
 1 

Collective Classification for Social Media Credibility Estimation 
 

Kyle O’Brien1, Olga Simek2, Frederick R. Waugh2 
1 Amazon, Inc., Cambridge, MA, United States 
2 MIT Lincoln Laboratory, Lexington, MA, United States 

 
 

Abstract 
 
We introduce a novel extension of the iterative 

classification algorithm to heterogeneous graphs and 
apply it to estimate credibility in social media. Given a 
heterogeneous graph of events, users, and websites 
derived from social media posts, and given prior 
knowledge of the credibility of a subset of graph nodes, 
the approach iteratively converges to a set of classifiers 
that estimate credibility of the remaining nodes. To 
measure the performance of this approach, we train on 
a set of manually labeled events extracted from a corpus 
of Twitter data and calculate the resulting receiver 
operating characteristic (ROC) curves. We show that 
collective classification outperforms independent 
classification approaches, implying that graph 
dependencies are crucial to estimating credibility in 
social media. 
 
 
1. Introduction  
 
1.1. Credibility in Social Media 
 

Social media are an increasingly important pathway 
for real-time dissemination of information about 
breaking news. For unfolding events as diverse as 
natural disasters [1], terror attacks [2], and sociopolitical 
protests [3], social media platforms such as Twitter and 
Facebook can serve as a vital communications 
infrastructure providing time-critical information. 
Unfortunately, the speed and effectiveness with which 
information propagates through social media have also 
attracted users seeking to spread disinformation, 
rumors, and propaganda [4, 5].  

Recently, Twitter, Facebook, and Google have 
acknowledged the susceptibility of their platforms to 
such disinformation [6, 7] and have taken steps to fight 
harmful use of their services. Additionally, independent 
fact-checking organizations¾including Snopes.com, 
Politifact, and FactCheck.org¾have arisen that seek to 
detect disinformation. However, their manual approach 
to fact checking cannot scale to address the enormous 
data volumes generated by large social networks. 

Similarly, efforts at crowd-sourced fact checking, such 
as Web of Trust and 4facts.org, cannot keep pace with 
the rate of online social media activity. 

 
1.2. Automated Credibility Assessment 

 
Machine learning techniques offer promise for 

assessing social media content and source credibility at 
scale. Conventional machine learning models that 
assume data to be independent and identically 
distributed (i.i.d.) have been used for credibility 
estimation [8] and form the basis of TweetCred, an 
online tool for automated credibility estimation for 
Twitter [9]. However, i.i.d. approaches neglect valuable 
predictive information that arises from interactions 
among social media users. For example, two social 
media users who post a link to the same news website 
are more likely to share other properties, such as 
political beliefs, demographics, community 
membership, and common friends [10].   

A central hypothesis of this paper is that this 
tendency of linked entities to share properties, known as 
homophily, extends to credibility in social networks. To 
exploit this effect, we propose an automated, end-to-end 
system for social media credibility assessment, depicted 
in Figure 1, that consists of modules for acquiring social 
media posts, detecting clusters of posts that correspond 
to specific events, constructing a relationship graph 
linking important entities, and finally estimating a 
credibility score for all graph entities.  

While all four of these modules present technical 
challenges, this paper focuses on algorithms for the 
credibility estimation module. In particular, we describe 
a novel collective classification algorithm [11-14] that 
exploits correlations in a heterogenous graph of users, 
events, and websites in order to improve on traditional 
machine learning approaches for data that are not i.i.d.  
Figure 2 shows what a portion of the graph looks like 
for an example noncredible event in our data set ("Iraq's 
army has shot down two British planes as they were 
carrying weapons for the ISIS"). The results presented 
in this paper demonstrate that, by exploiting homophilic 
interactions in this network, our algorithm yields 
improved performance over independent classification 
approaches.  
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Figure 1. Proposed system for automated social media credibility assessment, consisting of modules for acquiring 
social media posts, detecting events, constructing a relationship graph, and estimating credibility of graph entities. This 
paper focuses on the credibility estimation module.  In the figure, users are indicated by a person icon, websites by 
http://, and events by E. Color shading in the estimation module indicates notional output of a credibility estimation 
algorithm. 
 

 
Our approach can also leverage existing databases of 

untrustworthy users and websites for training, allowing 
the system to evolve as new trustworthiness labels are 
provided. We evaluate the approach by extracting 
credible and noncredible events from a large corpus of 
Twitter data and quantifying how well the system 
classifies those events as well as the users and websites 
associated with them. 

 
 

 
 

Figure 2. Example graph for the event "Iraq's army has 
shot down two British planes as they were carrying 
weapons for the ISIS," showing single event node 
(green) with associated user nodes (blue) and website 
nodes (orange).  

 
 

1.3. Related Work 
 
Collective Classification. Early approaches to 

predicting credibility of events in social media used 
supervised classification models with i.i.d. assumptions 

[8]. However, social media data form rich networks that 
encode important non-i.i.d. dependencies. Collective 
classification techniques can improve predictions by 
learning not only from local features (those specific to a 
given node) but also from relational features (which 
capture behavior of neighboring nodes).  

Notable collective classification approaches include 
loopy belief propagation (LBP), mean field relaxation 
labeling (MFRL), Gibbs sampling (GS), and the 
iterative classification algorithm (ICA) [11-13]. LBP 
and MFRL are global methods, defining a single 
objective function and searching for its optimum.  In 
contrast, GS and ICA are both local methods that use 
classifiers in an iterative fashion to converge to a self-
consistent solution. 

A major challenge to applying these algorithms to 
social media data is the heterogeneity of the associated 
entity graph, which results in widely varying local and 
relational feature statistics, so that a single estimator 
cannot be expected to generalize well across all node 
types. Hybrid classifiers, which use one classifier for 
local features and another for relational features [14], do 
not address the need for separate classifiers for different 
node types.  

Another challenge to classification in networked 
data is the sparsity of typical relational training sets. 
Some approaches assume a fully truthed training graph, 
impractical for large social media datasets. Other 
approaches use bootstrapping methods for training 
relational classifiers that produce predicted labels to 
augment the known ones [11, 12], the approach taken in 
this paper. 

The optimal choice of graph entities and 
relationships for effective event credibility prediction is 
an open-ended problem. This paper shows how 
constructing a graph of events, users, and linked 
websites allows us to leverage credibility labels from 
existing fact-checking websites and inputs from users to 
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train and continually improve the algorithm. 
Incorporating other entities into the graph may improve 
performance; see Section 6 for further discussion. 

Credibility Estimation and Rumor Detection. A 
number of approaches have been reported for estimating 
credibility or for detecting rumors or false information 
in social media [4, 8, 15-19].  This paper builds on many 
of these.  For example, we leverage key features of 
social media posts that are shown by Castillo et al. [8] 
to be associated with credibility, and diffusion 
approaches [4, 17] resemble our collective classification 
algorithm in some ways.  However, these approaches 
either assume i.i.d. data [8, 19] or limit themselves to 
estimating the credibility only of the message or event 
being reported [4, 8, 16, 17], but not of users, websites, 
or other entities.  In contrast, this paper incorporates 
non-i.i.d. correlations and addresses the credibility not 
only of messages but also of associated social media 
users and websites. Other, more recent approaches that 
analyze the dynamics of rumor propagation [16] 
demonstrate intriguing results that may be incorporated 
into our approach in the future (see Section 6 for further 
discussion). 

In addition, significant work has been done on 
estimating credibility in online reviews and other 
electronic word-of-mouth sources [20-22]. Many of 
these treat reviews independently, using regression [20] 
or classifiers [21] to identify features associated with 
review content and reviewer behavior that correlate with 
review credibility. The results described in this paper 
indicate that explicitly incorporating network effects 
improves credibility estimation compared to approaches 
that assume independence for the case of event reporting 
in social media. 

Finally, end-to-end credibility estimation systems 
like that of Figure 1 have been proposed [23, 24] and 
demonstrated [9].  These differ from our approach in 
that they use independent classifiers [9, 23] or focus on 
assessing content credibility only [24]. 

 
2. Preliminaries  
 

In this section, we discuss background information 
and terminology used throughout the remainder of the 
paper. 

 
2.1. Classification in Networked Data 
 

First, we introduce notation and state the general 
networked classification problem [11-13]. Assume we 
are given a set of N vertices 𝑣 = 	 {𝑣%,… , 𝑣(} where each 
vertex 𝑣* has a corresponding feature vector 𝑋* ∈ ℝ., 
where M is the feature space dimension, and where 
some vertices also have a label 𝑌* ∈ ℕ. Vertices are 

connected to one another by a set of edges 𝑒 ⊆ 𝑣 × 𝑣 
that encode relational dependencies, forming a graph 
𝐺 = (𝑣, 𝑒). The neighborhood function 𝒩* defines the 
adjacent vertices of 𝑣* such that 𝒩* ⊆ 𝑣\𝑣*.  

Given a graph G, features X for all vertices, and 
known labels 𝑌9 ⊂ 𝑌 for a subset  𝑣9 ⊂ 𝑣 of vertices, 
the collective classification task is to infer the unknown 
labels 𝑌; ⊂ 𝑌\𝑌9. In contrast, independent 
classification assumes no dependencies and thus no 
graph, and the goal is to infer 𝑌; given training set 
{𝑋9, 𝑌9} and features 𝑋;.  

Depending on the particular problem domain, each 
vertex represents some meaningful entity in the data and 
the graph topology is inferred from observed network 
structure that encodes relational dependencies. For 
example, consider predicting the topics of webpages 
using both their content and the graph that encodes the  
hyperlinks among them. Because a given webpage will 
tend to have hyperlinks to webpages about similar 
topics, including the graph adds greater predictive 
information to the classification problem compared to 
using webpage content alone. 

 
2.2. Iterative Classification 
 

We chose ICA for the work presented in this paper 
for several reasons.  First, it has been shown that in 
many cases global methods provide little if any 
performance advantage over local methods like ICA 
while adding a significant computational burden that 
scales poorly with network size [11, 12]. Second, the 
simplicity and flexibility of ICA enabled its 
straightforward extension to heterogeneous graphs.  
Finally, exploratory work using an algorithm developed 
specifically for social media analysis [17] failed to show 
improvement over independent classification 
approaches for our data set. 

ICA predicts vertex labels in a graph using a 
classifier f, which uses features derived from attributes 
and labels in the neighborhood 𝒩* of vertex 𝑣* to 
estimate the best class label 𝑌*. We iterate through each 
vertex and update node predictions until assignments 
stabilize or until a maximum number of iterations is 
reached. For a given vertex 𝑣*, the input to f is a feature 
vector  𝑋* = <𝑋*=>?, 𝑋*@A=B

C
 that combines local features 

𝑋*=>? , derived from the attributes of 𝑣*, and relational 
features 𝑋*@A=, derived from the neighbors 𝒩* of 𝑣*. The 
relational features may be any function of the attributes 
and labels of 𝒩*; aggregate statistics are commonly 
used, such as the count, mean, standard deviation, or 
maximum value of the neighboring labels. On the first 
iteration, labels 𝑌; are unknown and therefore some 
𝑋*@A= will have undefined values, so we first bootstrap 
labels by predicting 𝑌; using local features 𝑋*=>?  only. 
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3.  Event Credibility Algorithm 
 

This section introduces our algorithm for event 
credibility estimation in social media. The intuition 
behind our approach is that social media activity forms 
rich networks that can propagate important information 
for assessing credibility of events. By choosing a 
suitable network structure, we can improve event 
credibility estimation over non-networked approaches. 
Specifically, we expect users who seek to spread 
misinformation to contribute to false or hoax events, so 
if we know the credibility of one event, then we can infer 
credibility of other events involving the same users. In 
turn, those users tend to promote websites whose 
content reinforces misinformation and news bias, so if 
we know the credibility of a website, then we can infer 
credibility of events linked to those websites. 

In this section, we formalize these intuitions by 
describing how to construct a heterogeneous network of 
users, events, and websites and how to extend ICA to 
enable inference on that network. This novel extension 
of ICA to heterogeneous graphs is the key advance that 
enables our approach to outperform independent 
classification in estimating social media credibility. 
 
3.1. Event Extraction 
 

Event extraction is the process of finding social 
media posts written about real or hoax events. Given a 
set D of social media posts 𝑑 ∈ 𝐷, we denote 𝐸* ∈ 𝐷 to 
be the subset of posts that discuss event i.  𝐸* can be 
described by a function 𝑄*(𝑑) which equals 1 for posts 
about event i and 0 otherwise: 𝐸* = {𝑑 ∈ 𝐷|𝑄*(𝑑) = 1}. 
Event extraction, then, is the determination of 𝑄*(𝑑) for 
all i. In practice, posts are typically stored in an indexed 
database, and 𝑄*(𝑑) represents the database query that 
retrieves 𝐸*.  

While automated approaches exist for event 
detection [25], we considered their performance to be 
insufficient for producing the high-quality inputs we 
needed for credibility estimation. As a result, we used a 
semi-automated approach in which queries 𝑄*(𝑑) are 
interactively constructed and refined using boolean 
combinations of distinguishing keywords. For example, 
posts associated with the event shown in Figure 2 were 
retrieved using the initial query 𝑄 = {"(iraqi army) 
AND shot AND (british AND (plane OR jet)) 
AND (weapons OR arms OR guns) AND (isis or 
isil or daesh)"}, which was then refined based on 
the contents of the returned posts.  We intend to 
incorporate automated event extraction into future 
versions of this system (see Section 6).  
 

 
3.2. User and Website Extraction 
 

Event extraction yields a set of social media posts 
𝐷J = {𝑑	|	𝑑 ∈ ⋃𝐸*} related to all events. This section 
describes how user and websites entities are extracted 
from 𝐷J. 

Like events, users and websites comprise sets of 
social media posts extracted from 𝐷J: 
 

• 𝑈M	is the set of posts authored by user j: 𝑈M =
{𝑑 ∈ 	𝐷J|	user	𝑗	authored	𝑑}; 

• 𝑊Y	is the set of posts that contain website k:  
𝑊Y = {𝑑 ∈	𝐷J	|	website	𝑘	appears	in	𝑑}. 

  
Websites are identified using their uniform resource 

locator (URL). URLs are processed by expanding any 
hyperlinks shortened with a service such as bitly.com or 
tinyurl.com and by stripping to the top-level domain. 
For example, the URL http://website.com/news-article-
title is stripped to http://website.com. This is done to 
limit the granularity of hyperlinks to gather better 
supporting statistics for relational credibility features. 
While a particular news article webpage typically refers 
to a single event, its top-level domain is likely to be 
associated with multiple events. 
 
3.3. Graph Construction 
 

The graph is constructed using the following rules 
for creating edges: 

 
• 𝑒`a,;b: An edge is created between event 𝐸* and 

user 𝑈M  for each post in 𝐸* authored by 𝑈M; 
• 𝑒;b,cd : An edge is created between user 𝑈M  and 

website 𝑊Y for each post authored by 𝑈M  that 
contains 𝑊Y; 

• 𝑒`a,cd: An edge is drawn between event 𝐸* and 
website 𝑊Y for each post in 𝐸* that contains 
𝑊Y. 

 
This process generates a heterogeneous, undirected, 
weighted graph G that connects events, users, and 
websites. Using weighted rather than binary edges 
allows greater influence between strongly connected 
entities. For example, the credibility of an event 
connected to both credible and noncredible users is the 
weighted average of their contributions.  

Other rule sets leading to other graph structures are 
possible and may in fact lead to better performance; see 
Section 6 for further discussion. 
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3.4. Entity Credibility Database 
 

After graph construction, node labels are required to 
train the classifier models. We compiled a database of 
credible and noncredible websites and users by 
combining results from publicly available fact checking 
services—such as Web of Trust, 4facts.org, 
Politifact.com, and Factcheck.org—as well as from our 
own manual credibility analysis. This database is also a 
mechanism where users of the system can collectively 
contribute labels to improve its accuracy. 
 
3.5. Iterative Classification 
 

Once the graph is constructed and the entity 
credibility database is populated, we proceed with 
iterative classification. Because local feature 
distributions around a given node can vary strongly 
depending on whether that node is an event, user, or 
website, we use different estimators for each node type. 
The graph schema implies six different estimator 
models: one each for event, user, and website node types 
for learning labels 𝑌; in the initial bootstrapping phase, 
and one each for event, user, and website node types in 
the iterative classification phase. The best-performing 
model is chosen to maximize the final estimates.  
 
4. Experimental Setup  
 

In this section we describe experiments performed 
on a corpus of Twitter data using the credibility 
estimation techniques described in the previous section. 
 
4.1 Data 
 

We started with a database D of approximately 50 
million tweets about current events in the Middle East, 
acquired over a continuous, 90-day interval. We 
manually extracted over 100 events from D and assessed 
their credibility by researching online reporting, 
including news articles, blogs, and fact-checking sites. 
In contrast to others who have used a Likert scale to 
account for ambiguity [19], we tagged events as either 
credible or noncredible, using the following approach. 
Events reported in multiple mainstream news outlets 
were considered to be credible.  Events either explicitly 
discredited by fact-checking sites or reported only by 
outlets known for propaganda or false information were 
considered noncredible.  A small number of events not 
in either category were simply discarded.  

Using this process, we generated 68 credible events 
and 39 noncredible events. Database queries 𝑄*, 𝑖 =
1, … , 107, were then created to extract tweets associated 

with each event from the database. In total, 356,087 
event-related tweets were extracted to form 𝐷′. From 
those, we extracted 63,944 unique users and 3,894 
unique websites and built a graph using the procedure 
described in Section 3. 
 
4.2 Features 
 

Next, we identified local and relational features for 
building classifiers.  Local features were extracted from 
the tweets and tweet metadata associated with each 
event, user, and website node in the graph. The 
particular local features used, shown in Table 1, 
combine features reported elsewhere to be 
discriminative [8] with some that we found to be 
effective. Local features are computed over all tweets 
associated with an entity: for example, the feature 
“Average age of tweets” is the average age of all tweets 
associated with a given event, user, or website. 
 
 
Table 1. Local features for independent and collective 
classifiers. 
 

             Local Features 
Type Description 

Tw
ee

t 

Average age of tweets 

Average number of characters per tweet 

Average number of words per tweet 

Fraction of tweets containing question mark 

Fraction of tweets containing exclamation mark 

Fraction of tweets containing emoji 

Fraction of tweets containing first person pronoun 

Fraction of tweets containing user mention 

Fraction of tweets that are retweets 

Fraction of tweets by most frequently-occurring 
author 

U
se

r 

Average age of user accounts  

Average number of followers per user account 

Average number of friends per user account 

Fraction of distinct users 

U
R

L Fraction of tweets having a URL 

Number of distinct URLs 
 
 

In addition to local features, we computed relational 
features that capture dependencies among graph nodes. 
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As shown in Table 2, we chose four relational features 
for each node type to form 𝑋*@A=: the fraction of credible 
neighbors and the average neighbor credibility value 
after grouping neighbors by node type.  Local and 
relational features were then concatenated to form 
feature vectors 𝑋* = <𝑋*=>?, 𝑋*@A=B

C
. 

 
 
Table 2. Relational features for collective classifiers. 
 

                Relational Features 
Type Description 

Ev
en

t 

Fraction of credible user neighbors 

Average credibility of user neighbors 

Fraction of credible URL neighbors 

Average credibility of URL neighbors 

U
se

r 

Fraction of credible URL neighbors 

Average credibility of URL neighbors 

Fraction of credible user neighbors 

Average credibility of user neighbors 

U
R

L  

Fraction of credible user neighbors 

Average credibility of user neighbors 

Fraction of credible event neighbors 

Average credibility of event neighbors 
 
 
4.3 Training 
 

In the label bootstrapping phase, unknown labels 𝑌; 
were initialized using independent classifiers trained on 
local features only. We found that logistic regression 
(LR) with balanced class weights worked well under 5-
fold cross validation. 

Once initial estimates for 𝑌; are obtained, relational 
classifiers were trained using local and relational 
features. We found the following models to work well 
for the relational classification task: a decision tree (DT) 
with maximum depth of 4 for events, and a LR model 
with balanced class weights for users and URLs.  
 
5. Credibility Estimation Results  
 

Credibility estimation results are reported in this 
section for event, user, and URL nodes. To avoid 
overfitting, we used stratified cross validation. We split 
all event, user, and URL nodes independently into 5 
stratified folds, with the proportions of labeled and 
unlabeled nodes equal across folds to mitigate class 

imbalance. For each fold, we trained classifiers on the 
training fold and tested them on the test fold. 

Finally, we produced receiver operating 
characteristic (ROC) curves for each fold and averaged 
these to report a final ROC curve. We computed both 
the area under the curve (AUC) and overall 
classification accuracy as performance measures. This 
evaluation was performed for both independent 
classification, which ignores the graph and relational 
classifiers, and for ICA, which includes them. 

 
5.1 Event Credibility Performance 
 

Figure 2 compares event credibility ROC curves for 
independent and collective classifiers. The shaded 
region around each curve shows ±1	standard deviation 
of the stratified cross validation folds to indicate the 
range of performance over the whole set of folds. We 
achieve an overall average accuracy of 95.2% for 
predicting event credibility. Iterative classification 
improves the AUC by 7.3% and the accuracy by 22.9% 
over independent classification methods. 

 

 
Figure 2.  ROC curves for event credibility estimation, 
comparing performance of independent classification 
(blue) and ICA (green). Shaded area shows ±1	 
standard deviation of 5-fold cross validated results. ICA 
improves both AUC and accuracy. 
 
5.2 User and URL Credibility Performance 
 

ROC curves for users and URLs appear in Figure 3, 
showing that iterative classification improves the AUC 
and accuracy for these entity types as well. We achieve 
90.1% overall accuracy for users and 96.5% overall 
accuracy for URLs. User AUC improves by 40.8% and 
user accuracy improves by 37.8% compared to 
independent classification. URL AUC improves by 
46.2% and URL accuracy improves by 70.8% over 
independent classification. 
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(a)                                                                                           (b) 

    
Figure 3.  ROC curves for (a) user and (b) URL credibility estimation, comparing independent (blue) and iterative 
(green) classifiers. Shaded area shows ±1	standard deviation of 5-fold cross validated results. 
 
 

 
 

                                 
(a) (b) 

 
 

Figure 4.  Example results for (a) independent and (b) ICA classifiers for two linked events, one credible and one 
noncredible, showing how ICA boosts credibility estimates for credible events and their associated entities. Top shows 
event credibility graphs colored by credibility score; bottom shows histograms of credibility scores. The credible event 
is "ISIS militants shoot dead 70 members of Sunni Albu Nimr tribe in Iraq" (event 105); the noncredible event is "Turkish 
AKP Party has sent weapons to ISIS terrorist organizations" (event 94). 
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5.3 Performance Example 
 

Figure 4 shows how to visualize the effect of 
applying ICA to independent classifier results for a 
specific case of two linked events, one credible and 
one noncredible, demonstrating that ICA exploits 
relationships among events, users, and URLs to 
provide additional discrimination compared to 
independent classification. 

 
6. Conclusions and Future Work 
 

In this paper we have proposed an automated, end-
to-end system that uses collective classification 
techniques to exploit homophily in a network of social 
media events, users, and websites in order to estimate 
credibility of these entities. We have demonstrated 
techniques for producing a graph of relationships 
among event, user, and website nodes and for 
extending collective classification approaches to 
heterogeneous node types. We have shown that 
credibility estimation performance is enhanced when 
leveraging this graph because labels of entities are 
correlated with the labels of their neighbors.  

We anticipate future work in the following areas to 
further improve system performance. 

Network structure. The graph structure used in this 
paper—consisting of users, events, and websites 
linked through the rules listed in Section 3.3—is one 
of a number of possible structures.  Investigating these 
structures to determine which provides best estimation 
performance is a topic of future research. One 
possibility is to add links to the node set used here, for 
example by linking users who follow, message, or 
retweet each other. Another possibility is to add other 
node types, such as tweets (which are treated in bulk 
in this paper), offering the possibility of estimating 
credibility at the individual tweet level. Our initial 
work in this area has yet to yield reliable credibility 
estimates for individual tweets. 

Network dynamics. Our approach treats the graph 
of users, events, and websites as static and estimates 
credibility based on time-independent properties of 
these nodes and their links.  Other researchers [16, 26] 
have shown that tweet dynamics and propagation 
provide important information about credibility.  We 
intend to explore the utility of time-dependent features 
in future work. We also plan to assess event credibility 
timeliness by evaluating how much data is needed 
before confident credibility estimates can be made.  

Event detection.  The work presented in this paper 
addresses only one module of the proposed end-to-end 
automated system depicted in Figure 1.  In particular, 
as discussed in Section 4.1, we used a semi-automated 
process for event detection. In future work, we plan to 

replace this process with a fully automated event 
detection module [25]. As a first step, we have 
investigated improving the quality of tweets used in 
prediction by first automatically filtering on whether 
or not the tweet represents an assertion rather than an 
opinion, question, or other construct. In preliminary 
work, we have shown that deep learning approaches 
utilizing long-short term memory recurrent neural 
networks on tweet text can achieve human-level 
performance for predicting assertions.   

This material is based upon work supported under 
Air Force Contract No. FA8702-15-D-0001. Any 
opinions, findings, conclusions or recommendations 
expressed in this material are those of the authors and 
do not necessarily reflect the views of the U.S. Air 
Force. 
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