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Abstract 
Open Governmental Data publishing has had mixed 

success. While many governmental bodies are 

publishing an increasing number of datasets online, 

the potential usefulness is rather low. This paper 

describes action research conducted within the 

context of the Dutch Cadastre’s open data platform. 

We start by observing contemporary (Dutch) Open 

Data platforms and observe that dataset reuse is not 

always realized. We introduce Linked Open Data, 

which promises to deliver solutions to the lack of Open 

Data reuse. In the process of implementing Linked 

Data in practice, we observe that users face a 

knowledge and skill and that contemporary Linked 

Open Data tooling is often unable to properly 

advertise the usefulness of datasets to potential users, 

thereby hampering reuse. We therefore develop four 

components for Linked Data viewing  to enhance the 

current situation, making it easier to observe what a 

dataset is about and which potential use cases it could 

serve.  

 

1. Introduction 
 

An increasing number of governmental organizations 

is publishing Open Data online [24]. However merely 

publishing datasets online does not guarantee use [22, 

23, 24]. The Land Registry and Mapping Agency of 

the Netherlands (‘Kadaster’ in Dutch) publishes large 

authoritative geospatial datasets, including several key 

registers of the Dutch Government. This includes a 

detailed description of the full topography of the 

Netherlands, as well as registrations of all the 

addresses and buildings in the Netherlands. These data 

assets are published in the online PDOK data 

catalogue (https://data.pdok.nl). PDOK is a data 

publication service that exposes over 130 geospatial 

datasets form various Dutch governmental institutes. 

Together, these datasets include descriptions of 

hundreds of millions of geospatial objects. On a yearly 

basis, PDOK receives billions of hits (2.153.892.039 

hits in Q1 of 2018 alone), emphasizing the popularity 

of the platform and the data on it. However, if we 

further analyse these hits, it is seen that from the 130 

datasets only 5 are responsible for 84% of the total 

number of hits [9]. 

 The number one dataset, the Web Map version of 

the official Topographical Map of the Netherlands 

(BRT Achtergrondkaart), is responsible for 34% of the 

total number of hits (726.868.918 hits for Q1 of 2018), 

followed by the Building and Address register (BAG) 

which is responsible for 25% of the total number of 

hits (537.541.269 hits). therefore, over half (59%) of 

the total number of hits is caused by these two datasets 

alone, which shows that publishing as much datasets 

as possible does not necessarily improve Open Data 

use. Another example is the official Open Data 

platform of the Dutch government: data.overheid.nl. 

In total, over 12,000 datasets are published as Open 

Data on that platform, yet only 82 datasets are 

classified as ‘high value datasets’. 

 Moreover, if these 82 datasets are further 

inspected, only a handful of the datasets found on 

data.overheid.nl cover the entirety of the Netherlands 

and are regularly updated, e.g. the National 

Commercial Register.  

 Therefore, quantity should not be the priority of an 

Open Data platform. Instead, the focus should be 

placed on publishing datasets that have high value and 

(re)usability for users [23]. Also, platforms should 

improve the accessibility and usability of their open 

data [22, 23], e.g. by creating functionalities and 

services. 

 Linked Open Data [13] provides promises of 

increased accessibility, usability and value of open 

data [1]. By representing the data in a standardized 

way, different components can be used for publishing, 

storing, retrieving, reusing, integrating and analysing 
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the data [1]. The implementation of Linked Open Data 

and the adoption by users is however hindered by 

barriers [19, 20, 21] which will be addressed in the 

next section.  

 

2. Approach 
 

The new Kadaster Data Platform (KDP) is using 

Linked Open Data to improve the usefulness of the 

datasets it is publishing. Data is not only published for 

the Dutch Cadastre, but also as a shared service for 

other Dutch governmental organisations. E.g., the first 

Linked Open Data release of the spatial-statistical 

dataset of Dutch neighbourhoods (“Kerncijfers wijken 

en buurten” in Dutch) published by the Dutch Central 

Bureau of Statistics (https://cbs.nl). 

 Unfortunately, Linked Data is not an out-of-the-

box solution that can be directly applied in the 

organization. For this reason, KDP is using action 

research [21] to implement Linked Data support over 

time. 

 Linked Data is a collection of best practices on 

how to publish data on the Web [4,12]. The idea of 

Linked Data is that data is published on the Web, so 

that it can be explored by both persons and machines. 

Rather than being stored in a traditional relational 

database, Linked Data is stored in a graph-based data 

model, typically indexed by a triple store, using 

standardized serialization formats like Turtle and 

RDF/XML [12]. The use of URIs/IRIs as identifiers in 

the data allows for the creation of links between 

datasets, providing context to the data, and thereby 

improving its understandability and usability [1]. 

Furthermore, it allows for the discovery of new data 

by potential users. SPARQL is a standardized query 

language that can be used to answer complicated 

questions over one or more Linked Datasets. In the 

case of the Kadaster Data Platform, the Linked Data is 

also Open Data. Tim Berners-Lee has created the 5-

star Linked Open Data model, to indicate which 

criteria must be met by Linked Open Data: 

 

* Available on the web under an open license. 

** Available as machine-readable structured data 

*** Available as machine-readable data, but in a 

non-proprietary format (e.g. CSV instead of 

XSLT) 

**** Using open web standards (IRIs for identifiers, 

RDF for data model, SPARQL for querying) 

***** Linked to other Linked Open Data on the web 

 

In practice, there is a clear distinction and a big 

implementation gap between the first three and the last 

two stars [5] because it requires the use of Linked data. 

Also, the adoption of Linked (Open) Data is relatively 

slow [19]. The main barrier is the lack of knowledge 

and skills of users [20, 21]. In addition, users are often 

unable to find data(sets) of interest, since it is difficult 

to relate published datasets to their concrete use case 

[19]. Finally, SPARQL is a versatile and expressive 

query language, but also has a steep learning curve 

[20]. 

Figure 1. The Kadaster Dataplatform Architecture 
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To improve upon the above described situation, the 

KDP has developed four methods for Linked Data 

viewing:  

 

• Data Stories that provide an overview of 

interesting queries that can be performed over a 

Linked Data and that present use cases.  

• FacetCheck that allows users to browse a Linked 

Dataset by interacting with a set of UI facets.  

• 3D visualization of SPARQL result sets makes it 

easier to interpret complex geospatial data.  

• Integration of Linked Data within existing 

Business Intelligence (BI) tools allows data to be 

visualized and viewed in various ways.  

 

3. Architecture 

 
The Data Stories and FacetCheck components are part 

of the larger Kadaster Data Platform (KDP) 

architecture (Figure 1). The Dutch Cadastre currently 

publishes the majority of its 130 Open Datasets by 

using one of the GIS-specific formats that are 

standardized by the Open Geospatial Consortium 

(OGC). These formats, e.g., GML, are popular with 

GIS specialists, but are not used on a wider scale. 

Specifically, these geo standards are not used on the 

web. In the new Kadaster Data Platform (KDP) these 

existing formats will therefore be extended upon, by 

also offering Linked Open Data variants (i.e., RDF) 

and queryable REST APIs over the same data. To 

effectuate this process, an Extract, Transform and 

Load (ETL) procedure was designed that allows 

existing data assets to be automatically and 

incrementally transformed and loaded into an RDF 

triple store and a document store. 

 Based on these newly created Linked Data access 

points, it is possible to define novel ‘Information 

Products’, i.e., specific APIs and/or applications that 

are created with a specific business goal in mind. 

Because all data is semantically described as Linked 

Data, it is relatively easy to combine various datasets 

into one Information Product. The Information 

Product consists of a set of integrated Linked Data 

queries, that are exposed through a REST API that uses 

the OpenAPI specification. This is also where the main 

cost saving property of Linked Data resides: it 

significantly reduces the cost of integrating 

heterogeneous datasets with the purpose of generating 

new APIs. This is particularly useful when there are 

multiple business goals that need to be covered at the 

same time, and/or when business goals change over 

time. The content of the integrated RDF triple store is 

exposed through a SPARQL endpoint. On top of this 

endpoint, the KDP has implemented various front-end 

functionalities. 

 Specifically, the following three Linked Data 

browsing paradigms were introduced earlier [2]: 

tabular browsing, hierarchical browsing, and graph 

navigation. 

 Tabular browsing is a simple yet popular way for 

browsing database content, which displays records in 

rows and properties in columns. In addition to record-

oriented tabular browsing, hierarchical browsing 

makes use of the tree structure of the concept and 

property hierarchies to display the various classes and 

properties that are present in the data. As such, a 

hierarchical browser gives the user a quick overview 

of the main classes and properties that are in a dataset. 

Hierarchical browsing works well for gaining an 

understanding of a concept schema. Both the tabular 

and hierarchical browser are implemented by the Open 

Source project Linked Data Theatre 

(https://github.com/architolk/Linked-Data-Theatre) to 

which the Dutch Cadastre is a main contributor.  

Graph navigation uses the graph-shape of the RDF 

data model to display concepts and instances as nodes, 

and properties as edges between those nodes. Graph 

navigation was observed to work well for explorative 

browsing, e.g., it allows the discovery of links to other 

datasets. For graph navigation the existing Open 

Source tool LODLive (http://en.lodlive.it) is used. In 

addition to these three existing data browsing 

approaches, the KDP also includes an advanced 

SPARQL query editor with added support for 

GeoSPARQL queries and geospatial visualisations of 

query result sets [3]. 

 

4. Data Stories 

 
Since Linked Data is a relatively new technology for 

most users, many of them are unaware of the potential 

that can be unlocked. Users are observed to have 

difficulty with determining whether a Linked Dataset 

is useful for their own use case. With the browsing 

features described in Section 3, a first step towards 

becoming familiar with a new dataset is to browse 

through that dataset’s metadata description.  
 A second step consists of browsing through the 

dataset-specific data model, i.e., the concept and 

property hierarchies. Unfortunately, this approach is 

relatively complicated, since it requires a user to be 

able to identify the usefulness of a dataset based on the 

concepts it contains. For many users, a concept 

hierarchy does not immediately translate into potential 
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use cases of the data. Furthermore, a dataset may 

contain a large number of concepts and/or properties. 

In such cases, a user may miss those parts of the data 

model that are most important to their use case. 

 To bridge the gap between (a) the vast but implicit 

potential that a Linked Dataset encapsulates, and (b) 

the specific and often more explicit use cases a 

prototypical user may have in mind, we have 

developed Data Stories. A Data Story allows a specific 

use case to be explained to a potential user through a 

sequence of data examples, that are connected by an 

overarching story. To be as generic as possible, the 

data examples that compose a Data Story are 

visualizations of SPARQL result sets. This ensures that 

the components of a Data Story are declarative (how 

the data is obtained is encoded in the SPARQL query), 

reproducible (the query is recomputed when the Data 

Story is generated), and modifiable (advanced users 

can click a button to open the SPARQL query view, 

where the query can be altered and rerun). 

 A Data Story allows the original data publishers to 

emphasize the potential use cases that they envision 

for their dataset. This includes their ability to highlight 

interesting aspects of the dataset itself, e.g., interesting 

objects and/or interesting relationships between 

objects, as well as interesting ways in which the data 

can be combined with other Linked Data sources (e.g., 

DBpedia). A Data Story can be thought of a 

‘advertisement tool’ for data. It consists of a textual 

description/explanation of the story line, interspersed 

with SPARQL queries. When a story is read, the 

SPARQL queries are executed in sequence, and their 

result sets are displayed inline. During the creation of 

a Data Story, the writer can choose to visualize the 

results of queries in tables, diagrams/charts, pivot 

tables, widget galleries, or geo-spatial maps. As such, 

many different types of information, e.g., geographical 

and statistical information, can be combined to tell an 

engaging story with data. An example of such a 

multi-modal combination of data visualization 

techniques is a thematic map, in which a statistical 

property is used to colour the regions of a map.  

 While it is possible to create diagrams with 

statistics programs, and thematic maps with GIS 

toolkits, the queries in Data Stories are encoded in a 

standardized query language and executed within a 

regular web browser. For each of the displayed query 

results, an advanced user can open a corresponding 

query editor that contains the query itself. When a 

query is changed, the results of the change are 

calculated on the spot, making the elements of a Data 

Story more interactive/modifiable than their read-only 

counterparts from regular web articles. Various 

examples of Data Stories can be found in the KDP 

Labs environment (https://data.labs.pdok.nl/stories). 

 

5. FacetCheck  

 
Since Linked Data does not have a static schema, each 

dataset can be structured in a different way. This 

provides great flexibility to the data publisher and 

allows for a wide variety of datasets to be published 

with high semantic detail, without requiring the 

introduction of non-standardized and/or domain-

specific constructs. Unfortunately, on the side of the 

data consumer this great flexibility makes it more 

difficult to understand how a specific dataset is 

structured, and how it can be queried. 

 The problem of querying an unfamiliar schema is 

already ‘solved’ on today’s web by faceted browsers. 

For example, when a customer wants to buy a 

television, many online stores allow customers to 

search for a television based on various properties 

such as minimum rating, price, weight, screen 

resolution, and screen size. Customers are able to 

express a relatively complicated SQL query by 

interacting with various widgets (check boxes and 

sliders) within the web UI. 

Figure 2: Screenshot from the depopulation dataset 

Figure 3. FacetCheck showing the Dutch neighbourhood 
dataset 
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Faceted browsers can easily be created when the 

database schema is stable: an application developer 

can create widgets that correspond to query filters. 

Selecting multiple facets results in a (conjunctive) 

composite query over the set of data entities.  

 As such, creating a faceted browser is a relatively 

expensive and time-consuming process since it 

requires non-trivial development effort for each 

database. With Linked Data, the properties in the 

database are described in semantic terms. For 

example, standards-compliant Linked Data specifies 

the domain and range types for each property. Based 

on this semantic description, the faceted browser 

widgets can be generated automatically. 

 FacetCheck is a specific implementation that maps 

semantic descriptions onto UI widgets and underlying 

SPARQL sub-queries. The FacetCheck UI consists of 

two components: the left-hand side of the screen 

containing the various widgets, while the right-hand 

side of the screen displays the entities that match the 

specified filters. When making selections within the 

FacetCheck UI, a SPARQL query is automatically 

assembled out of the sub-queries associated with a 

widget. The entities that adhere to the specified query 

are retrieved and displayed on the right side of the 

screen for the user. An instance is also displayed by a 

compositional widget. The components of an entity 

widget are determined by the direct properties that the 

corresponding entity has in the database. (This is 

sometimes referred to as the ‘Concise Bounded 

description’ of an entity.) Based in the displayed entity 

widgets, the users can decide whether the results are 

wat they wanted, or whether (other) widgets need to 

be set, or changed, to improve the results. Since 

FacetCheck allows for the automatic generation of 

selection- and entity widgets, it is relatively easy to 

create a FacetCheck browser over a specific Linked 

Dataset.  

 
5.1 Case study: Dutch neighbourhoods 

 
An example configuration of FacetCheck can be used 

online (https://facetcheck.triply.cc). Currently 

configurations for several KDP datasets exist, 

including one over the spatial-statistical dataset of 

Dutch neighbourhoods (“Kerncijfers wijken en 

buurten” in Dutch). This dataset links geospatial data 

assets of the Land Registry and Mapping Agency to 

statistical data from the National Statistics Office 

(CBS). In November 2017, two data journalists were 

invited to express their interests in Dutch 

neighbourhood data. They were interested in data 

about depopulated areas and specifically economic 

and/or social trends in those areas. Together with the 

data journalists, several Data Stories were created, and 

FacetCheck was used to find interesting filter criteria 

for identifying depopulation areas. 
The data story includes multiple queries that show 

various characteristics of depopulation areas, such as 

the average distance to public transport, car 

ownership, and access to jobs (Figure 2). 

 By pressing the orange “Show Query” button 

(Figure 2), the user can verify the query, and with a bit 

of SPARQL knowledge, the query can also be adapted. 

For instance, the specific depopulation areas the query 

retrieves can be changed with a small edit. Now we 

focus on the job market participation rate in shrink 

areas. The query results in Figure 3 show that access 

to work in the northern depopulation areas is below the 

national average. 

 By looking at the results, and zooming in, we learn 

that only 2 out of 9 depopulation areas have lower than 

average employment rates. Additionally, we see that 

there are areas without depopulation (such as 

Rotterdam and The Hague) that have lower 

employment rates. In combination with the 

depopulation Data Story, the FacetCheck browser was 

used to filter depopulation areas based on various 

criteria. In Figure 3, the left-hand side of the screen 

shows the filters that are based on the properties in the 

dataset. By scrolling, over 100 data properties can be 

selected through a map, a slider or a checkbox list. The 

right-hand side shows the widgets for 4 of the 

currently selected neighbourhoods. 

 

6. 3D visualisation  

 
3D environments allow for advanced spatial 

navigation and visualisation but have traditionally 

provided limited support for performing non-spatial 

data analysis operations like filtering, joining, and 

integrating data on-the-fly. Linked Open Data 

provides advanced support for performing filters and 

joins over datasets that can be dynamically combined 

through SPARQL federation. Unfortunately, Linked 

Data results often lack intuitive visualisation 

capabilities, making it relatively difficult for a data 

analyst to interpret the data. This section discusses an 

integration of 3D visualisation into the read-evaluate-

print-loop of SPARQL query execution. 
 Because of the complementary nature of the two 

approaches, the combination of 3D GIS and Linked 

Open Data provides ample potential for data analysis 

use cases. Unfortunately, not that much prior work on 
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truly combining 3D GIS and Linked Open Data has 

been performed. There existing prior work on 

semantically describing 3D objects in Linked Data 

[11], and some viewers are able to display (part of) a 

Linked Dataset within a 3D viewer [4]. However, what 

is currently lacking is 3D content that is formatted in a 

standards-compliant way, is accessed through 

standardized means, and is visualized in a 3D 

environment. 

 

6.1. The SPARQL Query REPL 

 
Performing complicated data analyses is akin to 

programming, in the sense that a complex query is not 

constructed all at once. Rather, query construction is a 

highly iterative process that consists of repeatedly 

changing the query until it gives the required result. In 

programming, this process is widely known as the 

read-evaluate-print-loop (REPL) is a well-known 

concept. In data analysis, we observe a similar 

process: 
 

1. The SPARQL endpoint reads a query 

(preferably) a SPARQL editor with syntax 

highlighting and auto-cmpletion functionality.  

2. If the read query is grammatically correct, it is 

evaulated against the triple store. (preferably 

with a standards-cpmliant endpoint) 

3.  A SPARQL result set is retunred to the client. 

These results can be visualized (e.g. on maps or 

a diagram).  

4. With the visualisation, the user can determine 

whether (part of) the query has to be changed 

(starting the loop at step 1).  

 

 This read-evaluated-print-loop (REPL) principle is 

implemented by YASGUI, an integrated SPARQL 

editor and result set visualizer [3] that is developed by 

Triply (https://triply.cc) and used as a component by 

many Open Source projects and data publishers. In 

collaboration with the Kadaster Dataplatform, 

YASGUI was extended to support GeoSPARQL, the 

OGC-standardised GIS extension to SPARQL [14]. 

With this extended support it is possible to query for 

geospatial relationships, return them in a standard-

compliant result set formal, and automatically display 

them on a 2D Leaflet map [3]. 

 
6.2. Benefits of 3D SPARQL 

 
While YASGUI was extended in 2017 to 

automatically visualize 2D geospatial information on 

a Leaflet map, no 3D geospatial support was available. 

In fact, 3D results were treated in exactly the same way 

as 2D results: the altitude was simply not processed. 
 At the same time, it is possible to identify several 

generic benefits of adding 3D support to the REPL 

principle: 

 

1. 3D visualisation mimics the real world more 

closely than 2D. 3D visualisations are therefore 

more powerful in engaging users.  

2. Using 3D, multiple attributes can be displayed 

for the same area. E.g., displaying average 

income as height.  

3. 3D environments allow for the display of 

multiple views on data. Rather than 3D maps, 

full 3D environments allow for full six degrees 

of view. Allowing to display more information 

about an object (e.g. a building).  

     

 In addition to these generic benefits, several use 

cases were found in which 3D support is not only 

convenient, but also necessary in order to allow query 

results to be interpreted correctly. Indeed, the correct 

interpretation of intermediate query results is required 

to be able to make the correct edits for the next 

iteration of the query: 

 

1. With 2D visualisation, buildings that contain 

multiple administrative entities (e.g. an office 

containing businesses that own a single floor, 

or apartments in an apartment block) are 

displayed on top of each other. Some 

information is then lost 

2. Certain datasets also have height dimensions. 

E.g., drone no-fly zones often also have a 

certain height limit for drones. This cannot be 

displayed in 2D.  

3. Height values are crucial for emergency 

services: fire brigades often need to know the 

height of a building to determine the number 

of floors, how many apartments there are etc. 

Also 3D models of buildings can show them 

were entrances are, on what height etc.  

 

6.3 Implementation 

 
To integrate 3D support in the SPARQL REPL, we 

will first take a look at the read component, which 

consists of the data that is stored in the triple store and 

the query that is written in order to be evaluated over 

that data. Even though the GeoSPARQL standard does 

not mention 3D specifically, the datatypes, relations, 
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and functions it defines can also be applied to 3D 

shapes. 

 Figure 4 shows an example of a small RDF graph 

that encodes a 3D geometry. It contains a node 

representing a particular building, together with a 

triple that asserts that this building is a feature. Second, 

the graph contains a node that represent the geometry 

of that building, and a relationship between the feature 

and the geometry. Third, a node represents a particular 

serialisation of the geometry. In this case, a 

serialisation in Well Known Text (WKT). 

 

 

Figure 4. RDF graph with 3D geometry 

 Such a serialisation starts with a keyword that 

indicates the kind of shape involved and is followed 

by nested lists of spatial coordinates. When writing a 

SPARQL query, the data analyst is able to retrieve the 

data in various ways. The analyst can retrieve the 

feature based on some other criteria (e.g., the address 

of the building), and then also retrieve its geometry 

and shape. Alternatively, the data analyst may first 

retrieve the shape based on some geospatial criterion 

(e.g., proximity to a point of interest), in order to 

subsequently retrieve the geometry and feature.

 With respect to the evaluate component, i.e., the 

triple store, it is important to choose one that supports 

3D. Unfortunately, there are no adequate options for 

this on the current market. While most triple stores 

allow 3D geometries to be stored, some do not allow 

them to be retrieved through SPARQL. Specifically, 

such triple stores will actively remove the Z coordinate 

from 3D shapes. This is worse than not supporting 3D 

at all, since that would at least leave the plain WKT 

string intact. When 3D information is actively purged 

from SPARQL results, it is impossible for YASGUI to 

display the data correctly. Other triple stores do 

preserve Z coordinates, but do not support the 

GeoSPARQL vocabulary. Some triple stores do 

support geospatial filters and relations, but non-

standardized, custom-tailored notation. The very few 

triple stores that do support GeoSPARQL notation do 

not always apply effective indexing on geometries, 

resulting in poor performance for some, especially 

large, queries. 

 The last component that must be present to add 3D 

support to the SPARQL REPL is the print or 

visualisation component. Firstly, when YASGUI 

receives a query result set from the triple store, it must 

know how to interpret 3D shapes. We focus here on 

the most common SPARQL SELECT query form. A 

SELECT query returns results in terms of a fixed 

number of columns that correspond to a sequence of 

projection variables. Multiple query results amount to 

multiple sequences or rows of bindings of RDF terms 

to these projection variables. Whenever an RDF term 

in such a binding has the standardized datatype: IRI 

geo:wktLiteral, YASGUI is instructed that a 3D shape 

is present. Secondly, YASGUI must be able to 

visualize the detected 3D shapes within a 3D 

environment. Previously, automatic visualisation of 

2D shapes was implement by including a plug-in that 

is based on the Open Source Leaflet library 

(http://leafletjs.com). For the current extension, a 

plug-in is added that is based on the Open Source 

Cesium library (https://cesiumjs.org). Cesium is not 

directly able to interpret the WKT formatted 

serialisations that are present in SPARQL result sets, 

but it is easy to transform WKT serialisations into 

GeoJSON, or another format that is supported by 

Cesium. Besides the ability to display 3D shapes in 

Cesium, the YASGUI plug-in includes additional 

support for colouring 3D shapes and for displaying 

labels. These labels can be displayed within the 3D 

environment itself (for simple textual labels) and/or in 

an HTML overlay (for complex labels that can include 

mark-up and media). At this moment, very few Linked 

Figure 5. 3D visualisations 
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Datasets contain 3D shapes that are represented by 

WKT literals and GeoSPARQL properties. As such, 

the impact of the SPARQL extension would have been 

quite small. However, there is a lot of 2D Linked Data 

encoded in datasets today.  

 The plug-in therefore adds specific support for 

visualizing 2D shapes with an added height property. 

The height variable can be bound within a SPARQL 

query, either based on a query variable or by simply 

binding the height variable to a static value that will 

display all shapes at the same height. 

 
6.4 Examples of use 

 
In this section we present some concrete example of 

using 3D visualisation support within the YASGUI 

REPL. Figure 5 (top) shows   the result of retrieving 

the energy labels (expressing energy consumption) of 

a street in the city of Zwolle. Since the result set 

contains 3D geometries, these are automatically drawn 

in the 3D viewer. In our SPARQL query, we are not 

only binding the geometries of the buildings, but also 

their energy labels mapped to their respective colour 

codes. Now it is immediately identifiable which 

building has a certain energy label. When a building is 

selected, its textual label (the binding of ?varName in 

the SPARQL projection) is shown inside the 3D 

environment, hovering over the building. In addition, 

the building’s HTML labels is shown in the panel on 

the right-hand side. The HTML snippet in this panel 

contains additional information about the selected 

building, such as its Cadastral identifier, it’s current 

status (occupied or not) and use (residence or 

business). It also contains more information about the 

energy labels, including when the measurement was 

performed.  
 Figure 5 shows the result of retrieving the number 

of businesses for each neighbourhood in the city of 

Zwolle. In the SPARQL query, we bind the 2D shape 

of each neighbourhood to the projection variable ?var, 

and bind the (normalized) number of businesses to the 

projection variables ?varColor and ?varHeight. The 

height of the shapes now expresses the number of 

businesses. This is an example of a query where the 

Linked Data only contains 2D shapes, but the query 

visualisation is still able to display 3D. 
 

7. Visualisation with BI tools  

 
Data driven organisations want certainty that their data 

is reliable before it is used in decision making. 

Decisions are often made on management information, 

shown in business intelligence tools (BI tools). The 

Gartner Magic Quadrant for Analytics and Business 

Intelligence Platforms compares BI tools, considering 

multiple factors. The leaders on the current Gartner 

Magic Quadrant are Tableau, PowerBI and Qlik.  
 Business Intelligence (BI) software is a collection 

of decision support technologies enterprises aimed at 

enabling knowledge workers such as executives, 

managers, and analysts to make better and faster 

decisions [6]. The data on which business intelligence 

tasks are performed often come from different internal 

and external sources. This data varies in quality, 

format and consistency. The preparation of the 

different datasets before analysis is called the Extract-

Transform-Load (ETL) process. The transformed data 

is traditionally stored in a relational data warehouse. 

 When Linked Data can be analysed and visualized 

in such business intelligence tools, the best of both 

worlds can be combined. With Linked Data, it is 

possible to combine a large variety of data and query 

data at the source. Business Intelligence tools serve as 

an optimal GUI for the visualisation of these data. The 

data would no longer need to be copied and extracted 

to data warehouses and could be analysed and 

visualised directly from the source. For end-users who 

want to use the data in business intelligence tools, the 

Linked Data technology will become much more 

accessible. Business intelligence tools can serve as a 

‘Killer App’ for Linked Data and give the Linked Data 

technology a boost.  

 There are two possible approaches to combine 

Linked Data and business intelligence: the analysis-

oriented and the modeling-oriented approach [10]. In 

the case of the analysis-oriented approach, an ETL 

process takes place as usual. The data is queried via a 

SPARQL query and the results are loaded. In that case, 

the connection is made directly on the (linked) data 

source. In the other approach, the analysis is 

conducted directly on the Linked Data without an ETL 

process beforehand. This approach seems more 

effective but needs a complex cube model to conduct 

the analyses. 

 The analysis-oriented approach can be achieved 

with the help of connectors. Two applicable solutions 

that focus on the analysis-oriented approach are the 

Tableau Web Data Connector and the ODBC 

connector. The Web Data Connector is offered 

exclusively by the business intelligence tool Tableau. 

 The data.world platform has developed its own 

Web Data Connector [7]. The data.world platform 

focuses mainly on the semantic web and offers users 

the possibility to store and query data in (Linked) 

Open Data formats (e.g. RDF). It is also possible to 

Page 2919



access external endpoints (federated) via data.world 

and to display the results. The data.world connector 

allows users to visualise query results in Tableau [7].  

 Another type of connection that can be used to 

visualize Linked Data is an Open DataBase 

Connectivity (ODBC). Tableau, PowerBI and Qlik all 

offer the possibility to set up a connection with an 

ODBC source. However, Virtuoso is the only triple 

store that offers the possibility to set up an ODBC 

connection. Users can query federated external 

endpoints and to collect the desired data in the same 

way as with the Web Data Connector. 

 For the modeling-oriented approach, several 

frameworks have been published. These frameworks 

describe how Linked Data becomes compatible with 

business intelligence tools. The most of these 

frameworks are based on the RDF Data Cube 

Vocabulary (QB) and the expanding RDF vocabulary 

QB4OLAP [15]. SPARQLytics [17], GeoSemOLAP 

[16] and SETL [18] are three examples of these 

frameworks that have developed a workflow and / or 

architecture to bring both worlds together. The 

frameworks focus on mapping data in Linked Data 

formats to multidimensional analytics. A reusable 

framework that can be used to carry out 

multidimensional analyses directly on the Linked Data 

source would provide the most value for analysing and 

visualising Linked Data. For this reason, it is therefore 

highly recommended to closely monitor developments 

relating to the modeling-oriented approach. 

 
7.1 Examples of use 

 
With the FacetCheck UI, users can analyse and 

visualize spatial-statistical data of Dutch 

neighbourhoods. The connectors mentioned in the 

analysis-oriented approach can be used to visualize 

this data in Tableau. This example of use shows the 

possibilities of the data.world Tableau Web Data 

Connector. With a SPARQL query, the user can select 

the preferred facets. The data.world platform shows an 

‘Open in app’-button that generates the correct link for 

the Tableau Web Data Connector. From Tableau, the 

connection can be set up with the data.world server 

through the Web Data Connector. The results of the 

SPARQL query now appear in Tableau.  
 However, all spatial Linked Data is described in 

Well-known Text (WKT) format, a mark-up language 

not supported by Tableau. The National Statistics 

Office (CBS) publish Shapefiles (SHP) for the Dutch 

neighbourhoods. By connecting this neighbourhood 

Shapefile with the spatial-statistical dataset of Dutch 

neighbourhoods, the neighbourhood polygons can be 

plotted in Tableau. The alternative is to develop a 

parser that makes it possible to convert the WKT 

format into a Tableau supported format.  

 Figure 6 shows maps in Tableau for the province 

of Overijssel.  The first map shows the percentage of 

houses per neighbourhood built after 2000. The 

percentage of houses increases from yellow to red. Just 

like FacetCheck, it is possible to combine criteria. The 

third map shows all the neighbourhoods in Overijssel 

where at least 50% of the households have children 

and where a day care centre is up to 2 kilometres away.  

 The visualisations have been made without 

copying and loading the data to tableau. The data is 

queried at the source by means of a SPARQL query.  

 

 

Figure 6: Map visualisations in Tableau 

8. Conclusion 
 

This paper has discussed four components for Linked 

Open Data viewing. The components Data Stories and 

FacetCheck have already proven to be valuable for the 

Kadaster Data Platform (KDP). Data Stories illustrates 

that it is possible to make Linked Datasets accessible 

in a better way, by advertising concrete use cases. 

FacetCheck  allows users to find the data they need by 

using intuitive facets, rather than requiring them to 

write elaborate SPARQL queries. 
 The components 3D visualization and BI 

integration are currently under development and 

require additional research. 3D visualization illustrates 

that the visualization of complex geospatial Linked 

Data can be significantly improved. Integration with 

BI tooling holds the promise of carrying over the 

benefits of existing BI tools to Linked Data. While this 

paper shows that it is possible to visualize Linked Data 

in Tableau with the help of software connectors, 

further research is needed to improve performance and 
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scalability. In the optimal situation, BI tooling would 

have native support for Linked Data. 
  Over the last couple of years, Linked Open Data 

has seen a relatively slow adoption speed which may 

in part be due to the lack of functionalities supporting 

the usefulness of Open Data. This indicates that further 

Open governmental Data adoption requires Linked 

Data theory to be further integrated into its practical 

context of use. Distinctive and functional browsing 

and viewing components like Data Stories and 

FacetCheck contribute to this end. 
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