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Abstract

The optimization of a factory’s productivity regarding
quality and efficiency is an important task in the manufac-
turing domain. To optimize the productivity, production
lines are optimized to have short transportation paths
and short processing times at the stations that process
intermediate components or the final product. A factory’s
layout is a key factor in this optimization aspect. This
optimization mostly comprises the machine tools’ posi-
tions with respect to places where supply goods are being
delivered and other tools are stationed, often neglecting
the paths that workers need to take at the shop floor. This
impairs a factory’s productivity, as machines may need
to wait for workers, who operated another machine and
are still on the way due to the long distance between the
machines. In this work, we present BlueCollar, a visual
analytics approach that supports layout planners to ex-
plore and optimize existing factory layouts regarding the
paths taken by workers. Planners can visually inspect
the paths that workers need to take based on their work
schedule and the factory’s layout. An estimation of distri-
bution algorithm supports them in choosing which layout
elements, e.g., shared tool caches, to relocate. Its inter-
mediate and final results are used to provide visual cues
for suitable relocation areas, and to suggest new layouts
automatically. We demonstrate our approach through
an application scenario based on a realistic prototype
layout provided by an external company.

1. Introduction
A factory’s efficiency can be optimized in several as-

pects, e.g., the optimization of processes to improve the
products’ quality and reduce product rejection rate, as
well improving a factory’s layout regarding the positions
of its processing stations. One important aspect for a
layout’s effectiveness is the productivity of the workers
that operate and maintain machine tools. The produc-
tivity depends on many aspects, such as ergonomics at
a workstation [1] and the work schedule they need to
complete [2]. Additionally, the planning of the paths

taken by the workers to complete their work schedule
is important, e.g., in case they need to operate multiple
machines or they need to share special equipment at a
tool container [3].

Often, pathing problems for workers are hard to ac-
count for during the layout planning phase. Exemplary
reasons are changes in a production line over time (e.g.,
machinery replacement), the addition of new production
lines, or changing work schedules. There are numer-
ous approaches to support the workers’ pathing during
production, for example, visual cues the on floor or pre-
senting the best path on the nearest machine terminal. It
is also possible to optimize the positions of movable parts,
such as shared tool caches. However, this optimization is
challenging [4]. On the one hand, an automatic optimiza-
tion is expensive to calculate due to the large number
of possible solutions. Further, its results are prone to
errors due to unmodeled constraints (e.g., availability of
adequate power supply) or implicit constraints known by
experts, e.g., workers avoid being close to loud machin-
ery. On the other hand, manual optimization by experts
is challenging, as the path optimization is dependent on
various parameters, such as the produced goods.

This paper contributes a visual analytics approach to
support layout planning experts to optimize the layout
of planned or existing production lines. The work pro-
vides a visual analysis approach for the manufacturing
domain that uses an estimation of distribution algorithm
(EDA) [5] to provide

• an overview of a specific layout’s performance
regarding the workers’ pathing,

• visual cues, which parts of the layout are most
promising for optimization, and

• visual feedback for the most suitable areas for re-
location with a heat map visualization.

To evaluate our approach, we implemented a prototypi-
cal system called BlueCollar. We present an application
scenario based on an experimental production line lay-
out provided by a production optimization company to
demonstrate the applicability of our approach.
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2. Related Work
With an increasing degree of digitalization in the

manufacturing domain, data become available for process
monitoring, analysis, and optimization. There are many
areas where visualizations and visual analytics are used
to improve a factory’s overall performance. For example,
to find bottlenecks [6] and anomalies [7] in production
line processes, as well as by gaining general process
insights [8]. Further, interactive visualizations can be
used to optimize work schedules [2]. In the following,
we present previous approaches for layout planning and
visualization support based on optimization and machine
learning algorithms to clarify our approach’s novelty.

2.1. Layout Planning

Many approaches exist that apply optimization rules
and algorithms to find a satisfying layout [9]. Often,
layout optimizations and layout simulations are used to-
gether to improve the outcome of the layout planning
phase [10]. Modern layout planning approaches also
make use of computer-aided design models combined
with visualization to make use of human experts’ do-
main knowledge in the planning process [11] or rely on
automatic approaches [12].

2.2. Visualization Support based on
Optimization and Machine Learning
Algorithms

Recently, deep neural networks become increasingly
popular for classification or recommendation systems,
although their internal mechanisms are often difficult
or impossible to understand [13, 14]. Further, such ap-
proaches need a lot of training data (that may not be
available) and they are unresponsive during the training,
as their intermediate results often cannot be used.

Alternatively, evolutionary algorithms (EA) are popu-
lar to optimize black box functions [15]. They provide
intermediate results and allow experts to manipulate the
results during runtime. EAs are based on the biological
principle of population recombination and their mutation.
The principle of recombination implies that combining
two well-performing population members has a good
chance to yield a better result. In many scenarios, this
approach achieves satisfying results, but it is unsuitable
in case good parameter sets may be unrelated (e.g., in
case of multiple local optima).

Other optimization approaches, such as simulated an-
nealing [16], use physical models to control the search
space used to find a global optimum for a black-box
function. They are easy to understand and provide inter-
mediate results. However, they are heavily reliant on their

starting configuration and they are unable to represent
multiple areas with similar function values.

In this work, we chose to use an estimation of distri-
bution algorithms to provide recommendations. The goal
of EDAs is similar to evolutionary algorithms as they
also iteratively build sample populations and optimize a
cost function of the population members. Unlike evolu-
tionary algorithms, they create a high-dimensional prob-
ability space (dependent on the number of parameters)
to pick new population members. This is easier to un-
derstand compared to the recombination effects used by
evolutionary algorithms. Further, the high-dimensional
probability space can be used to visualize intermediate
results. There are various alternatives to visualize such
high-dimensional data, for example, scatterplot matri-
ces [17], parallel coordinate plots [18], glyphs [19], or
projection techniques [20], which can be presented as
scatter plots or heat maps.

Other layout planning approaches often either show a
simulation of a layout’s performance or provide multiple
possible solutions to optimize a solution [21]. In most
cases, experts are only part of this optimization process as
decision makers to choose between the available results,
after the algorithm completed.

Our approach combines the advantage of EDAs,
which are easy to comprehend and their intermediate
results can be visualized, with visual analytics concepts
that aim to include human experts in an analytics process
through interaction with visualizations. To the best of
our knowledge, there are no visual analytics approaches
that combine EDAs with visualization techniques to pro-
vide interactive visual recommendations to optimize the
planning of factory layouts.

3. Approach
Targeting layout planning experts, our visual analyt-

ics approach supports experts to improve the efficiency
of factory layouts by optimizing the paths workers have
to take to complete a work schedule. In the following, we
first present the requirements and the resulting workflow
of our approach. Afterward, we present the different
components and the underlying estimation of distribution
algorithm (EDA) [5], which our approach uses to provide
optimization recommendations, in detail.

3.1. Requirements & Workflow
We identified three system requirements for interac-

tively optimizing factory layouts regarding the workers’
pathing. The requirements were derived in previous in-
formal expert interviews.
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Estimation of Distribution 
Algorithm (EDA)

Provide current layout

Suggest elements for optimization

Provide layout & selected element 

Suggest potential relocation areas

Layout Inspection Layout Optimization

Select any moveable layout element for optimization investigation

Unselect layout element and restart layout inspection

Figure 1: Our approach comprises two stages that use an estimation of distribution algorithm (EDA) to provide visual
optimization recommendations. The layout inspection provides an overview of the layout and recommends layout
elements that have high potential to improve the layout performance. The layout optimization recommends suitable
areas to relocate specific elements to.

Requirement 1: Current Performance R1

Provide information about the current layout’s per-
formance regarding the taken paths of workers.

Requirement 2: Overview Guidance R2

Present visual feedback, which layout elements can
be optimized and how high their optimization po-
tential is.

Requirement 3: Optimization Guidance R3

Visualize suitable relocation areas for specific lay-
out elements and provide information about the im-
pact of the relocation on the layout’s performance.

Based on these requirements, we developed a visual
analytics approach that is composed of two stages (see
Figure 1). Both stages support experts to decide, how
to continue the optimization through EDA-based recom-
mendations. Initially, planning experts can inspect the
layout and get a first overview about the positions of
the layout elements (e.g., machine tools or tool caches).
At this point, BlueCollar provides information about the
most likely taken paths of workers, the current layout’s
performance regarding the workers’ pathing, and which
elements have the highest optimization potential. Once
experts decide, which element’s position to optimize, the
EDA automatically recommends new layouts. Further,
BlueCollar visualizes suitable areas for the relocation
of the selected layout element through a progressively
rendering heat map visualization. Based on these recom-
mendations, experts can manually modify the layout and
continue the optimization.

3.2. Layout Inspection

To optimize a layout, experts first need to get an
overview of the status quo. BlueCollar provides an
overview of the current layout and enables users to in-
spect the performance either for the entire workforce
or by selecting individual or groups of workers. The
analysis starts with an already existing factory layout
and a planned work schedule (see Figure 2 A ). A work
schedule describes all of the steps needed to complete
the production of certain goods. As our approach targets
the optimization of the workers’ paths, we restrict the
work schedule to tasks that require workers to walk to
other machinery.

Layout Performance Overview. To get an
overview of the current layout’s performance, BlueCollar
presents the current layout as a 2D plan view. Every
layout element is represented by its rectangular bounding
box and an additional icon to represent its function. A
legend provides detailed information about the icons’
meanings (see Figure 2 E ). Further, the most likely
taken paths of the workers (based on the shortest walking
distance, which we calculate using the A* path-finding
algorithm [22]) are indicated through semi-transparent
polylines. It is possible that some paths are taken
multiple times, by either a single worker or multiple
workers. Therefore, the line segments that were used
multiple times are less transparent than segments only
used once. This provides layout planners with an
overview of the current layout’s performance, which
meets requirement R1 .

Data Filter. Layout planners can also view the per-
formance of individual workers or specific groups of
workers, e.g., the group of assemblers or machine oper-
ators. The paths are shown as lines in the layout. They
can be filtered by selecting them individually or based on
their task in the side panel (see Figure 2 B ).
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Figure 2: BlueCollar requires layout planning experts to load a layout and work schedule A and choose which workers’
schedule data B to include in the layout optimization. The factory’s layout C provides a first overview of the current
layout and the taken worker paths. Further, it recommends suitable layout elements for optimization through a color
coding of their border’s color and presents fitting relocation areas as a heat map. The elements’ types are indicated by
icons, which are explained in a legend on the right E . A line chart D shows the progress of the optimization algorithm.

To get a better overview of high traffic zones,
BlueCollar provides a heat map that encodes the worker
density in the layout view. This information can be used
to get first insights about possible current or future bottle-
necks, where workers may collide or have to take detours.
To indicate such potentially problematic zones, the heat
map ranges from being entirely transparent (meaning
no traffic) to blue (much traffic). In contrast to the path
lines, which emphasize the taken paths, the heat map
emphasizes areas with highly frequented crossings.

3.3. Visual Optimization Guidance
BlueCollar guides experts during the optimization

process in two stages: it recommends elements that have
high optimization potential and it suggests better posi-
tions for these elements. In the following, we present the
visual guidance in more detail.

Layout element recommendation. BlueCollar in-
dicates the optimization potential of movable layout ele-
ments, such as machines or tool caches by color coding
their borders. A light green border indicates very small
changes. The greener the border becomes, the higher the
layout element relocation potential is. The possibility

of a worse performance can be discarded, as leaving the
layout element at its current position is always a possibil-
ity and therefore marks the worst case for the optimiza-
tion. To compensate for the non-uniform distribution
of the values, we use a non-linear color saturation map-
ping following the mapping used by Liu et al. [23]. The
optimization potential indication iteratively refines the
optimization potential in the background. Figure 3 shows
an example, where BlueCollar provides the varying op-
timization potential of multiple layout elements. Sec-
tion 3.4–workload distribution to assess multiple layout
elements details how the optimization algorithm handles
the evaluation of multiple layout elements. The layout
element recommendation meets requirement R2 .

Relocation recommendation. Once planners se-
lect a specific layout element for optimization, the el-
ement is highlighted with a light blue background and
the EDA will only optimize the position of the selected
element. To give the experts an overview of the optimiza-
tion’s progress, a line chart (see Figure 2 D ) shows the
best layout scores after each iteration. The x-axis shows
the iteration and the y-axis the cost. If the cost value
decreases, a better relocation position was found.
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Figure 3: BlueCollar provides a visual indication of the
optimization potential for movable components through
the border of the elements. The color ranges from light
green (low potential) to dark green (high potential).

Additionally, BlueCollar visualizes the optimization
progress by mapping already available results onto a
heat map visualization overlay on top of the currently
viewed layout. This results in a progressively updating
heat map, which gives planners an early impression of
possible relocation areas. The heat map’s color scheme
ranges from white (worst performance) to dark blue (best
performance) and uses a min-max normalization of the
available data. Due to the way EDA works, the surround-
ings of well-performing relocation areas are more likely
to be sampled, which additionally emphasizes these re-
gions. Figure 4 shows the suggested relocation areas for
the selected casting station D based on a simplified work
plan. The legend on the right side of Figure 4 shows
the heat map’s color coding. The results show that the
station should be relocated between the conveyor belt A
and the robot station C . As the heat map includes infor-
mation about the relocation areas and their optimization
potential, they meet analysis requirement R3 .

Planners can also relocate layout elements manually
by dragging them inside the currently viewed layout. If
they previously selected the dragged element to get re-
location recommendations, the heat map keeps updating
until they unselect the element. Otherwise, the heat map
is cleared and the EDA is restarted with the currently
dragged layout element as the selected element.

3.4. Optimization with an Estimation of
Distribution Algorithm

The suggestions of suitable layout elements for relo-
cation (see Section 3.3–component recommendation) and
the recommendations for suitable relocation areas (see

D

C

A
B High cost / 

bad location

low cost / 
good location

Figure 4: The worker has to walk in a circle
( A→ B→ C→D→A ). The legend on the right shows
the heat map’s color coding. The heat map indicates
that the selected casting station D should be relocated
between the conveyor belt A and the robot station C .

Section 3.3–relocation recommendation), are based on
an estimation of distribution algorithm. In the following,
we will briefly introduce the goal of EDAs, their general
step-by-step procedure, and a detailed explanation of the
steps in the context of our application scenario.
Goal. Estimation of distribution algorithms are a class
of optimization algorithms and therefore aim to mini-
mize the output of a given black-box function (usually
referred to as cost function) by exploring a (possibly
high-dimensional) input parameter space. The cost func-
tion itself is usually unknown, but it can be evaluated for
any given input parameter set (whereas the parameters’
ranges can be defined beforehand). To find an optimal so-
lution, the algorithm builds an n-dimensional probability
space, where n is the number of parameters. The proba-
bility space defines the likeliness that a certain parameter
set is picked for an evaluation.
General step-by-step procedure. Figure 5 shows the
general steps of an EDA. It initializes with a uniform
probability distribution and then iteratively picks param-
eter sets for the black-box function based on the proba-
bility space. The picked sets are evaluated and the proba-
bility space updates depending on the evaluation results.

Generally, there are options for the probability space
update: i) rebuild the probability space depending on all
previously evaluated input parameter sets (requires more
memory); ii) use only the evaluated input parameter sets
of the last iteration (requires more computing power, as
larger populations need to be picked). We decided on
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2) Pick p parameter sets. The likeliness for picking a parameter 
set is based on the high-dimensional probability space

3) Evaluate the fitness (or cost) for each parameter set.

4) Take the best x% of the parameter sets and update the 
probability space according to the sets  fitness values

5) Is the termination criterion (e.g., a number of iterations) met?

yes

no

1) (Initialization) Create a uniform n-dimensional probability 
space, where n is the number of input parameters

Figure 5: Generally, an EDA comprises five steps [5].
After initializing its probability space uniformly, it it-
eratively picks parameter sets based on the probability
space. Then, the probability space is iteratively updated
by evaluating the picked parameter sets. This process
repeats until a predefined termination criterion is met.

the first option, as we use the evaluated input parameter
sets for our heat map visualization. Although the proba-
bility space may converge faster in the latter option, the
probability space may change considerably in each itera-
tion step, resulting in quickly changing heat maps, which
increases the visualization’s cognitive load.

Modeling the dependency of variables. Simple EDA
implementations such as the univariate marginal distribu-
tion algorithm (UMDA) [24] assume the independence
of all input parameters. However, in many scenarios, in-
cluding ours, the parameters depend on each other and an
independence assumption will produce incorrect results.
To represent such dependencies, a joint distribution needs
to be modeled, e.g., as a Bayesian network [25].

Layout construction and its cost calculation. We use
the combined length of all paths that the workers have
to take to complete a work plan as the cost function to
measure a layout’s performance. To efficiently calculate
the workers’ paths, we first map the layout to a graph
representation. We assume that each layout element has
a rectangular bounding box. Each element comprises
four corner vertices. In an initialization step, all vertices
are connected with each other (which results in a com-
plete graph). After that, edges that intersect any layout
element are removed. To calculate a workers path, we
split the corresponding work plan into individual tasks.
Then, we calculate the optimal path to solve each task
that requires the worker to change the location using
the A* pathfinding algorithm [22]. Afterward, we re-
construct the worker’s total path by concatenating all
task-based paths. At last, the path lengths of each worker
are summed up.

Optimization of the cost calculation’s runtime. As
generating the layout graph is the most expensive opera-
tion, we optimized the relocation operation to reuse the
original graph and perform as few graph changes as pos-
sible. To do this, we use the fact that our implementation
of EDA only optimizes the position of one layout element
at a time. We assume that the changing layout element
is known in advance and initialize the complete graph
without this element. Then, the element can be added at
an arbitrary position. We use a quadtree to check if the
newly added layout element collides with any other lay-
out elements or edges. In case the layout element collides
with another element, we assume the layout is invalid and
increase the layout’s cost value accordingly. To prevent
the position layout from disproportionally decreasing the
picking probability of surrounding configurations (see
updating the probability model below), we set the cost
value of an invalid layout to a plausible value that would
indicate a very inefficient layout: costmax = s · llayout,
where s is the total number of path segments and llayout
is the width of the layout.

If the layout element collides with connections, these
are temporarily removed from the graph. Afterward, new
connections to the other elements are added analogous
to the initialization step. Instead, the connection is im-
plicitly replaced by two edges: one from the starting
vertex to the inserted element and one from the inserted
element to the ending vertex. For further relocations of
the element, the only needed adaption is to remove the
previously inserted layout element and its edges and add
the deleted edges again before adding the layout element
elsewhere. This skips the initialization step, which is the
most expensive part of the procedure.

To improve the pathfinding’s scalability regarding the
number of workers, we added a lookup table to the A*
algorithm that stores all previously calculated movement
tasks. This reduces the calculation time, as each path
needs to be calculated only once.
Updating the probability model. The step of updat-
ing the probability model to choose the next iteration’s
parameter sets is dependent on the assumptions of the
parameters’ relations. In addition to their dependency,
we also assume that the evaluated parameter sets’ cost
is not specific for its own configuration, but it can also
be assumed that the neighboring cells have similar val-
ues. Consequentially, we do not only add the cost for the
recently evaluated parameter configuration, but we also
approximate the cost for its neighboring cells. By doing
so, the likeliness for a cell to be picked is influenced by
the already evaluated neighboring cells. We modeled the
influence of neighboring cells as a two-dimensional trian-
gular function, where the center has the highest influence
and the values are halved for every step towards the outer
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Figure 6: Exemplary one-dimensional weighting stamp
that influences all neighbors with distance ≤ 2.

corner of the neighborhood (see Figure 6 for an example
of its 1D counterpart). The size of the stamp depends on
the dataset. In the dataset used in Section 4, we use a
100x100 cell grid for the heat map and adapted the stamp
size to cover five cells in every direction.

Without further modifications, the algorithm is likely
to get stuck in local minima, as the initially picked pa-
rameter sets strongly influence the probability space’s
development. To prevent this, we reserve a base proba-
bility of 10% for all elements to be picked (e.g., if there
are four elements, each of the elements will have a base
probability of 10%

4 = 2.5% to be picked).
Overall runtime complexity. The runtime of each it-
eration depends on the cost to pick and evaluate the pop-
ulation members and the cost to update the probability
space. In our EDA implementation, the runtime cost is
p·O(d2 + runtimeeval)︸ ︷︷ ︸

picking

+ O(k2 + k)︸ ︷︷ ︸
picking update

, where d is the

size of the grid’s dimensions and k is the size of the ker-
nel. The cost of picking new elements mainly depends on
the runtime complexity of the evaluation function, which
depends on the number of necessary node expansions in
A*. The cost of updating the probability space depends
in our case on the number of nodes that need to be up-
dated. In the worst case, none of the picked population
members were evaluated before and therefore, every el-
ement’s neighborhood (which is k2) must be updated,
leading to the runtime complexity given above.
Workload distribution to assess multiple layout ele-
ments. Until this point, only the position optimization
of a previously known layout element was considered.
However, the optimization potential recommendation im-
plies that various layout elements were evaluated. To
do this, all movable layout elements are first added to a
queue. Then, a layout element is taken from the queue
and one pass of the estimation of distribution algorithm
is calculated with that element. The best layout result’s
performance is used as the optimization potential value.
Afterward, all calculated layouts and their performance
values are stored for that layout element and the element
is added to the queue again. If the layout element that
is taken from the queue already contains calculated po-
sitions, these are used to initialize the probability space.
The main challenge in this step is to balance the calcula-
tion time assigned to each layout element to calculate its
optimization potential against the evaluation of as many
layout elements in as little time as possible. This means
that more time per layout element results in a better indi-

A B

C

Figure 7: The use case’s layout can be subdivided into
three areas: The green area A comprises assembly sta-
tions and multiple shelves that are connected to a lift. The
orange area B contains mainly robot stations. The purple
area C contains a conveyor belt, which is connected to
multiple assembly stations and a high rack storage.

cation quality of individual layout elements, while less
time means that more layout elements can provide an
indication, but with a lower indication quality. Therefore,
the algorithm only estimates a limited amount of new
locations for each layout element. From our experience,
it seems to be a good trade-off to run one EDA iteration
that generates

√
n, with n being the number of grid cells,

relocation positions for the layout element and then put
the layout back to the end of the queue.

4. Application Scenario

A software engineering company that offers planning
and production simulation software provided us with the
layout used in the following application scenario. The
production layout was planned for a prototypical pro-
duction line and focuses on manually operated assembly
stations between which the workers have to change. The
layout is 35.23 meters wide and 31.5 meters long. We
added plausible work schedules that incorporate different
tasks in several areas of the factory. It can be subdi-
vided into three areas (see Figure 7). The green area A
comprises several shelves that are refilled and assembly
stations that produce parts for a robot station. Further,
one station gets supplies from a separate shelf. Area B ,
highlighted in orange, contains three robot stations. The
bottom-most station’s goods are continuously delivered
to two lifts. The purple area C is composed of two con-
veyor belts that transport goods from an (unmodeled)
external supplier. The workers at the assembly stations
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Figure 8: At the beginning, only optimization potentials for the shelves are available. Soon, the potential of the assembly
stations becomes available as well, but the shelf at below the lift stays the station with the highest optimization potential.

along the conveyor belts take the goods, process them,
and put them back on the belt. At last, the parts are taken
off the belt and get stored in a high rack storage area.
Exploration of optimization potential. Layout plan-
ning experts would start an analysis with the layout view
as presented in Figure 7 (except for the highlighting). It
seems clear that the planned layout can be optimized, as
there are many long paths to a limited number of stations.
One of the areas that seems most viable for optimization
is area A . The positions of the lift and the robot are
fixed, but the shelves at the top, the assembly stations,
and the shelf below the lift can be relocated. However,
it is unclear, which layout element has the highest opti-
mization potential. Therefore, they base their decision
on the optimization suggestion that BlueCollar continu-
ously extends and improves (see Figure 8). The system
recommends optimizing the shelf below the lift. With
this insight, they manually relocate the shelf towards the
block of assembly stations (see Figure 9 A ).
Optimization of the layout. To further optimize the
shelf’s position, the experts decide to select it and opti-
mize its position with the support of BlueCollar’s relo-
cation heat map. As the analysis progresses, it becomes
apparent that the most suitable position for relocation is
in the gap between the two groups of assembly stations
(see Figure 9 B – D ). Although the best position is plau-
sible, they decide to leave it below the assembly station.
Based on total walking distance, this position may be
worse (650m vs. 640m), but their placement prevents
crowding of workers in a small area.

After the shelf’s relocation, the planners go back to
the element recommendation mode to confirm that the
shelf at the top still has the same optimization potential
as before. Once done, they select the shelf to get detailed
relocation recommendations (see Figure 2). BlueCollar
recommends to place the shelf directly above the lift
(reducing the distance to 623m), but the experts opt to
place it to the left of the top shelves to keep obstructions
at a minimum, still reducing the path length to 632m.

5. Discussion and Future Work
Our approach aims to support layout planning experts

in the production domain to improve layouts. In addition,

A

B

C

D

Figure 9: The longer the optimization continues, the
more apparent it becomes that the most ideal relocation
area is between the two groups of assembly stations.

once a layout was deployed, the approach can be used by
technicians if they want to propose layout improvements,
as they can use the visualization to verify or falsify the
effectiveness of their proposed optimization. Further,
this approach could also be applied to other planning
fields such as urban planning, traffic concepts for fairs,
and many more. In the following, we will discuss our
approach regarding performance, visual scalability, its
limitations, as well as open challenges.

Our EDA implementation converges quickly towards
good results but has difficulties to find the most optimal
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result (due to its probabilistic nature). Therefore, we
measured, how many iterations our EDA implementation
needs to find one of the ten best possible results. For this,
we used the simple layout presented in Section 3.3 and
the complete plan used in Section 4. The used population
size per iteration was 100 and we measured the needed
iterations 100 times per layout. In the following, we
will give the evaluation results with an annotation of
∅(average) σ(standard deviation). For the simple
plan, the EDA needed 5.18 3.04 iterations to find a top
10 value. For the complex plan, it needed 6.12 6.48
iterations for a top 10 value. We benchmarked the values
against a random sampling, which resulted in 12.07
10.40 iterations for a top 10 pick. Overall, the EDA
does not only find suitable values in fewer iterations than
random sampling, but it also guides planners quicker
towards areas of interest, as areas that perform better
have a higher chance of being evaluated and therefore
being highlighted.

Currently, our approach only supports relocation rec-
ommendations for one layout element at a time for a
comparably small factory layout. We discretized the
layout as a 100x100 cell grid for the heat map and the
optimization algorithm. For our layout, this corresponds
to cells of approximately 0.3 m2. A larger layout with
the same cell size results in a bigger grid, which affects
the probability space modeled by EDA. First, this means
that more cells need to be evaluated to provide a heat
map that shows trends of good relocation areas. Second,
the memory needed to store the probability space (or the
already calculated fitness values) grows exponentially.
This may pose the even more severe problem and the
optimization algorithm may need to be adapted to only
use the previous sampling generation as explained in
Section 3.3–general step-by-step procedure.

The scalability regarding the number of layout ele-
ments to optimize is more challenging. It may be nec-
essary to move groups of layout elements to achieve an
improvement of the layout’s overall performance. The
optimization of the first shelf in the application scenario
(Section 4) is a good example for this, as the optimiza-
tion will always try to put the shelf beside the top right
shelf of the 2x2 shelf block, as workers need to go back
and forth between them, no matter where this shelf is lo-
cated. In such cases, a simple color coding as it currently
exists is insufficient, as it would be difficult to visually
encode the layout elements’ dependencies without ad-
ditional visual aids, which may result in visual clutter.
One possible solution for this issue is the introduction of
additional views that propose groups of layout elements
that have a high symbiotic potential. These views can be
more abstract and interact with the layout view through a
brushing & linking approach. We plan to investigate the

potential benefit of such an extension in the future. The
visualization of the layout optimization is also limited
regarding its scalability towards multiple elements. Heat
maps are designed to visualize the (possibly weighted)
distribution of independent data points and are unfit to
visualize relocation areas of position tuples.

The simulation view is mostly independent of the
number of simulated workers or an extension of their
work schedule, as it mostly visualizes aggregated data.
At the same time, the calculation times of the layout’s
performance are heavily dependent on the speed of the
path calculation, which is impacted by the number of
workers and their work schedule. However, there are
many approaches to increase the scalability issues of A*,
e.g., by restricting its memory consumption [26] or by
adaption to changing layouts [27].

As we opted to store all evaluated grid cells, the com-
pletion time for one EDA iteration increases with every
iteration. The main reason for this effect is that we ma-
nipulate the neighborhood of the newly evaluated cells,
which need to take all already calculated cells in their
own neighborhood into account. Despite this effect, our
approach is guaranteed to find the global optimal solution
eventually and also stabilizes the heat map visualization.
Further, the optimization algorithm and its heat map rep-
resentation already provided first indications about suit-
able areas within the first five iterations. More iterations
slightly improve the results, but often the affected areas
are already discoverable before they are evaluated. How-
ever, we think that this finding is dependent on the used
layout’s size and overall complexity and that this topic
needs further investigation. Additionally, we plan to in-
vestigate the trade-off between our approach that stores
all results and the iterative approach that discards all re-
sults except for the last generation’s. The latter approach
may cause issues with the users’ mental maps due to the
constantly evolving and possibly considerably changing
set of evaluated grid cells (which affect the presented
heat map).

Currently, an expert’s only possibility to interact with
the EDA is by manually changing the layout and there-
fore forcing a reset under possibly better conditions. We
plan to allow experts to directly influence the probability
space interactively to guide the optimization algorithm at
the beginning of the process. This may lead to a faster
convergence of good results. Such a manipulation could
be realized by brushing the layout to indicate interest-
ing areas. However, such an interaction faces similar
problems as the probability space’s visualization, as the
visualization and interaction of high-dimensional data
pose a separate challenge.

Finally, we intend to evaluate the applicability of
our approach with industry experts. Especially compa-
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nies that produce many product variants in small batch
sizes may benefit from tools that support them in quickly
adapting their factory layout to their current needs. An
interesting aspect may be the trade-off between the im-
proved performance regarding the layouts efficiency and
a possible negative impact if workers need to adapt to the
resulting changes in their everyday work.

6. Conclusion

In this paper, we presented BlueCollar, a visual an-
alytics approach that supports factory layout planning
experts to optimize layouts regarding the paths taken by
workers on the shop floor. An estimation of distribution
algorithm continuously updates a probability space that is
used to recommend layout elements with high optimiza-
tion potential. Further, BlueCollar provides suitable areas
for the relocation of layout elements selected by experts
through a heat map visualization. The experts can inter-
actively manipulate the layout and iteratively improve
the layout’s performance by doing so. We presented an
application scenario to demonstrate the applicability of
our approach.
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