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Abstract

Energy storage (ES) devices offer valuable
flexibility services, including regulation reserve, in
power systems operation that could improve the
reliability and cost-efficiency of systems with high
penetration of renewable energy resources. In this
paper, a continuous-time look-ahead regulation
capacity scheduling model is proposed, which more
accurately models and schedules the regulation
capacity trajectories provided by generating units and
ES devices in real-time power systems operation. A
function space solution method is proposed to reduce
the dimensionality of the continuous-time problem by
modeling the parameter and decision trajectories in
a function space formed by Bernstein polynomials,
which converts the continuous-time problem into a
linear programming problem. Numerical results,
conducted on the IEEE Reliability Test System, show
lower operation cost and less regulation scarcity events
in real-time power systems operation due to efficient
deployment of the ES flexibility in regulation markets.

1. Introduction

The large-scale integration of renewable energy
resources is adding to the sources of variability and
uncertainty in power systems operation and calls for
additional flexibility resources to provide increased
amounts of ancillary services in the systems operation
[1, 2]. Regulation reserve, which provides fast up and
down balancing power and ramping [3], is dispatched
by the automatic generation control to counterbalance
the variability and uncertainty of net-load (load minus
renewable energy). Energy storage (ES) devices
represent ideal fast ramping resources to provide
additional regulation capacity in markets [4, 5, 6, 7].
The recent FERC order 841 mandates the independent
system operators (ISOs) and regional transmission
operators (RTOs) to remove the barriers ES devices
are facing to participate in the capacity, energy, and

ancillary service markets in the U.S. [8]. This order aims
at rendering the ES devices competitive in the electricity
markets and heralds a plethora of opportunities for the
precious flexibility resources.

There has been multiple research efforts to develop
models for scheduling regulation capacity provided
by ES devices. Look-ahead real-time operation
models have gained specific attention in this regard as
they optimize the operation of resources in real-time
operation over a horizon that extends into future times,
therefore properly taking into account the intertemporal
constraints of ES operation. The look-ahead dispatch
of generating units was first proposed in 1980 [9] and
is currently implemented by ISOs in their operation
processes (see e.g., [10, 11]). A price-based look-ahead
scheduling model is proposed in [12] to optimally
schedule a joint wind and battery ES system. In
[13], the look-ahead ES scheduling is discussed in
a centralized real-time microgrid control framework
acting through the primary, secondary, and tertiary
control levels. Using dynamic uncertainty sets, a robust
look-ahead economic dispatch is developed in [14] that
co-optimizes the generation of generating units and
charging/discharging of ES devices. In [15], using
a look-ahead economic dispatch model, the potential
of thermal ES devices coupled with renewable energy
resources in providing energy and regulation services is
explored. Look-ahead bidding strategy of a merchant ES
participating in day-ahead energy market is addressed in
[16], where the receding scheduling horizon covers two
consecutive days and the ES state of charge at the end
of the first day is optimized such that maximum benefit
is realized in the second day. The regulation reserve
offered by the aggregated battery storage of electric
vehicles is discussed in [17], where dynamic changes
of their mobility behavior, as well as the cost associated
with their battery degradation are taken into account.

The current look-ahead ES scheduling models,
reviewed above, are based on discrete-time optimization
models that model the load and decision trajectories as
piecewise constant trajectories that neither appropriately
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capture the faster variations of load happen within the
discrete time intervals, nor the fast-ramping capability of
resources (including ES devices) to compensate the fast
load variations. In addition, the discrete-time models
define ramping as the finite difference between the
consecutive power schedules, which implies that the
resources are forced to ramp linearly from one interval
to the next, failing to fully deploy the fast-ramping
capability of flexible resources in power systems
operation. In order to address this problem, we have
developed novel continuous-time scheduling models for
power systems operation that integrate higher-fidelity
models for the parameter and decision trajectories that
are defined over higher-order function spaces formed by
Bernstein polynomials [18, 19, 20, 21, 22]. Our current
models, however, have focused on energy market
applications and have not explored the application in
scheduling ancillary services, e.g., regulation.

In this paper, we develop a novel continuous-time
look-ahead scheduling model for optimally scheduling
the regulation capacity provided by generating units and
ES devices in real-time power systems operation. In the
proposed model, presented in Section 2, the balancing
power provided by generating units are utilized to
balance the continuous-time real-time load deviation
trajectory of the systems. In addition, the regulation up
and down capacity provided by generating units and ES
devices are modeled as continuous-time trajectories that
are optimally schedule to provide the regulation up and
down capacity requirements of the system.

A function space solution method is developed in
Section 3 to solve the proposed continuous-time model,
which is based on reducing the dimensionality of the
decision and parameter trajectories by modeling them
in a finite-order function space formed by Bernstein
polynomials. The proposed method converts the
continuous-time problem into a linear programming
problem with the Bernstein coefficients of trajectories
as the decision variables. The proposed model is
implemented in Section 4 on the IEEE Reliability Test
System using the real load data of California ISO, and
the conclusions are drawn in Section 5.

2. Continuous-time Look-Ahead
Regulation Scheduling Model

In this section, we propose a continuous-time
look-ahead scheduling model for optimal scheduling
of regulation up and down reserve capacity provided
by generating units and ES devices in real-time power
systems operation. The structure of the proposed model
is shown in Fig. 1, where the power system operator
receives the bids and constraints of generating units and
ES devices to provide regulation up and down reserve,

Continuous-time Look-Ahead 
Real-time Scheduling Model

Power System Operator

Regulation Up/Down 
Capacity Trajectories for 

Generating Units and 
Energy Storage Devices

Dispatchable 
Generating Units

Energy Storage 
Devices

Real-time Balancing 
Up/Down Power 
Trajectories for 

Generating Units 

Figure 1. Schematic of the proposed model

and utilizes the proposed look-ahead scheduling model
for supplying the real-time load deviation of system and
schedule the regulation capacity at minimum cost.

The proposed continuous-time look-ahead
scheduling model implements the receding horizon
control idea and involves solving an optimal control
problem for the next immediate control horizon
Tτ = [τ, τ + T ], while utilizing the continuous-time
state space model of generating units and ES devices.
Two consecutive receding control horizons, represented
by Tτ1 and Tτ2 , are shown in Fig. 2, which start
respectively at τ1 and τ2 and end at τ1 + T and
τ2 + T . The proposed model optimizes the control
decisions of generating units and ES devices over
each control horizon Tτ1 , Tτ2 , . . ., capturing the
intertemporal flexibility and constraints of ES devices
and generating units in real-time operation of power
systems, implementing only the first instant of control
decisions at each run.

Time

Figure 2. Timeline of the continuous-time

look-ahead scheduling model

2.1. Problem Formulation

Consider the real-time power system operation
problem where a set of K generating units and J energy
storage devices are available to balance the real-time
load deviation trajectory ∆D(t) over the receding
control horizon Tτ through providing the up and
down balancing power, meanwhile reserving sufficient
capacity to meet the continuous-time regulation up
and down requirements of the system, DRu(t) and

DRd(t). The generating units’ real-time up and down
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balancing power trajectories are represented by gu(t)=
(gu1 (t), . . . , guK(t))T and gd(t) =

(
gd1(t), . . . , gdK(t)

)
T .

The associated balancing ramping trajectories are
defined as time derivatives of the power trajectories

and represented by ġu(t) =
(
ġu1 (t), . . . , ġuK(t)

)T
and

ġd(t) =
(
ġd1(t), . . . , ġdK(t)

)T
. The regulation up and

down services provided by the generating units are

represented by Ru,G(t)=
(
Ru,G1 (t), . . . , Ru,GK (t)

)
T and

Rd,G(t)=
(
Rd,G1 (t), . . . , Rd,GK (t)

)
T .

The ES devices can provide regulation up and down
capacity respectively through discharging and charging.
In charging state, ES devices provide regulation down
by drawing power from the grid, and the vector

Rd,S(t) =
(
Rd,S1 (t), . . . , Rd,SJ (t)

)T
represents the

regulation down trajectories provided by the ES devices.
In discharging state, ES devices provide regulation
up service by supplying power to the grid, and the

vector Ru,S(t) =
(
Ru,S1 (t), . . . , Ru,SJ (t)

)T
denotes the

regulation up trajectories.
The continuous-time look-ahead energy generation

and storage scheduling problem is formulated here as
a variational optimization problem, where the total
cost of supplying the real-time load deviation and
catering the regulation up and down requirements of the
power system over the receding control horizon Tτ is
minimized in the objective functional (1) subject to the
operating constraints (2)-(16):

min

∫
Tτ

(
ρugu(t)+ρdgd(t)+µu,GRu,G(t)+

µd,GRd,G(t) + µu,SRu,S(t) + µd,SRd,S(t)

)
dt, (1)

∆D(t) = 1TK
(
gu(t)− gd(t)

)
, t ∈ Tτ , (2)

1TKRu,G(t) + 1TJRu,S(t) ≥ DRu(t), t ∈ Tτ , (3)

1TKRd,G(t) + 1TJRd,S(t) ≥ DRd(t), t ∈ Tτ , (4)

G∗(t) + gu(t) + Ru,G(t) ≤ G(t), t ∈ Tτ , (5)

G∗(t)− gd(t)−Rd,G(t) ≥ G(t), t ∈ Tτ , (6)

Ġ∗(t)+ġu(t)−ġd(t)+
Ru,G(t)

TR
≤Ġ(t), t ∈ Tτ , (7)

Ġ∗(t)+ġu(t)−ġd(t)−Rd,G(t)

TR
≥Ġ(t), t ∈ Tτ , (8)

0≤Ru,G(t)

TR
≤Ġ(t), 0≤Rd,G(t)

TR
≤−Ġ(t), t ∈ Tτ , (9)

0≤Ru,S(t)≤R
u,S
,

Ru,S(t)

TR
≤Ṙ

u,S

, t ∈ Tτ , (10)

0≤Rd,S(t)≤R
d,S
,

Rd,S(t)

TR
≤Ṙ

d,S

, t ∈ Tτ , (11)

dES(t)

dt
= ηcRd,S(t), t ∈ Tτ , (12)

dES(t)

dt
= −ηd−1Ru,S(t), t ∈ Tτ , (13)

E ≤ ES(t) ≤ E, t ∈ Tτ , (14)

E ≤ ES(t) ≤ E, t ∈ Tτ , (15)

gu(τ)=guτ ,g
d(τ)=gdτ ,

Ru,G(τ)=Ru,G
τ ,Rd,G(τ)=Rd,G

τ ,

Ru,S(τ)=Ru,S
τ ,Rd,S(τ) =Rd,S

τ ,

ES(τ)=ES(τ)=ES
τ . (16)

In the objective functional (1), ρu,G and ρd,G are
the prices of generating units to provide the up and
down balancing service; µu,G, µd,G, µu,S and µd,S

represent the regulation up and down capacity prices
of generating units and ES devices. In (2), generating
units balance the real-time load deviation trajectory
∆D(t) through the up and down balancing power. The
regulation up and down requirements are provided by
generating units and ES devices in (3) and (4), where
1K and 1J are K and J-dimensional vectors of ones.
The balancing power and ramping trajectories as well
as the regulation capacities of generating units over
Tτ are constrained in (5)-(11), where the underlined
and overlined terms respectively represent the minimum
and maximum limits of the trajectories. The fourth
terms in left-hand-side of (7)-(9) represent the maximum
ramping capability required by the regulation up and
down capacity in case they are fully deployed, where
TR in (7)-(11) represents the maximum time duration
for which the reserved regulation up and down capacity
should be fully available (5 minutes in NERC standard
[23]). In (5)-(8), G∗(t) and Ġ∗(t) are respectively
the fixed optimal day-ahead generation and ramping
trajectories of units, which are provided by the solution
of the day-ahead unit commitment model in [18].

The lower and upper ES energy trajectories, shown

by vectors ES(t) =
(
ES1 (t), . . . , ESJ (t)

)T
and ES(t) =(

ES1 (t), . . . , ESJ (t)
)T

, are calculated in (12) over Tτ ,
and denote the lowest and highest energy trajectories of
ES devices due to the full deployment of regulation up
and down reserves, respectively, and are constrained to
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the minimum and maximum energy capacity limits of
ES devices in (15) and (14). The ηc and ηd in (12)
and (13) are diagonal J ×J matrices of charging and
discharging efficiencies. Initial values of the trajectories
are enforced in (16), where guτ , gdτ , Ru,G

τ , Rd,G
τ , Ru,S

τ ,
Rd,S
τ and ES

τ are vectors of constant initial values.

3. The Proposed Solution Method

The model proposed in (1)-(16) is a variational
problem with infinite-dimensional decision space that
is computationally intractable. The common practice
to solve this type of problems has been to discretize
the scheduling time horizon using a finite number of
sampling points and approximate the continuous-time
parameter and decision trajectories with zero-order
piecewise constant trajectories, as shown in Fig. 3-(a).
This time-discretization approach, though, does not
appropriately capture the variability and fast dynamics
of real-time load in smaller time scales. In addition,
discrete-time models would not appropriately capture
the fast-ramping capability of generating units and ES
devices to compensate the variations of load. Increasing
the accuracy of discrete-time models would require
increasing the number of sampling points, which would
in turn increase the decision space dimensionality of the
optimization problem.

In our recent works in [18, 19, 20, 21], we
have developed an alternative approach for sampling
the load and decision trajectories of power systems
operation problems. Unlike the common approach
of approximating the continuous-time load trajectories
using piecewise constant curves, our approach projects
the load and decision trajectories on a countable
and finite-dimensional function space, as schematically
shown in Fig. 3-(b). A careful choice of the function
space would capture the finer information about the
evolution of load in time and its ramping requirement,
and appropriately deploy the available resources to
supply the load and ramping requirements.

Here we intend to leverage our works in [18, 19, 21],
and develop a function space-based solution method
for the proposed variational problem (1)-(16). The
proposed solution method is based on reducing the
dimensionality of the continuous-time decision and
parameter trajectories by modeling them in a finite-order
function space spanned by the Bernstein polynomials.
The Bernstein polynomials of degree Q include Q + 1
polynomials defined as:

bq,Q(t) =

(
Q

q

)
tq(1− t)Q−q, t ∈ [0, 1], (17)

for q=0, ..., Q. Let us construct a set of basis functions

Parameter/Decision 
Trajectory

Function 
Space Model

time

time

time

time

Function 
Space

Time Discretization 
Model

Parameter/Decision 
Trajectory

Parameter/Decision 
Trajectory

Parameter/Decision 
Trajectory

(a)

(b)

Figure 3. Trajectory modeling approaches: a)

discrete-time model, b) function space model.

in each interval n ∈ N of the receding scheduling
horizon Tτ using the Bernstein polynomials of degree
Q. Thus, the vector of basis functions e(Q)(t) =

(e
(Q)
1 (t), . . . , e

(Q)
P (t))T spanning the whole Tτ contains

P =(Q+1)N functions defined as:

e
(Q)
n(Q+1)+q(t) = bq,Q

(
t− tn
Tn

)
, t ∈ [tn, tn+1), (18)

for n= 0, . . . , N−1; q= 0, . . . , Q. To reduce notation,
we define p ≡ n(Q+1)+q, where p goes from 0 to P−1.

In the following, we formulate different components
of the proposed function space solution model.

3.1. Modeling Balancing Power and Ramping,
and Regulation Capacity Trajectories of
Generating Units

We utilize the Bernstein function space e(Q)(t)
in (18) to model the up and down balancing power
trajectories of generating units as:

gu(t) = gue(Q)(t), t ∈ Tτ , (19)

gd(t) = gde(Q)(t), t ∈ Tτ , (20)

where gu and gd are K × P coefficients matrices of
projecting the trajectories in the function space.

The time derivatives of Bernstein polynomials of
degree Q can be expressed as a linear combination of
two Bernstein polynomials of degree Q−1 [24]. This
property enables defining the continuous-time balancing
ramping trajectories of units in the space spanned by
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Bernstein polynomials of degree Q−1 as follows:

ġu(t) = guė(Q)(t) = guMe(Q−1)(t)

= ġue(Q−1)(t), (21)

ġd(t) = gdė(Q)(t) = gdMe(Q−1)(t)

= ġde(Q−1)(t), (22)

where M is a P×(P−N) matrix relating ė(Q)(t) and
e(Q−1)(t), and ġu and ġd are K×(P−N) coefficients
matrices of projecting the ramping trajectories in the
function space, related with Bernstein coefficients of the
corresponding balancing power trajectories as:

ġu = guM, ġd = gdM. (23)

The regulation up and down trajectories of
generating units are also projected into Bernstein
function space spanned by e(Q)(t) as follows:

Ru,G(t) = Ru,Ge(Q)(t), t ∈ Tτ , (24)

Rd,G(t) = Rd,Ge(Q)(t), t ∈ Tτ , (25)

where Ru,G and Rd,G are K × P coefficients matrices
of projecting the trajectories in the function space. Note
that, as in our work in [18], the optimal day-ahead
generation and ramping trajectories of generating units,
G∗(t) and Ġ∗(t) in (5)-(8), are modeled similar to the
power and ramping trajectories above.

3.2. Modeling Regulation Capacity
Trajectories of ES Devices

Similar to generating units, we utilize the Bernstein
function space e(Q)(t) to model the regulation up and
down capacity trajectories of ES devices as:

Ru,S(t) = Ru,Se(Q)(t), t ∈ Tτ , (26)

Rd,S(t) = Rd,Se(Q)(t), t ∈ Tτ , (27)

where Ru,S and Rd,S are J × P coefficients matrices
of projecting the trajectories in the function space.

The integral of Bernstein polynomials of degree Q
are linearly related to Bernstein polynomials of degree
Q+1, suggesting that there is a P × (P + N) linear
mapping, N , relating the integral of e(Q)(t) with
e(Q+1)(t). Using this property and integrating (12)
over t, we derive the projection of upper ES energy

trajectories in Bernstein function space as:

ES(t) = ES
τ + ηcRd,S

∫ t

τ

e(Q)(t′)dt′

= ES
τ + ηcRd,SNe(Q+1)(t)

=
(
ES
τ 1TP+N + ηcRd,SN

)
e(Q+1)(t)

= ESe(Q+1)(t), t ∈ Tτ (28)

where ES
τ 1TP+N in the third line is the projection of

constant initial energy values vector ES
τ to the space

spanned by e(Q+1)(t), and ES is J × (P + N) matrix
of Bernstein coefficients of upper ES energy trajectories,
which is equal to:

ES = ES
τ 1TP+N + ηcRd,SN . (29)

Similarly, we project the lower ES energy trajectories
into the Bernstein function space spanned by e(Q+1)(t)
with the associated Bernstein coefficients defined as:

ES = ES
τ 1TP+N − ηd

−1
Ru,SN . (30)

3.3. Continuity of Decision Trajectories

Optimality conditions of the variational problem
(1)-(16) requires C1 continuity of the decision
trajectories [18]. In order to ensure C1 continuity at
the interval connection points, we impose continuity
constraints on the Bernstein coefficients of adjacent
intervals. For the regulation up trajectories of ES device
j, the continuity constraints are formulated as below:

Ru,Sj,n(Q+1)+Q= Ru,Sj,(n+1)(Q+1), n=0, . . . N − 2, (31)

1

Tn

(
Ru,Sj,n(Q+1)+Q −R

u,S
j,n(Q+1)+Q−1

)
=

1

Tn+1

(
Ru,Sj,(n+1)(Q+1)+1 −R

u,S
j,(n+1)(Q+1)

)
,

n = 0, . . . N − 2. (32)

Similar continuity constraints are imposed on the
Bernstein coefficients of the other decisions trajectories.

3.4. Modeling Inequality Constraints

The convex hull property of Bernstein polynomials
enables us to efficiently impose the continuous-time
inequality constraints (3)-(11) and (14)-(15). More
specifically, the convex hull property of Bernstein
polynomials states that a trajectory will never be
outside of the convex hull formed by the Bernstein
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coefficients of the trajectory [18, 24]. Therefore,
the continuous-time inequality constraints (3)-(11) and
(14)-(15) can be imposed respectively by constraining
the associated Bernstein coefficients as follows:

1TKRu,G + 1TJRu,S ≥ DRu (33)

1TKRd,G + 1TJRd,S ≥ DRd (34)

G∗ + gu + Ru,G ≤ G (35)

G∗ − gd −Rd,G ≥ G (36)(
Ġ∗ + ġu − ġd

)
M +

Ru,G

TR
≤ ĠM (37)

(
Ġ∗ + ġu − ġd

)
M− Rd,G(t)

TR
≥ ĠM, (38)

0 ≤ Ru,G

TR
≤ ĠM, 0 ≤ Rd,G

TR
≤ −ĠM, (39)

0 ≤ Ru,S ≤ R
u,S
,

Ru,S

TR
≤ Ṙ

u,S

M, (40)

0 ≤ Rd,S ≤ R
d,S
,

Rd,S

TR
≤ Ṙ

d,S

M, (41)

E ≤ ES ≤ E, (42)

E ≤ ES ≤ E, (43)

In (37) and (38), M is a (P − N) × P linear
mapping that relates e(Q−1)(t) and e(Q)(t). In (33)

and (34), DRu and DRd are P -dimensional vectors of
Bernstein coefficients of projecting the regulation up
and down requirement trajectories into the Bernstein
function space spanned by e(Q)(t) as follows:

DRu(t)=DRue(Q)(t), t ∈ Tτ , (44)

DRd(t)=DRde(Q)(t), t ∈ Tτ . (45)

3.5. Modeling Objective Functional and
Real-time Power Balance Constraint

It is straightforward to show that the objective
functional (1) can be converted to a linear function of
Bernstein coefficeints of the decision variable, as in [19].
In order to express the continuous-time power balance
constraint (2) in the function space, let the real-time
load deviation trajectory ∆D(t) be spanned over the
Bernstein function space e(Q)(t) as:

∆D(t) = ∆De(Q)(t), t ∈ Tτ , (46)

where ∆D is a P -dimensional row vector of Bernstein
coefficients. Substituting the Bernstein models of

balancing power trajectories of generating units from
(19) and (20) and load trajectory from (46) in the
continuous-time power balance constraint (2) and
eliminating e(Q)(t) from both sides, we derive:

∆D = 1TK
(
gu − gd

)
, (47)

which converts the continuous-time power balance
constraint (2) to algebraic equations on the Bernstein
coefficients.

In summary, equations (19)-(47) present the
proposed function space solution method that
converts the variational problem (1)-(16) into a linear
programming problem with the Bernstein coefficients
of decision trajectories as decision variables.

4. Numerical Results
The proposed model is implemented in this section

on the IEEE Reliability Test System (RTS) [25]. In
this study, the Bernstein polynomials of degree 3 are
used for modeling the load and decision trajectories in
the proposed function space solution method in Section
3. The hourly day-ahead load data of the California
ISO (CAISO) for Jan. 23, 2018 [26] is scaled down to
2850MW peak load of IEEE-RTS and used to derive the
Bernstein coefficients of the continuous-time day-ahead
load trajectory. The day-ahead CAISO load data is then
disturbed with normally distributed random error terms
in order to form the real-time load, where the standard
deviations of the error terms are considered to be 2% of
the load at each time. The continuous-time day-ahead
and real-time load trajectories are shown in Fig. 4-(a),
and Fig. 4-(b) presents the continuous-time real-time
load deviation from the day-ahead load. The regulation
up and down requirements are considered to be equal to
1% of real-time load at each time.
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Two cases are studied here. In Cases 1 and
2, the real-time operation of IEEE-RTS are studied
respectively without and with ES devices. For both
cases, the optimal day-ahead generation and ramping
trajectories, G∗(t) and Ġ∗(t), are derived from
the solution of the continuous-time day-ahead unit
commitment model [18], assuming that ES devices are
not scheduled in day-ahead operation. The energy
capacity, power rating, and ramping rate of the ES
device used in Case 2 are respectively 100MWh, 50MW,
and 20MW/min, the charge and discharge efficiency
of the ES device are both 90%, and the initial stored
energy is considered to be 50MWh. We assume that
the prices of real-time balancing power and regulation
up and down capacity of generating units respectively
equal to 100% and 35% of their highest day-ahead
energy bid (given in [25]). The regulation up and down
capacity prices of the ES device are respectively $7
and $5 per MWh, and the regulation scarcity cost is
considered to be $250 per MWh. Further, the original
ramping capabilities of the generating units given in
[25] are shrunk by the factor of 3 to better demonstrate
the ES value in this study. We use 4-hour receding
control horizons for each look-ahead run, repeated every
15-minutes, and update the real-time load trajectories
for each of the scheduling horizons. The cases are
solved using CPLEX 12.6.2 on a computer with a
4.0GHz i7 processor and 32GB of RAM. The solution
time for each of the look-ahead runs in the cases are
trivial and all under one second. The numerical results
are discussed below in detail.

1) Real-time operation cost: the real-time operation
cost components are presented for the two cases in
Table 1. In Case 1, the operation cost amounts to
$20, 205.3, which includes the cost of providing energy
and regulation up and down from generating units, as
well as the regulation scarcity cost incurred due to the
lack of available resources. In Case 2, as ES boosts the
available regulation up and down capacity, it eliminates
the regulation scarcity instants and reduces the real-time
operation cost to $15, 830.6.

Table 1. Real-time Operation Cost Components

 Case 1 Case 2 

Generating 
Units 

Energy Cost ($) 11,023.6 10,551.9 
Regulation Up Cost ($) 2,977.2 1,696.5 

Regulation Down Cost ($) 2,330.1 2,128.9 

Energy 
Storage 

Regulation Up Cost ($) 0.0 1,274.8 
Regulation Down Cost ($) 0.0 178.4 

Regulation Scarcity Cost ($) 3,874.4 0.0 

Total Cost ($) 20,205.3 15,830.6 
 

2) Regulation trajectories of generating units and
ES: the continuous-time regulation up and down
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Figure 5. Regulation trajectories of generating units

and the ES device in Cases 1 and 2 (a) regulation up,

(b) regulation down

trajectories provided by the generating units and the ES
device are shown in Figs. 5-(a) and (b) for Cases 1
and 2. In Case 1, the generating units not only supply
the load deviation shown in Fig. 4-(b), but also reserve
an extra capacity to meet the regulation up and down
requirements as shown in Figs. 5-(a) and (b). In this
case, however, the generating units fall short to cater
adequate regulation up at hour 7, where an scarcity
of 15.5MWh arises. The high ramping capability of
the ES device, which enables reaching the maximum
charging/discharging capacity in less than 4 minutes, as
well as its reasonable bids, render it very competitive
in the regulation market. Thus, the share of generating
units in providing regulation up and down in Case 2
decreases considerably as compared to Case 1, and the
ES device provides the remaining regulation up and
down requirement eliminating the regulation scarcity.

3) Energy trajectories of ES: The upper and lower
ES energy trajectories over the four-hour look-ahead
scheduling horizon starting at hour 6, calculated from
(15) and (14), are shown in Fig. 6. The upper and lower
ES energy trajectories in Fig. 6 represent respectively
the extreme cases of fully deploying only the regulation
down and up provided by the ES device in each period.
Since ES is scheduled for a considerable amount of
regulation up during hours 6-8:15 (see Fig. 5-(a)), the
lower energy limit in Fig. 6 starts diminishing after hour
6 and reaches zero at hour 8:15, thus ES could no longer
be scheduled for the regulation up after 8:15. The upper
energy limit, however, experiences smoother changes
as the ES is only partially scheduled for providing
regulation down during hours 6-10.
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Figure 6. Upper and Lower ES Energy Trajectories

4.1. Impact Analysis of ES Regulation Bid

Here we aim to investigate the impact of ES
regulation prices on its regulation up and down
schedules and on the real-time operation cost of the
system. The total scheduled regulation up and down
of the ES device during the course of a day equals to
the sum of areas below the regulation up and down
trajectories, which is used here as an index for ES
utilization in the regulation market. The real-time
operation costs and the ES utilization indexes for the ES
regulation down bids from $1 per MWh to $9 per MWh,
and the ES regulation up bids ranging from $3 per MWh
to $11 per MWh, in $2 increments, are shown in Fig.
7. Increasing the ES prices increases the operation cost
and reduces the ES utilization in regulation market. The
increasing trend of the operation cost and the decreasing
trend of the ES utilization index continue up to the bid of
$7 and $9 per MWh respectively for the regulation down
and up, and undergo negligible changes afterwards.
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Figure 7. Impacts of ES regulation bids on system

operation cost and ES regulation schedule

5. Conclusion

This paper proposed a continuous-time look-ahead
model for scheduling the regulation capacity of
generating units and ES devices in real-time operation.
A function space-based solution method is then
employed to reduce the decision space dimensionality

of the proposed model, which utilizes the properties of
Bernstein polynomials and converts the continuous-time
problem into a LP problem with the Bernstein
coordinates of decision trajectories as decision
variables. The simulation results show that the proposed
model reduces the operation cost and eliminates the
regulation scarcity in real-time operation by efficiently
tapping the ES flexibility to provide the regulation
capacity. Future works include co-optimizing the ES
regulation capacity and balancing power schedules in
real-time operations, and integrating the uncertainty of
load and renewable generation in the formulation.
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