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Abstract

Interactive visual analysis of documents relies criti-
cally on the ability of machines to process and analyze
texts. Important techniques for text processing include
text summarization, classification, or translation. Many
of these approaches are based on part-of-speech tagging,
a core natural language processing technique. Part-of-
speech taggers are typically trained on collections of
modern newspaper, magazine, or journal articles. They
are known to have high accuracy and robustness when
applied to contemporary newspaper style texts. However,
the performance of these taggers deteriorates quickly
when applying them to more domain specific writings,
such as older or even historical documents. Large train-
ing sets tend to be scarce for these types of texts due to the
limited availability of source material and costly digitiza-
tion and annotation procedures. In this paper, we present
an interactive visualization approach that facilitates an-
alysts in determining part-of-speech tagging errors by
comparing several standard part-of-speech tagger results
graphically. It allows users to explore, compare, evaluate,
and adapt the results through interactive feedback in or-
der to obtain a new model, which can then be applied to
similar types of texts. A use case shows successful appli-
cations of the approach and demonstrates its benefits and
limitations. In addition, we provide insights generated
through expert feedback and discuss the effectiveness of
our approach.

1. Introduction

Natural language processing (NLP) methods that help
to extract structure from textual representations of infor-
mation are essential building blocks of interactive vi-
sual approaches to text data. Appropriate methods, for
example, to summarize text [1], extract semantic infor-
mation [2], find and categorize named entities [3], or
uncover hidden structures in discourse [4] play a critical
role in creating useful visual representations of textual
information sources. Text is typically processed along a
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pipeline of different NLP methods, with each step extract-
ing additional information from the target documents.

One of the most fundamental early stages of an NLP
pipeline is part-of-speech (POS) tagging. Many anal-
ysis methods, such as text to speech synthesis or text
translation, depend on it [S]. POS tagging automatically
annotates lexical categories for word tokens in texts. It
takes a sentence of tokens as input and assigns a unique
POS tag to each token, such as a noun, verb, or adjec-
tive. Typically, these taggers are based on rule-based,
statistical or machine learning approaches, and they are
trained and optimized on contemporary types of texts,
such as newspapers or journal article texts. To train and
evaluate a POS tagger, an extensive corpus with human
labeled annotation as a reference (called a gold standard)
is needed. Such annotated gold standard corpora are most
often not available for these kinds of text. Consequently,
standard POS taggers do not achieve such good results
on particular types of texts, such as historical documents
or fictional novels. To create a gold standard corpus is
a laborious, time-consuming, and challenging process
because NLP techniques usually need many thousand an-
notated documents to work well [6]. In such a situation,
it can be more useful to let analysts correct and adapt
available taggers to obtain a new model, which can then
be applied to similar types of texts [7].

This paper presents an interactive visual approach that
supports analysts to adapt a POS tagger model for spe-
cific types of texts, in which common out of the box POS
taggers do not achieve a satisfactory result. It provides an
overview of several POS taggers results and highlights
inconsistencies instances, which are good candidates for
manual inspection. Therefore, the approach enables an-
alysts to explore, compare, evaluate, and correct POS
tags of different taggers. That way, we support the man-
ual analysis process, the examination of hypotheses, and
discovery of insights about the out of the box taggers,
and the adaption of a POS tagger model. In addition,
we offer a simple automatic algorithm to support manual
correction and error analysis. The algorithm is based on a
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majority voting and user feedback and attempts to adapt
incorrect instances.

The main contributions of this work are: 1) An
interactive visualization approach, which provides an
overview of different POS tagger results and identifies
inconsistencies between them. 2) The approach enables
users to visually explore, compare, and correct POS tag
results to achieve a POS tagger model for a specific type
of text, which can then be applied to a similar type of text.
3) A usage scenario shows successful applications of the
approach and demonstrate its benefits and limitations. In
addition, we present and discuss insights of an expert
study with one computational linguistics researcher that
works in the fields of digital humanities and POS tagging.

2. Related Work

Our approach relates to previous work under two dif-
ferent aspects. Firstly, we focus on graph visualizations
which represent the commonalities and differences of
a graph. Secondly, we summarize visual text analytics
approaches that incorporate advanced analysis methods
which can be applied and adapted by users through inter-
active feedback.

2.1. Variant Graphs

During the last years, several graph approaches have
been developed to visualize the course, similarities,
and differences of a graph. For example, Wattenberg
and Viégas proposed the “Word Tree” visualization [8],
which represent a graphical version of the traditional
“keyword-in-context” technique. It uses a graph-based vi-
sualization and facilitates the querying and exploration of
different word contexts. Jinicke and Wrisley presented
an interactive visual approach for the alignment of me-
dieval text versions [9]. It offers interactive views for
different text hierarchy levels in order to support the in-
vestigation of commonalities and differences. Collins et
al. [10] introduced a visualization approach that visual-
izes the uncertainty in lattice graphs. It uses transparency,
color, and size to reveal the lattice structure and sup-
ports users in making better-informed decisions about
statistically derived results.

In 2009, Schmidt et al. [11] introduced the variant
graph visualization that represent multiple versions of a
digital text where nodes represent words and edges differ-
ences among various editions of the text. A variant graph
is an acyclic graph that composes of vertices and directed
edges and does not contain directed cycles. There are
many more approaches that deal with the analysis and
the visual comparison of different text editions. For ex-
ample, Dekker presented CollateX [12], which enables
users to analyze and work with electronic text editions in

the browser. The web-based approach Stemmaweb [13]
extends CollateX and enables users to annotate, split
and merge vertices. TRAViz [14] uses a variant graph
to show variations between different editions of Gene-
sis and focuses on the improvement of the visual graph
representation. It uses color, word-sizing, and a linear
alignment as well as it removes unnecessary visual el-
ements to improve the readability of the variant graph.
We use a very similar representation to depict the dif-
ferent POS tagger results graphically. However, in our
approach nodes represent POS tags and edges different
tagger results.

2.2. Visualization and Computational
Linguistics

In recent years, more and more visual analytics ap-
proaches that incorporate NLP methods have been sug-
gested. For example, some approaches automatically
extract named entities to support the analysis and ex-
ploration of them [3, 15]. Wanner et al. [2] and Liu et
al. [16] present visual analytic approaches that use senti-
ment analysis methods to reveal the emotional content of
large document sets. In addition, there are systems which
use NLP methods to extract prominent topics and enable
users to explore them visually [17, 18]. El-Assady et
al. [19] presented a visual analytics approach for detect-
ing and analyzing the conversational structure of discus-
sions. The approach uses machine learning techniques,
user-defined queries, and rule-based heuristics to recon-
struct threads, untangle conversations, and to understand
model decisions better. Strobelt et al. proposed Seq2Seq-
Vis [20], which enables users to explore and analyze
a trained sequence-to-sequence model of a translation
process. It offers different views that facilitate users in
understanding which patterns have been learned and in
detecting model errors.

There are also a number of approaches that enable
users to adapt NLP methods to achieve a higher perfor-
mance of the method. For example, Heimerl et al. [21]
present an interactive approach that lets analysts train a
support vector machine for text document classification
based on a visual explanation. It represents the confi-
dence value for each document by the horizontal position
in a scatterplot visualization and thus enables users to
judge the quality of the classifier in iterative feedback
loops. Brown et al. [22] proposed a technique that allows
users to develop similarity functions for machine learn-
ing models interactively. VarifocalReader [7] offers an
active learning algorithm to classify quotes between texts
into different categories. It uses color saturation to depict
the accuracy of the algorithm results to indicate instances
that are good candidates for manual inspection. Users
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can correct or confirm the classifications and trigger a
retraining step to improve the classifier results.

Eckart et al. [23] presented an approach for annotat-
ing a large collection of non-standard multi-modal data.
It also uses information from multiple approaches, in-
cluding manual and automatic annotations, and different
strategies to set a winning tag. However, this approach
offers no visual interface to analyze the results. Dick-
inson and Meurers [24] introduced an algorithm to de-
tect POS tags errors in gold-standard annotations. They
present three error detection methods, which are related
to the common inter-annotator agreement evaluation strat-
egy [25]. Thiele et al. [26] applied a similar technique to
detect POS errors and developed a graphical interface that
enables users to find and evaluate annotation errors. How-
ever, the approach only provides table views and thus
limited possibilities to explore the annotation errors in
detail. Closely related to our approach are DAViewer [4]
and ICARUS [27]. DAViewer is an interactive visualiza-
tion system that provides valuable support for exploring,
evaluating, and annotating the results of discourse parsers.
It offers, multiple coordinated views, including node-link
graphs, or icicle dendrograms, which allow users to com-
pare the results of the different parsers. However, the
parser results are visualized in small multiples next to
each other, and thus it is difficult to compare and analyze
the differences. In addition, DAViewer has been primar-
ily designed for analyzing discourse parsers, whereas
we are interested in adapting a POS tagger model for a
specific type of text. ICARUS is a visualization system
that enables users to query dependency treebanks in order
to analyze POS tag results. It provides frequency lists,
tables, and dependency graphs that allow users to inspect
the query results in a quantitatively and qualitatively way.
However, ICARUS serves more as a search framework
and does not provide an overview of uncertain instances,
the possibility to compare multiple contexts with each
other, or to adjust incorrect POS tags.

3. Visual Analysis

Our approach supports users in determining POS tag-
ging errors by comparing multiple POS tagger results
visually. It is based on multiple coordinated views which
allow users to inspect details on different abstraction lev-
els. In the following, we first focus on the requirement
analysis and afterwards we explain the applied text in
preprocessing steps. Last, we introduce and explain the
different linked views in detail.

3.1. Requirement Analysis

Our approach was developed in the context of a dig-
ital humanities project, which comprises visualization,

humanities, and computational linguistics scholars. From
our regular group meetings and discussions, we learned
that there is a need to improve the performance of POS
taggers for older and historical texts because the per-
formance of out-of-the-box taggers is unsatisfactory for
further NLP processing steps. To improve the perfor-
mance of these taggers, electronically available training
corpora are needed. However, training sets from ear-
lier time periods are often sparse [7]. One possibility
could be to annotate a large corpus as training data, but
the annotation of a large amount of text is a very time-
consuming and complex task. Therefore, we developed
the idea to implement a visual approach that enables
users to adapt POS tagging model for specific types of
text through interactive feedback. In cooperation with
our computational linguistic experts, we decided to use
multiple POS taggers as a basis for our implementation.
The applied POS taggers perform state-of-the-art NLP
approaches, but use different techniques, and thus they
have their benefits and limitations in different contexts.
All of the used taggers have been trained on modern texts.
Therefore, we assume that they have a high agreement
on trained text structures, however, disagree in uncertain
instances. Uncertain instances can be, for example, un-
known words, words with multiple lexical tags, or text
structures on which the POS taggers were not trained.
These uncertain instances can then be highlighted to pro-
vide a good starting point for analysis. Thus, users can
easily find, analyze, and correct incorrect assigned POS
tags faster. In addition, computational linguistics schol-
ars can get a better understanding of the shortcomings
and strengths of existing parsers in different text contexts
during the analysis.

With the lack of such a visualization system, we de-
fined five requirements after several project meetings:
(R1) The approach should provide an overview of the
uncertain instances, which serve as starting points for
a deeper analysis. (R2) The possibility to inspect these
uncertain instances in detail. Therefore, it is necessary
to represent the text and the assigned POS tags of the
different taggers in a comprehensible way. (R3) A view
that support a comparative analysis of multiple selected
instances. (R4) The visualization should also support
the possibility to analyze all text contexts of a particular
token with each other. Thus, a compact view is required,
which provides filter options that facilitate the explo-
ration and analysis of the different contexts. (RS) Finally,
the approach should support an algorithm that provides
suggestions for further corrections based on the feedback
of the users. In addition, a history view is needed that
tracks these changes.
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Figure 1: The linguistic pipeline consists of the process-
ing steps: tokenization, sentence splitting, and different
standard POS tagging approaches.
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3.2. Text Processing

After users load a text document into the system, it
is processed in a linguistic pipeline. Figure 1 depicts
the linguistic pipeline, which consists of the processing
steps: tokenization, sentence splitting, and different POS
tagging approaches. For tokenization and sentence split-
ting, we use the Stanford CoreNLP toolkit as the general
linguistic basis for the four different taggers. Afterwards,
we apply the ANNIE!, TreeTagger?, OpenNLP?, and
Stanford CoreNLP* POS taggers. At the moment, the
current implementation only supports the preprocessing
of English texts. However, it can be easily extended to
other languages. The POS taggers use different POS
tagsets, and thus we use the Penn Treebank tagset [28]
and unify the POS tags. For example, we simplify the
TreeTagger POS tagset by unifying the verbs forms VD
(verb do, base form) and VH (verb have, base form) to
VB (Verb, base form).

Based on the POS-tagger results, we use the Query-
by-Committee algorithm by Seung et al. [29] and the
vote entropy [30] to identify possible uncertain instances.
The Query-by-Committee function is based on different
trained classifiers and picks the assignments where the
predictions of the classifiers disagree [31]. Subsequently,
we use the vote entropy [32] that takes all classifiers
into account to measure the level of disagreement. That
way, we can determine instances as particularly uncertain
where POS taggers have a high disagreement. Addi-
tionally, we can define a winning tag (majority winner)
where POS taggers have the highest agreement. If there
is no majority winner, we randomly assign one of the
highest assigned POS tag as winning tag. An example
assignment of a text passage of the work “The Tragedy
of Macbeth” by William Shakespeare [33] is depicted in
Figure 2. It depicts the assigned POS tags of the four
taggers and the entropy values of the tokens. We as-

https://gate.ac.uk/ie/annie.html

2http://www.cis.uni-muenchen.de/~schmid/
tools/TreeTagger/

3http://opennlp.apache.org

4http://nlp.stanford.edu/software/corenlp.
shtml

PRP$ | | NNP | I |
NP | [~ ver B

PP$ NNPS
Sequence of tokens and their entropy values

| Your I4441 Noble I4441Fﬂendsl4441 do I4441 lack *441 you |

Averaged entropy of whole sequence:
0,155

Figure 2: A schematic representation of a text passage
from the work “The Tragedy of Macbeth” by William
Shakespeare that illustrate the different POS tagger re-
sults and the entropy values of the tokens, as well as the
entropy of the whole text passage.

sign a unique color to each of the POS taggers (ANNIE
(orange), OpenNlp (dark green), Stanford (purple), and
TreeTagger (light green)) and the winning tag (violet).
We use a predefined color scheme consisting of five dis-
tinct colors using the ColorBrewer 2.0°. For the term
“lack”, we get the entropy value of 0.45, because we have
three different assigned POS tags: two times NN (win-
ning tag), VB, and NNS. In contrast to this, we get an
entropy value of zero if all classifiers agree such as for
the terms “Noble” and “you”. In addition, we calculate
the entropy of the whole text passage for subsequent filter
operations.

3.3. Visual Approach

Figure 3 depicts the main workspace of our visual
approach after loading an exemplary literature document.
The approach consists of a graph, graph compare, graph
context, text, table, and a history view. The six linked
views provide different perspectives and possibilities to
investigate the POS tagger results.

Text view: The loaded document is represented in
the text view and provides a starting point for an analy-
sis as depicted in Figure 3 @ (R1). This view supports
different highlights, such as user selections, search re-
sults, or the highlighting of uncertain instances. We show
the highlights in the text and next to the scrollbar with
assigned fixed colors. For the representation of the high-
lights next to the scrollbar, we use a quadratic mapping

Shttp://colorbrewer2.org
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Figure 3: Our approach consists of @ the text, (b) the graph, © the graph comparison, (d) the table, (© the history, and

(® the graph context view.

similar to the approach presented by John et al. [34].
Thus, the context closer to the currently selected text
passage has a higher resolution of detail compared to
areas further away. This way, we prevent overlaps of
highlighted markers in the focused area, and thus users
can better navigate to specific text instances. To find
uncertain instances, users can highlight tokens with a
high entropy value. A sentence of interest can be further
analyzed in the graph view by clicking on a sentence. By
double-clicking on a token, users can examine all text
contexts of the token in the graph context view. Addi-
tionally, the selected sentence or token is highlighted in
the table view. Furthermore, users can search for terms
and navigate through the results using the forward and
backward arrow.

Table view: Another possibility for a starting point,
is the table view as depicted in Figure 3 (d) (R1). This
view is similar to the text view and shows all tokens of
the loaded document. Each row of the table represents
a token and includes a unique id, the assigned POS tags,
the entropy value, the given user feedback with a weight-
ing (if available), and the current winning tag. To indicate
uncertain instances, we assign each row a color using a
color gradient from white to blue. White colors indicate
instances where POS taggers agree with each other and
blue colors instances where the taggers have a high dis-
agreement. By clicking on a row, the selected token is
focused on the graph context view and the corresponding
sentence is shown in the graph view. Furthermore, users

can set or correct a winning tag manually by double-click
on a feedback field. Users have to choose the correct
POS tag in a list and weight their decision. Based on this
feedback, the integrated algorithm tries to correct similar
instances (see Section 3.4).

Graph view: The graph view represents a selected
sentence of the text and allows users to inspect the re-
sults of the different POS taggers in detail as depicted in
Figure 3 (b) (R2). The nodes of the graph represent the
assigned POS tags and above we show the corresponding
tokens. The colored edges represent the different POS
tagger results and the currently winning tag. If all POS
taggers match, we bundle the edges and draw a gray line
to reduce visual clutter. Otherwise, we arrange the dif-
ferently assigned POS tags vertically in the graph. This
way, users can easily identify uncertain instances. To find
the best arrangement of the nodes, we apply the simple
Bubble Sort algorithm to minimize the crossings in the
graph [35]. In case users find an incorrectly assigned
winning tag, they can right-click on a tag and select a
POS tag as well as weight their decision (Figure 6 @).
By clicking on the plus button, the selected sentence
is added to the graph compare view. Additionally, all
implemented graph views support interactive features,
such as panning, zooming, or re-arranging to facilitate
the analysis of the users.

Graph compare view: The graph compare view pro-
vides the same interaction possibilities and representa-
tions as for the graph view. This view enables users to
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compare an arbitrary number of sentences on top of each
other as depicted in Figure 3 (©. Users can freely change
the order of selected sentences using a drag-and-drop in-
teraction. That way, we facilitate a flexible comparative
analysis of selected instances (R3).

Graph context view: The graph context view is com-
plemented with the graph compare view (Figure 6 (6))
and enables users to analyze a particular token (R4). The
idea of this view is to represent all text contexts of a
selected token in a compact graph representation as de-
picted in Figure 3 (f). It uses the same representation as
the other graph views, however, merges all occurrences
of a selected token in a single graph. Figure 4 depicts a
schematic representation of a graph context view with
three different POS tagger results. It represents the con-
text of two sentences from the novel “Moby Dick” by
Herman Melville [36] with the selected token “left”. The
POS tags of the selected token are placed in the center
of the graph and highlighted with a thicker frame. In
the default configuration, all sentences that contain the
selected token are shown in the graph. If the users are
not interested in the whole sentences, they can define
the number of tokens that are shown before and after the
focused token. By clicking on a tag, the corresponding
text contexts with the assigned tags of the different POS
taggers are shown in the upper text area. Users can select
the different text contexts to add and further analyze them
in the graph compare view. By hovering over a tag, we
display the underlying tokens in a list next to the tag as
depicted in Figure 3 (f). Again, if users find an incorrect
winning tag, they can click on one of the POS tags to
correct it using a context menu.

Furthermore, we offer filter possibilities that support
the exploration and analysis of the text contexts. For
example, users can hover over a tag to gray out not con-
nected nodes, edges, and parts where all taggers match
as depicted in Figure 3 (f). By double-clicking on a tag,
all connected lines and tags are faded out. In addition,
we provide an entropy value filter, where users can set
an entropy value range between zero and one to filter
out text passages that do not match this range. Thus, we
enable users to focus on particular text contexts. Addi-
tionally, users can select and deselect the applied POS
taggers. After users have changed the selection of the
POS taggers, we recalculate the entropy values, and the
graph is dynamically adapted.

History view: The history view (Figure 3 (©) pro-
vides an overview of the changed winning tags (RS).
Users can correct POS tags in the different graph views
or the table view and based on this feedback a simple
algorithm tries to correct similar instances automatically.
This view uses an indented tree layout to represent and
track these changes. Each row represents a token where a

Right and left, the streets take you waterward. It flew from right to left, and back again, almost in one
ticking of a watch, and every instant seemed on the

point of snapping into splinters.

Figure 4: A Schematic representation of the graph con-
text view with three different POS tagger results. It rep-
resents two sentences from the novel “Moby Dick” by
Herman Melville with the selected token “left”.

winning tag was changed. By clicking on a token, the dif-
ferent sentences with a corresponding list that represent
the history of the winning tags are shown. Because tags
can be changed several times, we depict the POS tags
in chronological order. Manually corrected tags are rep-
resented with a red and automatically with a blue color.
By double-clicking on a context, the sentence is loaded
in the graph view and the selected token is focused in
the context graph and table view. This way, users can
easily find, inspect, and confirm or correct automatically
assigned POS tags.

3.4. Algorithm

To support the error analysis and suggestions for man-
ual corrections, we provide a simple algorithm that auto-
matically tries to correct incorrect assigned winning tags
(RS). The algorithm is optionally and can be disabled at
any time by the user. It is based on the majority voting
of the different POS taggers and the user feedback. After
users correct a falsely assigned winning tag, they have to
weight their decision. Users can choose between a weak
(2,5), middle (3,5), and high weighting (5,5) or they can
set a particular POS tag to all occurrences of the selected
token. If users are unsure or suppose that token can have
many different POS tags, they can, for example, set a
weak weighting. Whereas, if users assume that it can be
only a certain POS tag, they can, for example, choose a
high weighting. Based on this weighting, the algorithm
examines all occurrences of the selected token. For each
occurrence, the algorithm considers the assigned POS
tags and the user weighting. However, tokens that have
been corrected manually are no longer considered by the
algorithm. Figure 5 depicts an example of three occur-
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Figure 5: After a user feedback (ID 1), the algorithm
analyzes two further instances (ID 2 and 3) with three
exemplary POS tags for the token “thyself”.

rences for the token “thyself” with three exemplary POS
tags. After initial user feedback (ID 1; POS tag C; weight
3,5), the algorithm counts the individual occurrences of
the three different POS tags. For example, the POS tag A
occurs three times in the second (ID 2) and only one time
in the third instance (ID 3). In addition, we count the
overlaps of the assigned POS tags of the initial feedback
instance (ID 1) with the two further ones (ID 2 and 3).
For example, we have one overlap between the first and
the second instance (ANNIE) and three overlaps between
the first and third instance (ANNIE, TreeTagger, Stan-
ford). Next, we multiply the number of overlaps with
the feedback weight for each instance, because we ex-
pect that instances with a high number of overlaps have
a similar context or problem. Thus, the algorithm con-
siders instances with a high disagreement (ID 2) rather
less. Whereas, instances with a high agreement (ID 3)
are good candidates for automatic correction. Based on
the results, we define the winning tag, and all influenced
instances are listed in the history view.

4. Usage Scenario

In the following, we present a usage scenario that oc-
curred during one of the joint workshops with one of our
project collaborators. In the scenario, we analyze the old
English novel “The Pickwick Papers” written by Charles
Dickens [37]. The novel was published in 1836 and is
about Samuel Pickwick, a wealthy old gentleman, and
his journeys and reports to places remote from London.
In a first step, the expert explores the text view. With the
aid of the highlighted uncertain instances, she quickly
recognizes terms with a high disagreement (R1). For
example, she identifies the old English terms “wot” and
“wos” (Figure 3 @), because Charles Dickens often uses
the eye dialect [38]. The eye dialect uses nonstandard
spelling for speech to draw attention to pronunciation.
After examining some of the occurrences in detail in the
graph view (Figure 3 (b)) (R2), she corrects all the in-
stances. For example, she assigns the POS tag “WP” to
all the occurrences of the token “wot”.

As the next step, our expert sorts the entropy col-
umn in the table view to find another tokens with a high
entropy value (R1). While scanning the table list, she
is surprised that term “lodge” has a high disagreement
(Figure 3 (d)), because she has suspected a very low en-
tropy value. To inspect the occurrences, she selects the
different instances to analyze them in the graph compare
view further (R3) as depicted in Figure 3 (©. By ana-
lyzing them, she determines that particular the ANNIE
and Stanford tagger have problems in this contexts. In
addition, she finds out that near the instances there are
other instances with a high disagreement and thus she
assumes that this can influence the tagging results for the
term “lodge”.

i

During the analysis, she encounters the token “snug’
with also a high disagreement. To investigate all the
occurrences, the expert uses the graph context view as
depicted in Figure 6 @ (R4). That way, she gets an
overview of the different contexts of the selected term
“snug”. She quickly recognizes further instances where
the taggers disagree. To find out more about the different
text contexts, she selects two contexts to analyze them
further in the graph compare view as depicted in Figure 6
(® (R3). By analyzing the contexts in detail, she is pretty
sure that the correct POS tag should be an adverb (RB).
However, only the OpenNlp tagger assigns the correct
POS tag (RB) in one context. Therefore, she corrects one
instance (Figure 6 ®) with high weighting (R5). Subse-
quently, she verifies the automatically changed instances
in the history view as depicted in Figure 3 (®. She finds
out that both suggestions of the algorithm are correct and
confirms them (R5).

The usage scenario shows that our approach can fa-
cilitate users in visually exploring different POS tagger
results to adapt incorrect POS tags. The different views
offer several starting points for analysis and cover all the
defined requirements of our project collaborators.

5. Expert Feedback

In the following, we present and discuss the insights
of an expert study. We conducted a qualitative think
aloud study with one computational linguists expert to
collect and reflect on her feedback. First, we gave an
introduction of about 30 minutes to explain the idea of
our approach and the different coordinated views. Af-
terwards, we loaded the novel “Moby Dick” into our
approach and let her freely explore for 60 minutes.

The first impression of our expert was very positive.
She liked our idea to provide valuable support for explor-
ing, analyzing, and adapting a POS model for a specific
type of text, because trained classifiers are often missing
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enables users to analyze the different instances in detail.

in specific research fields such as in the digital humani-
ties.

She noted that it could be difficult to unify POS tags
of different POS taggers. Therefore, our approach cur-
rently only support POS taggers that use the Penn Tree-
bank or similar tagsets which can be adapted such as the
tagset of the TreeTagger.

Our expert mentioned that the text and table view
provide good starting points for analysis. The highlight-
ing of the disagreement between the taggers in the text
and the possibility to sort tokens by the entropy value in
table view enables users to find interesting instances for
manual inspection. However, she suggested integrating a
search function that allows users to search for a particular
token.

She also liked the possibility to inspect instances with
the text context in detail in the graph view. In addition,
she praised the compare graph view, because for her it
is very necessary to analyze different instances next to
each other. She remarked that the graph context view is
confusing at the beginning and that it requires time to
understand the representation. However, she mentioned
that this view could be very helpful to identify further
problems of the taggers near the selected instance, which
can then serve as another starting point for a deeper anal-

ysis. Additionally, our expert also praised the several
filter options that facilitate her exploration and analysis
of the different contexts.

Furthermore, she thought that the integrated algo-
rithm is a suitable approach to suggest and correct similar
instances. However, she also mentioned that the algo-
rithm could be easily extended and thus improved. For
example, we could enable users to weight the different
taggers in a particular context.

Overall, our expert enjoys to work with our approach,
and she would like to use it for her research.

6. Discussion and Future Work

We have developed our system out of the need to
support users in adapting a POS model for very specific
types of texts. It compares several standard POS tagger
results graphically and provides interaction possibilities
to explore, analyze, and correct the POS tags. In the
following, we discuss some limitations of our approach
and provide an outlook on future work.

Our approach uses several standard POS taggers that
use different techniques to indicate uncertain instances.
We are confident that the taggers agree on trained text
structures and we assume that they disagree in unknown

Page 1577



text contexts. However, there can be instances where
all POS taggers agree, but the result can still be wrong.
Therefore, we want to communicate the confidence value
of the different taggers (if available). Then normally, au-
tomatic methods typically offer uncertainty information
with their results. This way, we can support our users
with additional information and thus highlight instances
where the different POS taggers have a high uncertainty
value.

The approach currently offers a simple algorithm that
tries to correct incorrect assigned POS tags based on a
majority voting and the user feedback. We learned that
the algorithm works well in many cases but in certain
contexts not at all. Therefore, we plan to implement a
more complex approach in close cooperation with our
computational linguistic experts. One possibility would
be to boost the used standard POS taggers in different
contexts. The main idea of boosting is to combine many
rules to produce highly accurate classification rules [39].
For example, we could enable users to boost particular
POS taggers in a particular text context.

Scalability and usability is also an issue when work-
ing with text documents. To assess the scalability of
our approach, we tested very long documents and sev-
eral attached books series. Our approach seems to be
very scalable because the most views focus on selected
text passages or provide visualization and interaction
techniques that support an effective exploration. Nev-
ertheless, if users select a token that occurs very often
in the loaded document, the graph context view quickly
becomes confusing. However, we discussed this issue
with our experts, and they mentioned that the interactive
filtering operations are very helpful to explore the graph
and that tokens which occur frequently are mostly not
interesting. Regarding usability, we found out that the
analysis can become uncomfortable with many graphs or
large ones because of the navigation with the scrollbars.
One option to tackle this problem could be to combine
a pixel-based [40, 41] with our graph visualization and
let users switch between them. That way, the pixel-based
visualization can be more scalable with many and large
graphs, and thus provide a good overview of uncertain
instances. Additionally, users could analyze the details
with the aid of the graph views.

In the future, we also plan to compare the results of
an adapted POS model with a standard model. In close
cooperation with our humanities scholars, we want to
analyze the effects of the adapted model to a similar
type of text as well as the benefits for subsequent NLP
working steps.

7. Conclusion

In this work, we presented an interactive visualization
approach that provides an overview of different POS tag-
ger results and identifies inconsistencies between them.
Our approach offers coordinated views that support users
in visually exploring, comparing, and correcting POS
tags to achieve a new POS tagger model for a specific
type of text. Such an approach is particularly useful in
situations where no gold standard is available to train a
classifier. A usage scenario illustrates its applicability,
usefulness, and the limitation of our approach. Finally,
we present and discuss feedback of one computational
linguistics post-doctoral researcher who is very familiar
with this research area.
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