

these points, so we can exclude them from further con-

sideration, except for the one that has yielded the best

upper bound so far. That is, the execution of the Lower

Bounding Phase for the next iteration should only con-

sider points not in W . In practice, this is achieved by

adding a global cut in the optimization problems solved

in the first phase, for every point in W so as to cut off this

particular point. More specifically, a “No-Good-Cut” is

employed, i.e. a constraint of the form

x
T (1− x

t
s) + (1− x)Txt

s ≥ 1 , (4)

in order to cut off the point x
t
s. The algorithm it-

erates until the Lower Bound (LB) and Upper Bound

(UB) come close enough to satisfy the desired optimal-

ity guarantee (eps).

To get some technical intuition for the algorithm,

let us note that the Lower Bounding phase is essen-

tially a step in a projected subgradient ascend scheme

for the dual of (3) in the reduced space X \ W , if the

non-anticipativaty constraints are dualized. For a suit-

able choice of ρt as a function of time, repeated evalua-

tions of that phase would converge to the dual optimum.

However, the dual optimum could be quite smaller than

the primal optimum, due to the existence of a non zero

duality gap, so we may never reach our desired optimal-

ity guarantee. This is where the existence of the second

phase of the algorithm becomes important: by expand-

ing the set W , the duality gap between the primal in the

spaceX\W and its dual becomes smaller and, due to the

finiteness of X , we are guaranteed to eventually reach

any predefined optimality guarantee threshold. In prac-

tice, the objective penalties of the first phase are more

useful at the beginning of the algorithm, since they lead

the scenario specific solutions towards the same point

x, while the global cuts are more useful after the first

iterations, to reduce the optimality gap by cutting out

points when the scenario solutions are similar to each

Type Units Capacity [MW]
Nuclear 2 4499
Gas 101 21781
Coal / Oil 3 /1 199 / 121
Dual Fuel 23 4679
Import 5 9931
Biomass 3 502
Geothermal 2 1073
Hydro 6 8613
Wind Low / Medium / High 5 1414 / 2121 / 2828

Table 1: Generator mix for the test system from [31, 39].

Wind Cost with/without Wind
Integration load shed Integration

Level [$M] [%]
Must Take Wind Spill Must Take Wind Spill

Low 8.23/8.23 8.23/8.23 13.2 13.0
Medium 6.98/6.98 6.95/6.95 19.8 18.9

High 16.09/7.27 6.11/6.11 26.3 23.4

Table 2: SUC solution evaluated on the test set: Mean cost of operation
(without accounting for load shed) and wind penetration (percentage
of mean, over the scenarios, wind energy over mean total generated
energy).

other and the Lagrangian penalties do not offer signifi-

cant improvements any more. So , the first phase of the

algorithm is executed multiple times until a convergence

indication is obtained. Following that, the second phase

is executed and this process is repeated a few times.

4. Simulation Results

We consider a reduced model of the Western Elec-

tricity Coordinating Council (WECC) system [37] with

225 buses, 371 lines and 130 conventional generators.

The same model is used in [39] and [31]. A typical win-

ter weekday is simulated for three different integration

cases: high, medium and low. High integration corre-

sponds to 26% wind energy penetration, the medium in-

tegration corresponds to 19% penetration and the low

integration to 13%. The average load is 28056MW, with

a minimum of 21438MW and a maximum of 32300MW.

The capacity of thermal generation is 31281MW and the

total generating capacity, not including wind resources,

is 51402MW. The cost of load shedding is assumed

$5000/MW-h and twice this value is assigned to the big-

M relaxation of (2c). The generation mix is shown in

Wind Wind Load
Integration Spill Shed

Level [%] [%]
Must Take Wind Spill Must Take Wind Spill

Low 0 1.06 0 0
Medium 0 4.48 0 0

High 0.3 11.1 0.26 0

Table 3: SUC solution evaluated on the test set: Percentage of mean
(over scenarios) wind spill over mean available generation and per-
centage of mean loadshed over the total load.
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Table 1.

The uncertainty model is trained based on data taken

from [23]. These correspond to yearly time series of

wind speeds and wind power generations with hourly

resolution for five aggregate wind sites. The initial

source was 2006 wind production data from the National

Renewable Energy Laboratory database. A discrete dis-

tribution is assumed for the reliability model, as in [39].

More specifically, a probability of generator failure of

1% and a probability of transmission line failure of 0.1%

is assumed, independently.

All the simulations are performed on the Cab clus-

ter of the Lawrence Livermore National Laboratory. For

the simulations, Mosel 4.0.4 was used with Xpress [42].

Each excecution was parallelized in 10 nodes of the Cab

cluster by utilizing the dedicated features of Mosel [43],

allowing 4 threads per job and 4 jobs per node. The typ-

ical values used for ρt for the decomposition algorithm

were ρt ∈ [0.001, 0.01], where the objective costs were

normalized in $M. A 2% optimality guarantee was set

as a stopping criterion for the algorithm.

A total of 160 scenarios was generated and used as

an input to the SUC problem. These scenarios represent

the model available to the operator in the day ahead,

based on which the optimization problem that defines

the first stage variables is solved. A new set of 160 sce-

narios is generated, representing the actual realization of

the uncertainty the day ahead. We explore two alterna-

tive policies; one that allows for wind spill and one that

assumes wind is a must-take resource, for the three in-

tegration cases. The evaluation of the two policies, each

one yielding a different first stage solution, is based on

how they perform with the unseen scenarios.

The typical computational performance of the algo-

rithm was as follows. The Lower Bounding phase would

be executed until the LB would not improve more than

0.05% for two iterations. Note that, since the dual func-

tion is non-differentiable, there is no guarantee that the

subgradient will yield a descent direction, so this stop-

ping criterion is merely a heuristic. Typically, the lower

bounding phase would terminate within at most 10-15
iterations. After that, the upper bounding phase would

start by evaluating the function for the points that cor-

respond to the best LB obtained. This process would

be repeated typically 2 − 3 times to obtain the desired

optimality guarantee. It is important to note that, while

the algorithm offers guaranteed convergence to any re-

quired precision (as oposed to subgradient optimization

schemes), it has a significant disadvantage for appli-

cations that prioritize speed instead of accuracy. The

Lower Bounding phase essentially has to solve mul-

tiple subgradient optimization problems and the Up-

per Bounding phase needs to evaluate the objective for

Must Take Wind Spill

Dual Fuel

Coal
& Oil

Gas

Nuclear

Dual Fuel

Coal
& Oil

Gas

Nuclear

Figure 4: Breakdown of total energy generation from conventional
sources for the two policies examined in the high integration case.
Note that the increased flexibility introduced by the wind allows for a
higher utilization of the cheap generation from nuclear power plants.
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Figure 5: Histogram for the scenarios of stochastic unit commitment
for the two policies in the high integration case. The variance of the
scenario costs remains approximately the same (approximately equal
to 6) for both policies, but the scenarios are spread around a lower
mean for the wind spill case.

|S| points (which can be decomposed to solving |S|2

smaller mixed integer programs). The typical execution

time was in the order of 1− 2 hours, which is above the

state-of-the art times reported in literature [32].

Tables 2 and 3 show the policy testing results. The

fuel cost without load shedding is also provided. We

observe that in the case of low and medium wind in-

tegration, wind spilling does not result in a significant

benefit. However, for high wind integration, the cost of

operation is significantly lower when wind spill is al-

lowed and load shed does not happen, whereas demand-

ing the wind energy to be fully integrated leads to both

an inefficient dispatch (high fuel costs) and an increased

load shedding.

In Fig. 4, the reason of the more economical dis-

patch can be seen: the extra flexibility enabled by op-

timizing the wind output allows for a higher utilization

of the cheap nuclear plants. Fig. 5 shows the empiri-
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Figure 6: Comparison of the total cost, startup cost, no load cost and
fuel cost for the two policies in the high integration case. Note that the
bulk savings are obtained from the lower fuel costs due to the higher
nuclear utilization.

cal distribution of the costs for the different scenarios of

the stochastic unit commitment in the high integration

case for the two policies. Finally, Fig. 6 shows the cost

breakdown in the high integration case.

5. Conclusions and Discussion

The main objective of this work is to convey that

wind resources, and renewables in general, should be

treated, to the extent possible, as any other resource for

the unit commitment problem. Renewable integration is

vital to achieve environmental goals, but it often com-

petes with ensuring the secure and reliable operation of

the grid due to the variability and stochasticity of the

available wind power. However, current wind turbines

are capable to control their output power setpoint within

the limits allowed by wind availability. By exploiting

this capability a safer and more economic grid operation

can be ensured.

Regarding policy implications of adopting the pro-

posed strategy, active wind spilling based on market op-

erations can allow for a more efficient allocation (in-

creased total welfare for the society), which could trans-

late to benefits for the customers (in the form of reduced

bills). The conventional generators will also be bene-

fited, since they won’t have to fully carry the burden of

grid security and reserve. Finally, even though adopt-

ing this policy would mean an initial decrease in wind

integration levels (since wind energy would be spilled),

this strategy would enable a long term increase of re-

newable integration, since part of the renewable inter-

mittency problems would be resolved.

6. Acknowledgments

Support for this work was received from the Ts-

inghua Berkeley Shenzhen Institute, from ARO grant

W911NF-17-1-0555, and from the Onassis Foundation.

The authors would like to thank Deepak Rajan and the

Lawrence Livermore National Laboratory that enabled

us to parallelize our computations, Ignacio Aravena and

Anthony Papavasiliou for their useful comments, and

FICO for providing licenses for Xpress Optimizer.

References

[1] “Flexible Resources Help Renewables,” California
ISO, 2016. [Online]. Available: https://www.caiso.
com/Documents/FlexibleResourcesHelpRenewables\
FastFacts.pdf

[2] “Curtailment Fast Facts,” California ISO, 2017. [On-
line]. Available: https://www.caiso.com/Documents/
CurtailmentFastFacts.pdf

[3] European Union, “Directive 2009/28/EC of the Euro-
pean Parliament and of the Council of 23 April 2009
on the promotion of the use of energy from renewable
sources and amending and subsequently repealing Di-
rectives 2001/77/EC and 2003/30/EC,” Official Journal
of the European Union, vol. 5, p. 2009, 2009.

[4] P. Moutis, S. A. Papathanassiou, and N. D. Hatziar-
gyriou, “Improved load-frequency control contribution
of variable speed variable pitch wind generators,” Re-
newable Energy, vol. 48, pp. 514–523, 2012.

[5] S. I. Nanou, G. N. Patsakis, and S. A. Papathanassiou,
“Assessment of communication-independent grid code
compatibility solutions for VSC–HVDC connected off-
shore wind farms,” Electric Power Systems Research,
vol. 121, pp. 38–51, 2015.

[6] S. Fink, C. Mudd, K. Porter, and B. Morgenstern, “Wind
energy curtailment case studies,” NREL subcontract re-
port, NREL/SR-550, vol. 46716, 2009.

[7] L. Bird, J. Cochran, and X. Wang, “Wind and so-
lar energy curtailment: experience and practices in the
United States,” US National Renewable Energy Labora-
tory, NREL/TP-6A20-60983, p. 3, 2014.

[8] S. Liu, “Phase I.A. Stochastic Study Testimony of Dr.
Shucheng Liu on behalf of the California Independent
System Operator Corporation,” 11 2014.

[9] K. Meeusen, “Phase I.A. Stochastic Study Testimony of
Dr. Karl Meeusen on behalf of the California Indepen-
dent System Operator Corporation,” 11 2014.

[10] A. Solomon, D. M. Kammen, and D. Callaway, “The role
of large-scale energy storage design and dispatch in the
power grid: a study of very high grid penetration of vari-
able renewable resources,” Applied Energy, vol. 134, pp.
75–89, 2014.

[11] D. J. Burke and M. J. O’Malley, “Factors influencing
wind energy curtailment,” IEEE Transactions on Sus-
tainable Energy, vol. 2, no. 2, pp. 185–193, 2011.

[12] G. Oggioni, F. H. Murphy, and Y. Smeers, “Evaluating
the impacts of priority dispatch in the European electric-
ity market,” Energy Economics, vol. 42, pp. 183–200,
2014.

Page 3625



[13] E. Ela and D. Edelson, “Participation of wind power in
LMP-based energy markets,” IEEE Transactions on Sus-
tainable Energy, vol. 3, no. 4, pp. 777–783, 2012.

[14] L. Deng, B. F. Hobbs, and P. Renson, “What is the cost
of negative bidding by wind? A unit commitment analy-
sis of cost and emissions,” IEEE Transactions on Power
Systems, vol. 30, no. 4, pp. 1805–1814, 2015.

[15] L. S. Vargas, G. Bustos-Turu, and F. Larraı́n, “Wind
power curtailment and energy storage in transmission
congestion management considering power plants ramp
rates,” IEEE Transactions on Power Systems, vol. 30,
no. 5, pp. 2498–2506, 2015.

[16] R. Golden and B. Paulos, “Curtailment of Renewable En-
ergy in California and Beyond,” The Electricity Journal,
vol. 28, no. 6, pp. 36–50, 2015.

[17] L. Kane and G. W. Ault, “Evaluation of wind power cur-
tailment in active network management schemes,” IEEE
Transactions on Power Systems, vol. 30, no. 2, pp. 672–
679, 2015.

[18] M. Hedayati-Mehdiabadi, J. Zhang, and K. W. Hedman,
“Wind power dispatch margin for flexible energy and re-
serve scheduling with increased wind generation,” IEEE
Transactions on Sustainable Energy, vol. 6, no. 4, pp.
1543–1552, 2015.

[19] M. Hedayati-Mehdiabadi, K. W. Hedman, and J. Zhang,
“Reserve Policy Optimization for Scheduling Wind En-
ergy and Reserve,” IEEE Transactions on Power Sys-
tems, vol. 33, no. 1, pp. 19–31, 2018.

[20] M. Carrión and J. M. Arroyo, “A computationally ef-
ficient mixed-integer linear formulation for the thermal
unit commitment problem,” IEEE Transactions on Power
Systems, vol. 21, no. 3, pp. 1371–1378, 2006.

[21] P. Damcı-Kurt, S. Küçükyavuz, D. Rajan, and
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