
Constraint programming for flexible Service Function Chaining deployment

Tong Liu†,?, Franco Callegati†, Walter Cerroni†, Chiara Contoli†, Maurizio Gabbrielli†,?, Saverio Giallorenzo�
†Università di Bologna, ?INRIA, �University of Southern Denmark

{t.liu, franco.callegati, walter.cerroni, chiara.contoli maurizio.gabbrielli } @unibo.it, saverio@imada.sdu.dk

Abstract

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) are technologies that recently
acquired a great momentum thanks to their promise of
being a flexible and cost-effective solution for replacing
hardware-based, vendor-dependent network middleboxes
with software appliances running on general purpose
hardware in the cloud. Delivering end-to-end networking
services across multiple NFV/SDN network domains
by implementing the so-called Service Function Chain
(SFC) i.e., a sequence of Virtual Network Functions
(VNF) that composes the service, is a challenging task.

In this paper we address two crucial sub-problems
of this task: i) the language to formalize the request
of a given SFC to the network and ii) the solution of
the SFC design problem, once the request is received.
As for i) in our solution the request is built upon the
intent-based approach, with a syntax that focuses on
asking the user "what" she needs and not "how" it
should be implemented, in a simple and high level
language. Concerning ii) we define a formal model
describing network architectures and VNF properties
that is then used to solve the SFC design problem by
means of Constraint Programming (CP), a programming
paradigm which is often used in Artificial Intelligence
applications. We argue that CP can be effectively used
to address this kind of problems because it provides
very expressive and flexible modeling languages which
come with powerful solvers, thus providing efficient and
scalable performance. We substantiate this claim by
validating our tool on some typical and non trivial SFC
design problems.

1. Introduction

Following the recent innovations brought about
by Cloud Computing and resource virtualization,
current advances in communication infrastructures
show an unprecedented central role of software-based
solutions [1]. On the one hand, Network Function

Virtualization (NFV) [2] supports the deployment
of network functions—e.g., load balancers, firewalls,
intrusion detection devices, and traffic accelerators—as
pieces of software running on off-the-shelf hardware.
On the other hand, Software Defined Networking
(SDN) [3] decouples the software-based control and
management plane from the hardware-based forwarding
plane, turning traditional infrastructures into fully
programmable communication platforms. A SDN is
hence a network whose topology can be orchestrated
dynamically. By taking advantage of the complementary
features of NFV and SDN it fosters the provision of
flexible and cost-effective network services—from now
on, referred simply as services.

As detailed in Section 2, in an NFV/SDN framework,
services are deployed as Service Function Chains
(SFC) [4], i.e., the concatenation of some basic functions,
typically running in some form of virtual environment
(virtual machine, container etc.). These are called Virtual
Network Functions in short VNFs. Essentially, an SFC
corresponds to the sequence of VNFs that a traffic flow
traverses from its source to its destination. In this
context, multiple network configurations can coexist
over the same physical infrastructure, bypassing the
need for specialized hardware and physical network
reconfigurations. Moreover the software-based SFCs
can be instantiated, controlled, modified, and removed
over a small time scale which is impossible to achieve
in traditional networks typically requiring physical
or manual reconfiguration to modify topology and/or
forwarding. However, one of the main problems linked
to SFC planning is that it is complex to define and
apply SFC configurations that both respect multiple
domain-level properties (QoS, etc.) and also avoid
misbehaviors over contrasting or incompatible service
desiderata. This calls for both suitable, high-level
languages to easily describe SFC requests and for
tools to efficiently design SFC—once the request
is received—given the available VNFs and network
resources.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59640
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contribution. Answering this call, in this paper
we propose two contributions. The first is a model
to describe both SFC user requests and the holding
domain-level constraints over a multi-domain network
scenario—since the model is intended for (possibly
automated) user interaction (both customers and network
administrators) it is expressed using the familiar
JavaScript Object Notation (JSON). The second is a tool
based on Constraint Programming (CP) which solves
the SFC design problem. The tool uses a MiniZinc
specification which is a direct translation of the JSON
specification. While there exists another paper [5] using
CP techniques for routing problems, ours is the first
proposal of applying CP to the SFC design problem in
its full generality. We argue that CP can be effectively
used to address this kind of problems, as it provides very
expressive and flexible modeling languages to harness
the complexity of SFC design. This, together with the
outstanding performance of modern CP solvers, has
promising aspects in terms of scalability, opening the
market to operators offering ad-hoc just-in-time SFC
configurations to users. To substantiate our claims we
validated our tool by solving some typical and non-trivial
SFC design problems and considering its performance.

In the remainder of the paper, in Section 2 we provide
background knowledge and a detailed description of
NFV/SDN-based frameworks, introducing the elements
of the problem. In Section 3 we set the general
problem framework and present our model to specify
user desiderata and domain-level properties. In Section 4
we describe how to translate a given model into
a MiniZinc finite domain specification, reporting in
Section 5 validation experiments and performance results.
Finally, in Section 6 we consider related work, we draw
conclusions, and delineate future work.

2. Application Context: NFV/SDN
Networking

In this section we introduce our application context
and its elements (identified by the paragraph titles).

NFV/SDN paradigms promise to revolutionize
network management through the concept of network
programmability, i.e., the possibility to run network
services in a similar way as running software in a
computer. Indeed, traditional network functions are
bound to hardware devices, in which actions like
instantiating a new service or modifying a service
instance are rather complex and require specialized
operations. Contrarily, the combination of recent
NFV/SDN technologies paves the way to fully
programmable communication networks. The expected
benefits of programmable networks are reduced operation

Figure 1: General concept of MANO.

costs, as well as increased flexibility and responsiveness.
Network Function Virtualization. In NFV network
functionalities, mostly implemented by means of
dedicated appliances (middleboxes, like firewalls, NATs,
packet inspectors, traffic conditioners, etc.) are turned
into software applications, called Virtual Network
Function (VNF). These are shipped inside virtual
machines or containers and hosted into cloud computing
infrastructures equipped with off-the-shelf hardware (i.e.,
not specialized for a specific networking function) [2].
Software Defined Networking. SDN decouples the
network control plane from the data forwarding plane.
The former is placed into a so called SDN controller,
defining all the forwarding logics in a centralized way
and injecting them into the networking devices. The
main protocol proposed for SDN is Openflow [6], which
is designed to support the dialog between network
controllers and appliances.
The ETSI NFV-MANO Framework. NFV became
subject of standardization by ETSI in the NFV
Management and Orchestration (MANO) framework.
ETSI launched the initiative by bringing together seven
leading telecom operators in 2012. Currently over 300
individual companies [7], including many global service
providers, joined the initiative, which is the reference
standardization framework in this field. We provide
in Fig. 1 a conceptual representation of the approach
proposed by the ETSI NFV-MANO framework—from
now on called MANO [8]. In MANO, VNFs are
deployed over a set of cloud data centers that may
be either closely or remotely located, depending on
the specific service implementation scenario. The data
centers are managed by a specific cloud infrastructure
management system chosen by the owner/provider, e.g.,
the renowned OpenStack [9] platform, while general
networking services are managed by SDN controllers.
MANO addresses both cloud and network controllers as
Virtualized Infrastructure Managers (VIMs).
The NorthBound Interface. The components in

Page 2005

Figure 2: General example of dynamic Service Function
Chaining.

Fig. 1 must interact by means of suitable Application
Programming Interfaces (APIs) and, roughly speaking,
the API offered by a given functional block to the one
that is logically above it (providing increased abstraction)
is usually called a NorthBound Interface (NBI) while the
interface with one logically below (closer to the specific
implementation) is called a SouthBound Interface (SBI)1.
The Service Function Chain. In this context, a service
is a specific combination of VNFs and communication
capabilities that are requested by a user and that must be
implemented in the available infrastructure.2 This is the
Service Function Chain (SFC), i.e. the implementation of
a composite service as the concatenation of basic services,
typically implemented via VNFs. For instance an SFC
could be the sequence of a NAT and a Firewall at the edge
of the provider network, serving a set of customers. In
essence, an SFC is the series of VNFs that a traffic flow
must traverse from its source to its destination. Thanks
to the capabilities offered by SDN and NFV, SFCs can
be dynamically controlled and modified over a relatively
small time scale, both increasing the flexibility of service
provisioning and reducing the management burden.
SFC deployment planning. The aspect we focus in this
paper is SFC deployment planning, also called Service
Function Chaining (SF-Chaining). Within a single
technological and administrative domain, e.g., a single
data center, SF-Chaining can be successfully achieved
with the help of the native domain management system,
i.e. the VIM [10]. However, when the SFC spans across
multiple network domains, (c.f., Fig. 2) each owned by a
different player and characterized by different technology
stacks, the dimensional and logical complexity of the
problem increases. With many domains and many
VNFs per domain the space of possible solutions to a

1For completeness, interfaces between functional blocks at the same
architectural level are usually addressed as East/West-bound interfaces.

2Here, users may either be customers (residential or business)
requiring a specific networking service or network operators
configuring specific services for their customers.

specific SF-Chaining problem becomes very large as
formally shown in the following section. Moreover the
specification of the SF-Chaining request in a general way,
that can be mapped over the various domains is also non
trivial [11, 12, 13].

MANO provides a general architectural framework
for the implementation of NFV but does not provide
implementation details for the various interfaces of
logical levels, that are still matter of study and testing.

Regarding the specification of the SF-Chaining
request, solutions have been recently proposed to
implement a vendor-agnostic, and interoperable NBI
interface for the MANO according to the intent-based
approach [14]. Very briefly the intent-based approach
goal is to provide a semantic at the interface that
allows the user to focus on what he/she wants to
achieve and not on how it will be implemented, thus
hiding all the technology-specific details and making the
service request as general as possible. In this work we
extend and better formalize this approach by providing
a general schema for the semantics of the interface
that can be easily translated into technology dependent
specifications.

While the intent-based specification solves the
problem of applying a global plan over multiple domains,
it does not answer the problem of engineering the
SF-Chaining, which instead need to consider: SFC
design, i.e., selecting the set of VNFs to be chained
to implement the SFC, with the goal of optimizing
some notion of cost; VNF activation and placement, i.e.,
where to execute VNFs when more options are available,
for instance with the goal to maximize performance or
distribute the workload.

SF-Chaining is a crucial part of the Resource
Allocation problem in an NFV environment and has
been mostly studied by means of Mixed Integer Linear
Programming [15]. Unfortunately the complexity
of the problem makes such solutions viable just for
small networks. Usually heuristics are proposed and
tailored to some specific optimization goal, thus limiting
their applicability or generality. The problem is that,
when designing an SFC, beside standard shortest-path
problems, one has to solve additional constraints arising
from the specific nature of the service functions involved.
For example, if a Virtual Private Network (VPN) function
is present, which encrypts a message before it leaves the
source domain, then a complementary VPN function
should appear before the final destination, to decrypt the
message.

In this work we propose an efficient, general and
scalable tool, based on Constraint Programming (CP), for
the engineering of SFC plans over multiple domains. We
will show that complex SFC plans can be computed in a

Page 2006

small time-frame, turning the engineering and application
of SFC plans from a manual, time-consuming activity to
an automatic and just-in-time task.

3. Problem Definition

With reference to what explained above, in this
section we set the general problem framework following
the schematic presented in Fig. 2. In particular we assume
the following.

• Network architecture. The network is divided
into a number of Domains, defined according to
administrative and/or technological boundaries.
For the purpose of this work a Domain is an
infrastructure that is managed homogeneously by
a single actor. The Domain has one or a set of
Virtual Infrastructure Managers that are properly
coordinated and thus acts as a single entity. The
resources of the Domain are managed as a whole.

• Inter-Domains interconnection. We assume
that the various Domains are interconnected by
Domain border gateways and interconnection
links. Domain interconnections may be at
the geographical as well as at the local level,
depending on topological and administrative
constraints. Domain interconnection can be related
to some form of QoS objective, either cost, latency,
bandwidth availability, etc. depending on the
specific scenario.

• Intra-Domains interconnection. The networking
among VNFs of the same domain is not a subject
of this work. We assume that, within a domain,
connectivity is granted at a level of Quality of
Service sufficient for the purpose. If the various
domains are data centers, their management
platforms provision the resources needed in terms
of computation, networking etc.

• VNFs. The Virtual Network Functions are devoted
to specific networking tasks. In this work we
assume that one VNF performs just one task,
therefore we will talk of VNF types to specify
which tasks are performed. The VNF types
considered in the following are briefly described
below.

• VNF location. VNFs are executed in the data
centers hosted in the various Domains. In
principle the Domains are not homogeneous in
terms of connectivity, computing capabilities and
functionalities, therefore a Domain may or may
not be suitable to execute some VNFs. Moreover
it may be that a given VNF has to be executed
into a specific domain. Without loss of generality,
we restrict the choice of the location of each

VNF in an SFC to three options: the source
Domain, the destination Domain or unspecified;
the latter meaning that the VNF can be located
in any available Domain, including source and
destination.

The set VNF types is a set of network functions that
we consider to be part of common networking practice,
obviously the work can be extended to include other
types of VNFs.

• Deep Packet Inspector (DPI). Looks into the
content of the packets and takes specific
forwarding decisions according to specific
predefined patters.

• Network Address Translator (NAT). Translates IP
addresses mostly used to interconnect ares with
private IP addressing from the public Internet.

• Traffic Shaper (TS). May enforce specific packet
and/or bit rate limitations to a traffic flow.

• Wide Area Network Accelerator (WANA).
Compresses packet content to provide higher
transfer speed.

• Virtual Private Network Endpoint (VPN). Encrypts
data flows and authenticate users over a specific
public network section.

Note that gateway VNFs do not appear in the user
desiderata, however, since they provide inter-domain
connections, we will also consider them among VNFs.

3.1. Service Function Chain specification

In the remainder, to distinguish between customer
and network operator SFC desiderata, we call the former
user requests and the latter domain constraints. In order
to provide a concrete and simple model for specifying
SFC user requests, immediately usable in practice, we
rely on the JSON [16] notation, defining the model using
the generic formalism of JSON Schema [17] as follows.

Definition 1 (SFC user request) A Service Function
Chain user request is any JSON specification compliant
with the JSON Schema below (indented and grayed-out
to ease reading), where we assume that the cardinalities
of vnfList, prox_to_src, and prox_to_dst are equal.
{"VNFs":{"type":"array","items":{"type":"string",
"enum":["DPI","NAT","TS","WANA","VPN"]}},
"Mask":{"type":"array","item":{"type":"boolean"}},

"type":"object","properties":{
"src":{"type":"string"},
"dst":{"type":"string"},
"qos":{"type":"string"},
"qos_type":{"type":"string"},
"qos_thr":{"type":"string"},
"qos_value":{"type":"integer"},
"vnfList":{"$ref":"#/VNFs"},
"dupList":{"$ref":"#/VNFs"},
"prox_to_src":{"$ref":"#/Mask"},
"prox_to_dst":{"$ref":"#/Mask"}}}

Page 2007

Briefly, the highlighted elements in Definition 1
represent:

• src and dst the start and target domain of the
service chain;

• qos the QoS feature to be provided with the service
chain;

• qos_type a high-level unique identifier of a QoS
metric;

• qos_thr the QoS threshold to be applied to the
specified metric;

• qos_value the value assigned to the threshold;
• vnfList is the ordered list of VNFs to be traversed

for the requested service. We enumerate them
in type VNFs as strings representing the VNFs
we support in our model (and mentioned at the
beginning of Section 3);

• dupList is the set of VNF types where the traffic
needs to be duplicated.

Finally, prox_to_src and prox_to_dst are Masks on the
vnfList, i.e., they are arrays of booleans with the same
cardinality of vnfList that indicate if a VNF should be
respectively located in the domain of the src or of the
dst.

Example 1 To complete Definition 1, we report an
example of SFC user request. In the code below, the user
requests a chain between domains s and d, indicating
a qos on the speed of the connection, measured in terms
of bandwidth with a threshold of 90% on the throughput

of transmitted data. The service request consists of (in
this order): a DPI (whose traffic is duplicated, as per
dupList), a VPN in the domain of s and a complementary
VPN function in the domain of d.
{"src":"s","dst":"d","qos":"speed",
"qos_type":"bandwidth",
"qos_thr":"throughput","qos_value":90,
"vnfList":["DPI","VPN","VPN"],
"dupList":["DPI"],"prox_to_src":[1,1,0],
"prox_to_dst":[0,0,1]}

In the next section, we explain how we combine the
parameters above are to define the solution to an SFC
planning problem.

3.2. SFC design problem

In order to formalize the SFC design problem we
represent a network architecture in abstract terms as a
directed graph G(V,L) with a set V of labeled nodes,
ranged over by v1, v2 . . ., which represent the VNFs and
a set L = {(u, v)|∀u, v ∈ V ∧ u 6= v} of labeled
edges—in the remainder called arcs—ranged over by
l1, l2, . . ., which represent links among different VNFs.
The level of a node v denote the type of functionality
provided by the specific VNF v in set T , ranged over by

t1, t2, . . ., and we assume that there exists a total function
Type : V → T which, for any VNF v ∈ V , returns its
label (i.e., its type). We distinguish between a VNF and
its type because different VNFs, also in the same domain,
can offer the same functionality and have the same type.
Nevertheless, when no ambiguity arises, we will identify
a VNF with its type. For example, in the service chain
request provided by the user, the list of VNF which is
provided is, strictly speaking, the list of VNF types which
are required (the user is interested in a functionality, not
in the specific component implementing it). Label of arcs
denote costs of the arcs and we indicate by cu,v the cost
of an arc (u, v). Paths are defined as usual3.

As we have seen in previous section, conceptually
VNFs are organized in domains that is, our graph is
divided into several sub-graphs. We represent this
structure by introducing a set D of domains, ranged
over by d1, d2, . . ., and assuming that there exists a total
function Domain: V → D which for any VNF v ∈ V
provides its domain Domain(v). We assume that each
domain in our network has exactly one VNF providing
the (domain border) gateway functionality. In order to
model the domain interconnection described above, we
assume that the set of arcs in our network consists of
two types of arcs: those connecting the gateway to all
the other VNFs in the same domain (with cost 0) and
those connecting a gateway to all the gateways VNF
appearing in the other domains, with a positive cost. We
are now ready to define the notion of SFCtree. Intuitively
this represents the chain of functions which, in a given
network, satisfy the service request expressed by the user.
Note that we consider a tree rather then a simple path
because in some cases the chain of functions, beside a
source and a target, include some other terminating nodes
which provide specific functionalities: for example, a
DPI VNF has the task of logging messages and does not
participate in message routing. Moreover, nodes (VNFs)
in the same domain are represented as sons of a gateway.

Definition 2 (SFCtree) Given a directed graph G(V,L)
representing a network architecture, an SFCtree4 is a
rooted tree Tr which is a subgraph of G(V,L) and such
that the leafs of Tr are (labeled by) VNFs types different
from gateway, while the nodes that are not leafs are
(labeled by) gateway.

As a first approximation, our configuration problem
consists in finding an SFCtree which satisfies the service
request specified by the user in terms of intents. There
are however some additional, domain level, constraints
on the VNFs to be used in the SFC which are needed to

3For the notions on graphs not directly defined here please see
[18, 19].

4The definition is parametric w.r.t. the given graph, however we do
not represent such a parameter explicitly, to simplify the notation.

Page 2008

obtain a correct solution. For example, we may need
to know whether a VNF v needs to be "mirrored" ,
meaning that when v appears in a chain then another,
dual, VNF is needed in the same chain (for example
an encryption function needs later a decryption). Also,
some quantitative information are needed at domain level,
such as lower and upper bounds on the number of VNFs
of the same type in a given domain. These additional
constraints are not expressed by the intents of the users
(who might ignore the detailed domain structure of the
network) but are introduced in a middle layer before
formulating the actual service request. As we have done
for SFC user request, we represent these constraints
following the JSON Schema.

Definition 3 (Domain-constraints) A
Domain-constraint is a JSON specification compliant
with the following JSON Schema
{"type":"array","items":{"type":"array",
"maxItems":4, "items":[{"type":"string",
"description":"a domain name"},
{"type":"string",
"enum":["DPI","NAT","TS","WANA","VPN"]},
{"type":"integer",
"description":"VFN type minimum quantity"},
{"type":"integer",
"description":"VFN type maximum quantity"}]}}

In the JSON Schema above, we use the "description"

attribute to hint the content of each element. A
Domain-constraint then represents a set of tuples
(d, t,m, n) where d is a domain, t is a VNF type, and
m,n are natural numbers, with the meaning that in the
domain d there are at least m and at most n VNFs v ∈ V
having the type t.

Example 2 To complete Definition 3, we report an
example of a Domain-constraint which could be imposed
by domain administrators. Here s and d are the source
and destination domains of Example 1 and we see that
the administrator set to 1 and 2 the minimal a maximal
number of WANA functions allowed in s; the constraint
specifies also that a single DPI function is required in s

(i.e., minimal and maximal capacities coincide) and a
single VPN (and NAT) is required in the destination d.
[["s","WANA",1,2],["s","VPN",5,10],
["s","DPI",1,1],... ["other_dom",DPI,1,2],
["other_dom","VPN",1,10], ...
["d","VPN",1,1],["d","NAT",1,1]]

Before defining formally our SFC design problem
we now need to define when an SFCtree—that intuitively
represents a solution—satisfies the user request and the
Domain constraints. To this aim, we first provide the
following definition.

Definition 4 Assume that R is an SFC user request
specified as in Definition 1 which defines the vnfList =
{t1, . . . , tn} and a dupList = {e1, . . . , em}. Then we

define request-tree(R) as the tree T (V,L) where the
set of nodes is V = {v1, . . . , vn} with Type(vi) = ti,
∀i ∈ [1, n] and the set of arcs is L = {(vi, vj)|vi, vj ∈
V ∧ i < j ∧ Type(vi) /∈ dupList ∧ (...nexistsk, i <
k < j, vk /∈ dupList)}.

Intuitively, given a user request R, request-tree(R)
is the tree that represents the traversal order of the
various VNFs, from the source to the destination domain,
to obtain a solution. We have a tree rather then a
sequence of VNFs because we take into account also the
information provided by dupList which, as mentioned
before, specifies when the traffic needs to be duplicated
before entering in a node (VNF).

Example 3 Given a user request which specifies
vnfList = {a, b, c, d} and dupList = {b}, with a
in the source domain and d in the destination domain,
a request-tree T (V,L) consists of V = {a, b, c, d},
L = {(a, b), (a, c), (c, d)}.

Next we define the satisfaction of user request
and domain constraints. In the following we use the
terminology and notation introduced in Definitions 1
and 3. We also assume that the last VNF specified in
the user vnfList is present in the destination domain (if
this were not the case we could introduce and additional
Endpoint VNF but we prefer to avoid this in order to
simplify the notation).

Definition 5 We say that an SFCtree Tr(Vr, Lr)
satisfies user request R and domain constraints C if the
following holds, where request-tree(R) = T (V,L)
and dsrc, ddst are the domains values specified in dst
and src of request R:

i) the domain of the root of Tr is dsrc and there exists
a leaf in Tr whose domain is ddst.

ii) Vr is the set V with some additional gateway nodes
and there exists an injective mapping m : V → Vr

such that, ∀v ∈ V , Type(v) = Type(m(v));
iii) ∀(u, v) ∈ L ∃gu, gv ∈ Vr such that Type(gu) =

Type(gv) = gateway ∧ (gu,m(u)) ∈ Lr ∧
(gv,m(v)) ∈ Lr and there exists a path in Tr
between gu and gv containing only gateway nodes;

iv) for each v ∈ V if prox_to_src(v) = 1 then
Domain(m(v)) = dsrc and if prox_to_dst(v) =
1 then Domain(m(v)) = ddst;

v) for each tuple (d, t,m, n) represented by C such
that the type t appears (as label of a node)
in T (V,L), m ≤ Num(Tr, d, t) ≤ n holds,
where Num(Tr, d, t) = |{v|v ∈ Tr, Type(v) =
t and Domain(v) = d}|.

Note that, as indicated in item iv), we assume that
the domain constraints refer to the VNF specified in the
vnfList provided by the user.

Page 2009

We are now ready to state formally our configuration
problem.

Definition 6 (SFC design problem) Given a graph
G(V,L) that represents a network architecture, an SFC
user request R and domain constraints C, the SFC
design problem consists in finding an SFCtree that
satisfies the request R and the constraint C. Such an
SFCtree, if it exists, is called an admissible solution.
Furthermore, the optimal SFC design problem
consist in finding an admissible solution G(V ′, L′)which
minimize the following cost function:

∑
l∈L′ cl. In this

case the solution found is called optimal SFCtree.

The following result shows that the problem that we
are considering here is a difficult one. The proof is
omitted for space reason and can be done by the reduction
of the k-minimum spanning tree problem which is known
to be NP-hard [20].

Theorem 1 (NP-hardness) The optimal SFC design
problem is NP-hard.

4. SFC modeling with Constraint
Programming

In order to solve our SFC design problem
we translate it into a MiniZinc [21] finite domain
specification. MiniZinc is a high level, solver
independent, constraint modeling language which is
widely used and is supported by large variety of
constraint solvers. We assume some familiarity with
MiniZinc and we invite the reader to consult [21] for
further details.

Our translation is a direct encoding of the SFC
design problem as defined in Section 3 in MiniZinc
constraints. More precisely, we first model in terms
of the MiniZinc language the network architecture and
then we translate in MinZinc the user request and the
domain constraints defined in the JSON format. The
MiniZinc specification of the network architecture is a
straightforward translation of the graph described in the
previous section and is provided below (comments are
indicated by %).

int: n_nodes; % Number of nodes (VNFs).
int: n_domains; % Number of domains.
int: n_node_links;% Number of arcs (links between

nodes).
int: M; % Upper bound for arc costs.
% Array containing cost of arcs between pairs of

gateway nodes.
array[1.. n_domains, 1.. n_domains] of 0..M:
domain_link_costs; % Array representing the arcs.
array[1.. n_node_links, 1..2] of 1.. n_nodes:
node_links; % Array describing the properties of the

nodes,
% i.e. node id, the type of node, its domain
array[1.. n_nodes, 1..3] of int: nodes;

Upon a user request expressed in the intent format,
we use a script to extract necessary information and by
using dupList we parses the vnfList into vnf_arcs
that represents the arcs of request-tree and finally we
create an instance for MiniZinc.

As for the specification of the SFC request and
domain constraints, described in definitions 1 and 3
in terms of JSON specifications, we use a script to
extract necessary information and by using dupList
we parses the vnfList into the vnf_arcs array below.
Analogously we parse the domain constraints to build the
domain_constraint array and we obtain the following
MiniZinc code:

int: start_domain;
int: target_domain;
int: n_types; % Number of VNF types except

Gateway
int: vnflist_size; % The length of vnflist
int: n_dcons; % Number of domain constraint
% The order of VNF in the service request.
array[1.. vnflist_size] of 0.. n_types vnflist
% arcs of request-tree derived from vnflist
array[1.. vnflist_size -1, 1..2] of
0.. vnflist_size: vnf_arcs;
% VNF service in start domain
array[1.. vnflist_size] of 0..1:
proximity_to_source;
% VNF service in target domain
array[1.. vnflist_size] of 0..1:
proximity_to_destination; % Domain constraints

containing: domain id,vnf types, min, max.
array[1.. n_dcons, 1..4] of int:
domain_constraints;

To model our problem we then introduce two groups of
MiniZinc variables, the first representing the selection
of arcs, links, domains and domain connection, and the
second to ensure that the selected nodes corresponding
to the VNFs in vnfList and their order is feasible. Next
we introduce the constraints which can be classified
into three groups: the first one states the relations
between variables (a.k.a channel constraints), the second
guarantees that the variable values meet the request
requirements and the last one ensure the tree properties
of the solution. The key variable among all is the variable
link_selection, it is possible to build a relation with it
to any other variables, e.g. to specify if a node or domain
is selected it is enough to say whenever a link is selected
then the related nodes and their domains are selected.
The details of this formalization are omitted for space
reasons and can be found in [22].

With these constraints we are able to obtain an
admissible SFCtree. The optimal solution is the obtained
by optimizing the sum of domain link costs of among all
possible admissible solutions.

5. Empirical Validations

We now describe the validation experiments which
we have conducted in order to compare the performance

Page 2010

of different state-of-the-art solvers and to assess the
efficiency and scalability of our approach.

As for the experiment setup, we have generated the
dataset representing the network in a random way. We
assume n nodes and m domains with n

m > 2. We select
m out of the n nodes and consider them as gateway while
for the remaining nodes we associate randomly to each
of them a VNF type from the set of types assumed in this
paper (see Section 3). Next we defined the arcs according
to the definition in Section 3.2 with costs in the range
[1, 100]. Regarding the SFC user request, we created a
dataset of possible requests that may occur in practice,
which are compliant with the assumptions we made in the
paper and with the ETSI specifications [23], from which
we randomly choose specific instances. We consider the
number of nodes and the number of domains as features
that characterize the specific instance dimension. For
each instance dimension we generate 10 scenarios and
for each scenario we generate 10 requests which will be
performed sequentially. We record the response time,
that is the time needed to find optimal solution or to
discover that the instance is unsatisfiable, with a cutoff
time as 5 seconds for each run. The experiments were
run on a Debian cluster with machines equipped with
Intel Corei5 3.30GHz and 8 GB of RAM.

We first compared the performance of five different
state-of-the-art CP solvers, namely, Or-Tools v6.7 [24],
Choco 4.0.4 [25], JaCoP [26] Gecode [27], Chuffed
[28] and two Mixed Integer Programming (MIP) solvers,
Gurobi [29] (one of the most performing MILP solvers
[30]) and CBC [31]5 on the optimal SFC design
problem. The solvers were run on scenario with 300
nodes and different number of domains (from 3 to 30),
each request was combined with 2 random domain
constraints. In the graph 3 (a) we show the response time
with Par2 penalty, where when a run was not completed
at timeout we consider its runtime as two times of the
timeout (10 sec) 6. Under the Par2 metric, it can be seen
that Chuffed and Or-Tools were the most competitive
solvers in our case, in particular, Chuffed runs faster with
few number of domains (less than 10) while Or-Tools is
more robust addressing instance with larger number of
domains. The part (b) of Fig 3 shows the percentage of
runs failed to prove optimality or unsatisfiability within
timeout. It can be seen that Choco and Or-Tools were
the most competitive where they solved almost all the
instances with less than 24 domains. Chuffed started to
have unsolved instances when the number of domains
goes beyond 9, however, it is still much better that other

5The Or-Tools were downloaded from Google OR official page and
other solvers were taken either from SUNNY-CP [32, 33] or from the
MiniZinc distribution v2.17.

6The performance of Gecode and JaCoP were omitted since their
performance were much lower than those of the other solvers.

solvers where they had failed runs even with 3 domains.
It worth noticing that the MIP solver Gurobi was less
competitive than the CP solver in our case, even though,
the MIP/ILP is the most popular approach for NFV/SDN
problems today.

In the second set of experiments we considered only
the solver Or-Tools and we considered two groups of
tests: fixing a number of nodes we vary the number of
domains from 3 to 30; fixing a number of domains we
vary the number of nodes from 30 to 800. In this case, the
average runtime has excluded failed runs. As one can see
from Fig 4, our application find the optimal solution for
instances having more than 300 nodes and 10 domains in
less then a second7.

Moreover, for the part (b) of the figure one sees
that time grows almost linearly at the growth of node
numbers. Since in practical applications one has hardly
more than 10 domains and one has hardly a large number
of nodes, and also, the links between domains are much
less than our fully connected case, the results confirm
that our system is relevant to address the SFC design
problem and can scale up to consider large networks. It
is worth mentioning that, for instance, the International
Telecommunication Union in its Recommendation [34]
sets an upper bound to the time needed to set up of a
service at 7.5 seconds, well above the time needed here
to solve the SF-Chaining problem.

6. Discussion and Conclusion

To the best of our knowledge the only other
paper applying CP techniques to programmable
communication networks is [5], where the authors
consider the specific problem of optimizing the QoS
of routing applications. Here we consider a completely
different problem, namely the definition of expressive
and efficient tools to solve the Service Function Chaining
design problem in general. There exists a large body
of literature on the problem of mapping an SFC to
the (possibly virtualized) substrate network, optimizing
some notion of QoS. This problem, also called Service
Function Chain Resource Allocation (SFC-RA), has
been mainly addressed with (Mixed) Integer Linear
Programming (M)ILP techniques. However, since in
its full generality SFC-RA is an NP-hard problem, many
alternative approaches rely on approximated methods
and (meta)-heuristics (cf. [3, 2, 35, 15] for more precise
indications). When compared with other exact methods
based on (M)ILP, CP provides a more flexible and
general approach. Since (M)ILP approaches consider
a specific formulation of the problem—customized for a

7We also measured the runtime when request instance is
unsatisfiable, generally, it takes as much time as computing a satisfiable
instance.

Page 2011

(a) Response time with 300 nodes (b) Percentage of Failed Runs

Figure 3: Solvers Comparison

(a) Response time in relation with number of domains (b) Response time in relation with number of nodes

Figure 4: System performance varying instance size

narrow class of applications with a specific function to
be optimized—and require a large number of decision
variables and (in)equations, it becomes difficult to adapt
existing solutions to other cases. Performance-wise,
we cannot directly compare our work to other MILP
based approaches, since the problem we are solving
here is more general than the specific ones treated in
the literature. However, our experimental results show
that CP solvers are more efficient than MILP solvers on
the problem we consider and support our claim that the
proposed model can scale efficiently.

As future work, we will include our tool into a
networking tool-chain for directly applying synthesized
SFC plans on target networks. We intend to further
investigate the definition of a high level, intent-based
language for SFC specification. Beside allowing to
express quickly and intuitively SFC requests, such
an abstract language naturally would allow to use

modularization and typing [36] principles with the
following benefits. First, support for the creation
of libraries of standardized SFCs, e.g., configurations
that adhere to administrative regulations which can be
directly used with little customization effort. Second,
the definition of complex specifications obtained by
combining simpler ones. Third, to efficiently check if
SFC specifications are well-formed (e.g., if the traffic
encrypted by a VPN is decrypted by a complementary
function) and if they follow best practices (e.g., by
warning users that, by using a VPN function outside
the domain of the source, the traffic might be exposed to
attackers).

References

[1] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and
A. Campi, “Clouds of virtual machines in edge networks,”
IEEE Communications Magazine, vol. 51, pp. 63–70, July

Page 2012

2013.
[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,

F. De Turck, and R. Boutaba, “Network function
virtualization: State-of-the-art and research challenges,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1,
pp. 236–262, 2016.

[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined
network and openflow: From concept to implementation,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4,
pp. 2181–2206, 2014.

[4] I. E. T. Force, “Service function chaining (sfc)
architecture,” 2015. https://tools.ietf.org/html/
rfc7665.

[5] S. Layeghy, F. Pakzad, and M. Portmann, “Scor:
Constraint programming-based northbound interface for
sdn,” in Telecommunication Networks and Applications
Conference (ITNAC), 2016 26th International, pp. 83–88,
IEEE, 2016.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[7] T. E. T. S. Institute, “Network function
virtualization in etsi,” 2012. http://www.etsi.
org/technologies-clusters/technologies/nfv.

[8] T. E. T. S. Institute, “Network functions virtualization
(nfv); management and orchestration,” 2014.
http://www.etsi.org/technologies-clusters/
technologies/nfv.

[9] R. C. Computing, “Openstack platform,” 2018. https:
//www.openstack.org/.

[10] F. Callegati, W. Cerroni, C. Contoli, R. Cardone,
M. Nocentini, and A. Manzalini, “Sdn for dynamic nfv
deployment,” IEEE Communications Magazine, vol. 54,
no. 10, pp. 89–95, 2016.

[11] R. V. Rosa, M. A. S. Santos, and C. E. Rothenberg,
“MD2-NFV: The case for multi-domain distributed
network functions virtualization,” in 2015 International
Conference and Workshops on Networked Systems
(NetSys), pp. 1–5, March 2015.

[12] K. Phemius, M. Bouet, and J. Leguay, “DISCO:
Distributed multi-domain SDN controllers,” in 2014
IEEE Network Operations and Management Symposium
(NOMS), pp. 1–4, May 2014.

[13] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek,
S. Sahhaf, W. Tavernier, and F. Risso, “Multi-domain
service orchestration over networks and clouds: A
unified approach,” in 2015 ACM SIGCOMM Conference,
pp. 377–378, August 2015.

[14] R. Cohen, K. Barabash, B. Rochwerger, L. Schour,
D. Crisan, R. Birke, C. Minkenberg, M. Gusat, R. Recio,
and V. Jain, “An intent-based approach for network
virtualization,” in Proc. IM’13, pp. 42–50, IEEE, 2013.

[15] J. Gil Herrera and J. Botero, “Resource allocation in nfv:
A comprehensive survey,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 518–532,
2016.

[16] D. Crockford, “The application/json media type for
javascript object notation (json),” 2006.

[17] F. Galiegue, K. Zyp, et al., “Json schema: Core
definitions and terminology,” Internet Engineering Task
Force (IETF), p. 32, 2013.

[18] T. H. Cormen, Introduction to algorithms. MIT press,
2009.

[19] N. Deo, Graph theory with applications to engineering
and computer science. Courier Dover Publications, 2017.

[20] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz,
and S. S. Ravi, “Spanning trees—short or small,”
SIAM Journal on Discrete Mathematics, vol. 9, no. 2,
pp. 178–200, 1996.

[21] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.
Duck, and G. Tack, “Minizinc: Towards a standard
cp modelling language,” in International Conference
on Principles and Practice of Constraint Programming,
pp. 529–543, Springer, 2007.

[22] T. Liu, “Sfc implementation,” 2018. Available at http:
//cs.unibo.it/~t.liu/sfc.

[23] E. ISG, “Gs nfv-eve 005 v1. 1.1 network function
virtualisation (nfv); ecosystem; report on sdn usage in nfv
architectural framework,” tech. rep., ETSI, T.R. Available:
http://www. etsi. org/deliver/etsi gs/NFV-EVE/001
099/005/01.01. 01 60/gs NFV-EVE005v010101p, 2015.

[24] Google, “Google or-tools,” 2018. Available at https:
//developers.google.com/optimization/.

[25] C. Prud’homme, J.-G. Fages, and X. Lorca, Choco
Documentation. TASC - LS2N CNRS UMR 6241,
COSLING S.A.S., 2017.

[26] K. Kuchcinski and R. Szymanek, “Jacop-java constraint
programming solver,” in CP Solvers: Modeling,
Applications, Integration, and Standardization,
co-located with 19th CP, 2013.

[27] C. Schulte, M. Lagerkvist, and G. Tack, “Gecode,”
Software download and online material at the website:
http://www. gecode. org, pp. 11–13, 2006.

[28] G. Chu, M. G. de la Banda, C. Mears, and P. J. Stuckey,
“Symmetries and lazy clause generation,” in Proceedings
of the 16th CP Doctoral programme, pp. 43–48, 2010.

[29] I. Gurobi Optimization, “Gurobi optimizer reference
manual,” URL http://www. gurobi. com, 2015.

[30] I. Gurobi Optimization, “Gurobi 7.5 performance
benchmarks,” tech. rep., 2017. Available at http://www.
gurobi.com/pdfs/benchmarks.pdf.

[31] C.-O. Foundation, “Coin or,” 2016. Available at https:
//www.coin-or.org.

[32] R. Amadini, M. Gabbrielli, and J. Mauro, “Portfolio
approaches for constraint optimization problems,” in Lion
8, pp. 21–35, 2014.

[33] R. Amadini, M. Gabbrielli, and J. Mauro, “A multicore
tool for constraint solving,” in Proc. IJCAI 2015,
pp. 232–238, 2015.

[34] ITU-T, “Rec. y.1530 “call processing performance for
voice service in hybrid ip networks”, nov. 2007.,” 2007.
Rec. Y.1530.

[35] Y. Xie, Z. Liu, S. Wang, and Y. Wang, “Service
function chaining resource allocation: A survey,” CoRR,
vol. abs/1608.00095, 2016.

[36] B. C. Pierce, Types and programming languages. MIT
press, 2002.

Page 2013

https://tools.ietf.org/html/rfc7665
https://tools.ietf.org/html/rfc7665
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.openstack.org/
https://www.openstack.org/
http://cs.unibo.it/~t.liu/sfc
http://cs.unibo.it/~t.liu/sfc
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com/pdfs/benchmarks.pdf
https://www.coin-or.org
https://www.coin-or.org

	Introduction
	Application Context: NFV/SDN Networking
	Problem Definition
	Service Function Chain specification
	SFC design problem

	SFC modeling with Constraint Programming
	Empirical Validations
	Discussion and Conclusion

