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Abstract

Today, during service delivery, providers
allocate their delivery resources such that their own
delivery-dependent costs are minimal. However, during
service delivery, costs arise not only for the provider,
but for the customer, too. In industrial maintenance,
for example, those costs arise—depending on service
delivery—due to longer equipment unavailability.

The concept of system-oriented service delivery
aims at minimizing the total (customer and provider)
delivery-dependent costs within the service system and
promises a Pareto improvement over today’s practice.
Hence, added value is created. However, so far, we
have no understanding of the magnitude of and factors
favoring high added value through system-oriented
service delivery.

Consequently, this work aims at filling this gap
and widening knowledge on the added value through
system-oriented service delivery. We present a
simulation study to elaborate on the added value in
dependency of the customer base constellation in an
industrial maintenance illustrative scenario.

1. Introduction

Within the field of service science, Ostrom et
al. [1, 2] identify the need for further research
in service delivery. Recently, researchers evaluated
service delivery approaches within service systems
[3]. In detail, the authors argue that all system
participants—i.e. provider and customers—have
delivery-dependent consequential costs associated to a
specific service delivery solution. Today, providers
allocate delivery resources such that their own
delivery-dependent costs are minimized (including
possible service level agreement penalties). This implies
that providers favor any delivery solution that results
in minor cost savings for themselves, even if much
larger additional costs are introduced on the customer
side. Hence, the authors stress a systematic resource

allocation inefficiency from a system viewpoint. Wolff
et al. [3] refer to this as provider-oriented service
delivery.

Consequently—following the idea of Service
Systems [4] and Service Systems Engineering
[5]—Wolff et al. [3] propose the concept of
system-oriented service delivery that can be summarized
by two components: First, a shift in the delivery
objective. Instead of delivering such that the provider’s
delivery costs are minimal, providers deliver service
such that the system’s total delivery-dependent costs
are minimized. In other words, the provider takes
delivery-dependent costs on both, the provider, as well
as on the customer side in account during resource
allocation. Second, the introduction of a monetary
re-allocation method allowing monetary compensation
and cash flow between participants. Given the monetary
re-allocation mechanism, individual advantages and
disadvantages through the shift from current delivery
approaches towards system-oriented service delivery
are compensated and the added value is distributed
among participants. Note that—per definition—any
disadvantages can be fully compensated, hence,
system-oriented service delivery results in a Pareto
improvement (i.e. at least one participant has an
advantage and no participant has a disadvantage
through the new solution) over provider-oriented
service delivery. The improvement compared to today’s
solution (from a system viewpoint) is referred to as
added value.

Whilst the added value is greater or equal to
zero, the magnitude of added value through the shift
towards system-oriented service delivery cannot be
quantified on a general basis. However, there may
still be a pattern that allows for indications on the
added value on a general basis. For example, as
the added value is created by a shift in resource
allocation, and, consequently, a shift in service delivery
response time between customers, the added value
depends greatly on the differences in response time
sensitivity of delivery-dependent costs on the customer
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side. It is evident that the composition of the
customer base with regard to their delivery-dependent
costs plays a significant role in the creation of added
value through system-oriented service delivery. This
can easily be illustrated by a simple example: If
two customers’ delivery-dependent costs are equally
sensitive to changes in the response time (i.e. have
the same development of their delivery-dependent costs
over an increased response time), no value can be
gained by interchanging their priority, as savings of
one customer introduce additional expenses for the
other customer to the same extend. Consequently,
the cost saving potential is low. However, if their
delivery-dependent costs are differently response time
sensitive, the gain for one customer may be higher than
the loss for the provider and other customer and added
value is created, resulting in a high cost saving potential.
Taking this simple example as a basis, we believe that
the amount of added value created depends highly on
the range of the customers’ delivery-dependent cost
time-sensitiveness.

Consequently, the goal of this work is twofold:
First, we aim at addressing the lack of knowledge
on the magnitude of added value created through
system-oriented service delivery. Furthermore, second,
we aim at evaluating initial thoughts on the range
of delivery-dependent cost time-sensitiveness expressed
in the above example. As the quantification of the
added value is impossible on an abstract level, we use
industrial maintenance as an illustrative scenario [6] and
apply a simulation experiment within this domain.

The remainder of this work is structured as follows:
In Section 2, we introduce fundamentals and related
work. In Section 3, we discuss how the customer
base can be modeled in order to evaluate its impact
on the the added value through system-oriented service
delivery. In Section 4, we present a provider- and
system-oriented technician dispatching problem as basis
for the simulation study. Furthermore, we present the
simulation model, experiment, and its results. Finally,
in Section 5, we conclude this study and point out
limitations and future work.

2. Fundamentals and Related Work

In this section, we introduce fundamentals and
related work. We elaborate on industrial maintenance,
technician dispatching, as well as on system-oriented
service delivery.

2.1. Fundamentals of Industrial Maintenance

Industrial maintenance is a prominent example of
a service within the industrial domain [7]. According

to Geraerds [8], maintenance includes “all activities
aiming at keeping an item in, or restoring it to, the
physical state considered necessary for the fulfillment
of its production function”. Research shows that
manufacturers see efficient maintenance as an advantage
over their competitors [9].

Currently, the field of industrial maintenance
undergoes two major changes: First, maintenance
strategies are shifting from reactive towards preventive
maintenance strategies. In other words, instead of
running equipment until it fails, one tries to prevent
its failure in the first place [10]. Second, maintenance
business models change. Instead of selling individual
maintenance tasks, providers aim at selling long-term
maintenance engagements [11], often realized through
full service (e.g. [12, 13]), availability-based (e.g.
[14]), and performance-based (e.g. [15]) maintenance
contracts.

Regardless of maintenance strategy or service
offering, one core task in operations (i.e. service
delivery) remains the same: Providers need to schedule
service tasks given their limited workforce, a task
referred to as task scheduling or technician dispatching.
During assignment, providers usually aim for two
contradictory goals: high profitability and technician
utilization, and high customers satisfaction, which is
usually measured in short-term responsiveness [16].
In the following section, we further elaborate on the
technician dispatching problem from an operations
research perspective.

2.2. Fundamentals of Technician Dispatching

The technician dispatching problem marks an
extension to the vehicle routing problem initially
introduced by Dantzig and Ramser [17], as it adds the
further complexity of task duration at the customer’s
site. In literature, technician dispatching is addressed
under multiple terms, ranging from technician or
task scheduling to technician dispatching. Literature
on technician dispatching can be separated into two,
non-disjunctive streams: The first stream focuses on
the formulation of technician dispatching optimization
problem and includes work on specific use cases (e.g.
[18, 19, 20]) as well as literature reviews (e.g. [21, 22]).
The second stream centers around heuristics solving
formulated dispatching problems (e.g. [23, 24, 25]).

2.3. Industrial Cost of Downtime

The field of downtime cost elaborates on the costs
associated with the downtime of a production-critical
infrastructure. Evidently, this scenario can be looked
at from multiple perspectives, hence, it is no surprise
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that costs of downtime are researched from multiple
domains, as, for example, costs encountered during an
electric outage (e.g. [26]), IT infrastructure downtime
(e.g. [27]), or downtime of industrial production
equipment. In the industrial sector, around 80% of
manufacturers cannot predict their costs of downtime
accurately, as estimated costs are exceeded by a factor
between two and three [28].

Within cost of downtime, researchers commonly
differentiate between direct and indirect costs of
downtime [29]. The first refers to all costs that are
directly related to the repair of the asset, common
examples are the labor and material spent to repair the
asset. The ladder refers to consecutive costs of a failure
and include productivity loss (e.g. idle labor force),
opportunity costs due to lost production outcome, or
band aid costs (costs to minimize damage).

Fox et al. [30] determine the financial impact of
machine downtime on the letter sorting process in the
Australia Post. They use historic data and come to the
conclusion that the loss of production capacity has the
highest impact. Another study by Edwards et al. [31]
presents a regression model to estimate costs associated
to machine failure in the mining industry. Their model
is trained on historic data. Furthermore, Vegunta and
Milanovic [32] present a framework to estimate costs
of downtime within industrial production processes
due to short-time voltage sags. Wolff and Schmitz
[33] contribute to this topic by pointing out further
research need within the cost of downtime estimation
and by presenting a high level approach to determine
opportunity costs associated with machine downtime.

2.4. System-Oriented Service Delivery

System-oriented service delivery was first
introduced by Wolff et al. [3]. The authors highlight
a systematic resource allocation inefficiency during
today’s resource allocation practice within service
systems—what they refer to as provider-oriented
service delivery—as providers aim at minimizing
their own delivery-dependent costs without taking
delivery-dependent costs on the customer side into
account. Following the ideas behind Service Systems
Engineering [5] and Service Systems (e.g. [34, 4]),
the authors propose the formation of one holistic
service system including all customers and within that
service system resource allocation such that the total
delivery-dependent system costs—hence, the sum of
delivery-dependent costs on the customer as well as
on the provider side—are minimized. Per definition,
overall delivery-dependent costs must be lower (or
equal), hence—from a system perspective—added

value is created. However, from an individual
participant’s perspective, the shift in resource allocation
approach may result in participants having an advantage
(i.e. a shorter response time than before), and others
having a disadvantage (i.e. a longer response time
than before). In order to prevent disadvantages on
an individual participant level, the authors propose
a monetary re-allocation mechanism through which
any advantages and disadvantages of all participants
are shared among others. Given the non-negative
added value, any participant’s individual disadvantage
can be compensated, and the remaining added value
can be distributed among all participants. Given the
monetary re-allocation mechanism, the authors are
able to show that the proposed approach results in a
Pareto improvement over today’s solution. The findings
from system-oriented service delivery furthermore
support the idea of value co-creation, as value is created
through the interaction of multiple players [35, 36]. All
technician dispatching problems introduced in Section
2.2 follow the provider-oriented delivery approach.

Given first conceptional work on system-oriented
service delivery, there are still many open questions,
some concerning system design, others its
implementation in practice: For system-oriented
service delivery, for example, customers must
know their delivery-dependent costs, which is a
challenging tasks in a variety of domains (e.g.
[27] for IT infrastructure). Furthermore—from a
mechanism design perspective—we must ensure
incentive compatibility. In other words, all participants
should have the incentive to provide their true delivery
dependent costs. This is important as exaggerated
delivery-dependent costs may result in faster service
delivery, i.e. a shorter response time. This, however,
does not align with the core idea of minimizing true
total delivery-dependent system costs. We believe that
incentive compatibility can be achieved by carefully
designing the distribution of added value, which,
itself, marks another unanswered question in the field
of system-oriented service delivery. In addition, we
must further understand the magnitude of added value
created through the shift towards system-oriented
service delivery. So far, it has only been shown that
system-oriented service delivery results in a Pareto
improvement over provider-oriented service delivery,
however, we have no understanding on the magnitude
of added value created. Furthermore, we would like
to be able to identify markets in which the application
of system-oriented service delivery is especially
promising. Last but not least, providers must redesign
their value-proposition within system-oriented service
delivery, and, consequently, perform business model
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innovation according to Maglio and Spohrer [37].
As the ratio of delivery resources and service

demand is not changed, it is evident that the added
value is achieved by a resource re-allocation among
customers. Additional value is created through
the shift of delivery resources at a specific time
from one customer to another, if—and only if—the
savings introduced for the customer through the
resource re-allocation are greater than the additional
expenses of the other participants. Hence, it is
evident that the magnitude of added value depends
greatly on the differences in delivery-dependent costs
of the participants between the provider- and the
system-oriented resource allocation.

Consequently, we aim at further exploring the impact
of the service system composition with regard to the
delivery-dependent costs on the added value created
through system-oriented service delivery.

3. Modeling Cost of Downtime over the
Customer Base

The service system is composed of many customers
and—for simplification—only one provider. However,
the following argumentation also holds true for service
systems with more than one provider. The customers
within the service system—the customer base—jointly
influence the added value created through the shift
towards system-oriented service delivery through their
composition with regards to their delivery-dependent
costs. Given the goal of this work, we first introduce
how cost of downtime is modeled for an individual
customer. Second, we move from modeling one
customer to modeling an entire customer base, hence,
the composition of the service system with regards to
the customers. Note that in this context, one customer
does not refer to a business itself (i.e. the manufacturer),
but instead to an equipment unit (i.e. a production
equipment unit) requiring service.

3.1. Modeling the Delivery-Dependent Costs
of an Individual Customer

Given previous notion, researchers differentiate
between direct and indirect costs of downtime. In
the context of system-oriented service delivery, indirect
costs of downtime refer to the delivery-dependent
costs faced by the customers. It is evident that
indirect costs of downtime in industrial manufacturing
increase over time, as, for example, a higher equipment
unavailability results in higher production time losses.
For simplification, we assume a linear relationship
between the delivery-dependent costs and the response
time. In case of an immediate repair, delivery-dependent

costs are 0. Hence, delivery-dependent costs for one
customer can be modeled by the cost slope s which
represents the sensibility of their costs of downtime (i.e.
delivery-dependent costs) on the response time.

3.2. Modeling the Delivery-Dependent Costs
of the Customer Base

If an individual customer’s cost of downtime can be
modeled using a slope s, the entire customer base can
be modeled using a distribution representing s over all
customers.

In order to understand the impact of the customer
base on the added value created, we use three different
distributions to model typical customer bases within
industrial maintenance: a normal, uniform, and mixture
distribution of two symmetric normal distributions.

The normal distribution models a homogeneous
customer base with regards to their cost slope, as
customers slope centers around a mean value. In
this case, the maintenance provider only serves one
customer segment with regards to their cost slope.
The uniform distribution models the contrary, hence,
heterogeneous customer base. This case corresponds
to a maintenance provider serving many different
customers with regard to their cost slope. In other
words, the response time sensitivity of the customer’s
cost of downtime differs between all customers. Finally,
the mixture distribution corresponds to customer bases
that consist of two customer segments with regards
to their cost of downtime response time sensitivity.
A common example of such a customer base is the
automotive market, where some customers (usually
the car manufacturers) have highly automated and
integrated production systems with a very high response
time sensitivity, whereas other customers (usually their
suppliers) rely on “demand-based” production that is
less response time sensitive as their production system
is less integrated.

For the three slope distributions, an exemplary
visualization is provided in Figure 1. One row
corresponds to one customer base, in which the left
diagram shows the distribution of cost slopes s and the
right figure indicated the cost of downtime development
over response time for exemplary and randomly drawn
customers from that customer base. In the top
distribution—the normal distribution—the customers
cost of downtime develop rather similarly to each other.
In the second case, the uniform distribution, we see
clear differences of the cost of downtime development
over the response time. In the third case—the mixture
distribution—we see two segments of customers having
roughly equal cost of downtime development within
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Figure 1. Exemplary slope distribution and their cost

of downtime over response time.

one segment, and highly different cost of downtime
development over response time between the segments.

4. Elaborating on the Added Value for
Different Customer Base Patterns

Based on the introduced distributions to model
different customer bases, we conduct a simulation
experiment to further elaborate on both, the added
value created and the impact the customer base has
on the added value created through system-oriented
service delivery. A simulation experiment is a promising
approach to test many samples of the assumed cost slope
distributions [38].

In this section, we first introduce a provider- and
system-oriented technician dispatching problem (as
resource allocation mechanism). Second, we present the
core components of the simulation model. Third, we list
parameters and scenarios used for the simulation study.
Finally, we present results and discuss those.

4.1. Technician Dispatching Problem

In this work, the technician dispatching problem
is limited to the assignment of a set of tasks to a
set of technicians over the period of one day. Tasks
are assigned under the consideration of hard work
time restrictions (no overtime allowed) and routing.
Furthermore, not all tasks must be assigned, hence, a
backlog of tasks is possible. In practice, those tasks
would be added to the set of tasks for following days.
For simplification, technician and required task skills are
neglected.

Given the set T = {1, . . . ,m} of technicians (and
for easier understanding, also their home locations)
and set W = {1, . . . , n} of tasks (again, also their
locations), the technician dispatching problem can be
modeled by a Graph G = (V,E). The set of vertexes
V consists of the technician and task locations, hence,
V = {T,W}. The set E represents edges between
any two vertexes, hence, E = {(i, j)} with i, j ∈ V .
Each edge from i to j with i, j ∈ V has a travel time
tij associated with it. A task i ∈ W has a duration
of di. The maximum work time for a technician is
provided by tm and does not vary among technicians.
Furthermore, all technicians start their shift at the same
time, in detail, at ts. f and p refers to technician travel
costs per time unit and a penalty for the provider, if a
task is not performed that day, respectively.

For the optimization problem, we define the
following two decision variables: First, ai denotes
the schedules start time (0 indicating immediate start).
Second, we define xijt, i, j ∈ V, t ∈ T as shown in 1.

xijt =

{
1 if t travels directly from i to j
0 otherwise (1)

Given the defined variables, the provider-oriented
dispatching problem is formulated as shown in 2.
The objective function for provider-oriented technician
dispatching problem—as shown in 2a—minimizes
provider costs that are limited to routing and penalty
costs. According to Sörensen et al. [39], routing costs
are a significant cost driver in field services.

min
a, x

∑
i∈V

∑
j∈V

∑
t∈T

tijxijtf + (n−
1

2

∑
i∈V

∑
j∈V

∑
t∈T

xijt)p (2a)

s.t.
∑

i∈V \{j}

(xijt − xjit) = 0 ∀j ∈ V, t ∈ T, (2b)

∑
j∈W

xijt ≤ 1 ∀i, t ∈ T, (2c)

∑
j∈W

xijt = 0 ∀i ∈ T, t ∈ T \ {i}, (2d)

∑
i∈V

∑
t∈T

xijt ≤ 1 ∀j ∈ W, (2e)

(ts + tij)xijt ≤ aj ∀i, j ∈ W, t ∈ T, (2f)

(ai + di + tij)xijt ≤ aj ∀i, j ∈ W, t ∈ T, (2g)

(ai + di + tij)xijt ≤ bs + tm∀i, j ∈ W, t ∈ T, (2h)

xijt ∈ {0, 1} ∀i, j ∈ V, t ∈ T (2i)

The formulation shown in 2 follows common
formulation approaches of the technician dispatching
problem (e.g. [18, 20, 19]): Constraint 2b conserves
flow, 2c and 2d limit technician routes to one and ensure
that each technician leaving also returns to his home
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depot. Given 2e, each task is only visited by one
technician. Using 2f and 2g, technician arrival times are
calculated and 2h ensures a maximum working time. 2i
imposes the binary decision variable.

In order to formulate the system-oriented technician
dispatching problem, the objective function needs
to be modified to correspond to the system’s total
delivery-dependent costs. Those include incurred costs
of downtime on the customer side and travel costs
on the provider side. Penalties are not further taken
into account as they are total system cost neutral.
The objective function for system-oriented technician
dispatching is shown in 3, whereas the constraint
body is equivalent to the provider-oriented technician
dispatching problem as shown in 2.

min
x,a

∑
i∈V

∑
j∈V

∑
t∈T

tijxijtf +
∑
i∈W

aisi (3)

4.2. Simulation Model

The simulation model is able to solve a dispatching
problem twice, once following provider-, and once
following system-oriented service delivery. After
solving the optimization problems, the total system costs
of the given solutions are calculated and compared.
Hence, in other words, the simulation model solves
one problem instance, and based thereon, calculates the
added value through system-oriented service delivery.
In detail, the simulation model consists of three
modules, namely the problem set generator, the solver,
and the cost calculator.

The first module, the problem instance generator,
creates a set of tasks that need to be assigned to a set
of technicians. During generation, the generator follows
pre-defined distributions.

The second module, the solver, takes the problem set
as input and solves it according to the provided delivery
approach. Hence, this module is responsible for creating
the actual technician schedules. The solver relies on
heuristics and assigns tasks to technicians according
to the technician dispatching problems introduced in
Section 4.1. As the technician dispatching problem is
NP hard, the solver relies on heuristic solving [25].
In detail, the solver relies on a two-step heuristic
solving approach, by first creating a feasible solution
using the Least Insertion Cost approach, and second,
incrementally improving the feasible solution using a
Variable Neighborhood Search. Both approaches are
implemented according to Petrakis et al. [19].

The third module calculates the total
delivery-dependent system costs for the given solutions,
hence, for the provider- and system-oriented technician

schedules. Based on the calculated system costs, the
added value through the shift towards system-oriented
service delivery is calculated.

Following Sargent’s [40] suggestions on model
validation, the simulation model was validated
using conceptual validation. In detail—after
development—the simulation experiment was presented
to two researchers, one with a background in industrial
maintenance and one with a background in simulation
experiments. Furthermore, the study was presented
to four experts from practice from two medium sized
German production equipment manufacturers that also
offer maintenance services to their customers. For
each manufacturer, one dispatcher and one managing
employee was consulted. In summary, feedback
was concerned with the level of complexity of the
optimization problem. In detail, two points were raised:
First, the complexity of the model regarding constraints,
as, for example, skills and task differentiation is not
reflected in the optimization problem. Second, experts
highlighted their concerns with the greenfield and
offline scheduling approach. However, they also agreed
that online scheduling may be neglected for now and be
introduced in future work.

4.3. Simulation Parameters, Experiment
Factors, and Design of Experiment

The objective of this work is the evaluation of the
impact of the customer base on the added value created
through system-oriented service delivery. In order to do
so, a hierarchical two-factor design was chosen: The
first factor F1 refers to the overall variance found within
the customer base, and the second factor F2 refers to the
cost slope distribution used to model the customer base.

In order to keep the different distributions
comparable, all distribution have the same mean
cost slope of s̄ = 890 following Salonen’s [29] study
in the Swedish manufacturing industry. Given the
distributions introduced in section 3.2, the normal and
uniform distribution are fully specified by a mean and
variance (distribution parameters can be calculated
accordingly). The mixture distribution, however, still
has one degree of freedom left, as the variance of the
underlying child distributions has not been specified.
This is further shown in Figure 2 that displays three
mixture distributions with the same overall variance
and mean value, however, different standard deviations
for the two underlying child normal distributions. We
decided to use multiple instances of variance in order to
allow for maximum insight.

In detail, we used the following scenarios to reflect
the variation of the cost slope distribution:
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Figure 2. Different mixture distributions with equal

mean and variance.

F1 = {V ar(s) = 40, 000;V ar(s) = 90, 000;

V ar(s) = 160, 000;V ar(s) = 250, 000}

Furthermore—for factor two—the following
distributions were used as scenarios:

F2 = {N,U,M2,M5,M10}

In this case, N refers to the normal distribution,
U to the uniform distribution, and MX to a mixture
distribution of two symmetric normal distributions
having a standard deviation of one X-th of the standard
deviation as defined through factor one. In this case,
X indicates how well the two customer segments are
separable (high X indicating highly separable). Given
those scenarios, there are 4 · 5 = 20 simulation cases
that are each executed in a Monte Carlo Simulation.
In a Monte Carlo Simulation, simulation models are
executed repeatedly (here: k = 250 times) in order to
realize more reliable results under stochastic variance.
Using a Monte Carlo Simulation for each case, a total of
20 · 250 = 5000 individual simulations are executed.

Table 1. Simulation experiment parameters.

Parameter Value

Travel time (in min) N(30, 10)
Task duration (in min) N(90, 15)

Penalty p (in monetary units) 5000
Number of tasks n 40

Number of technicians m 10
Shift start 8 a.m.

Work time tmax (in min) 480
Travel time costs f (in monetary units) 5.53

Neighborhood search iterations 500

For simulation, parameters as shown in Table 1 are
used. The number of technicians, number of tasks,
and the travel and task duration are chosen such that a

theoretical mean utilization of 106.25% is reached (4
tasks per day and 5 journeys), hence, not all tasks can
be fulfilled within one day, leading to the prioritization
of tasks. Even though this theoretical utilization is
higher than reported in literature (e.g. [41]), it represents
our findings from practice very well, as maintenance
providers always have a backlog of tasks that need to
be served. Travel costs are based on billing data of a
German medium-sized machine manufacturer offering
maintenance services to their customers.

4.4. Results and Discussion

The results of the simulation experiment are shown
in Table 1. As mentioned, each case was simulated
k = 250 times and the average improvement through the
shift from provider- to system-oriented service delivery
is given in Table 2 for each factor value combination.
Prior to discussing the results, we want to point out
that the findings of this work need to—as all results
generated by simulation—be handled with care, as
simulation studies only test many, yet not all possible
instances of a stochastic variable. Hence, only sample
of the stochastic possible populations are analyzed.

Table 2. Simulation experiment results:

improvement (in %).

Distribution / Variance 40000 90000 160000 250000

N 3.23 4.76 6.32 7.29
U 1.28 1.34 1.68 1.52

M2 3.09 4.97 6.50 8.52
M5 2.99 4.78 6.57 8.61

M10 2.85 4.68 6.60 8.64

mean 2.69 4.11 5.53 6.92

First, the results show that—on average—the added
value was greater than 0, hence, these results align with
previous work by Wolff et al. [3]. Of the total of 5000
simulation cases, 203 (4% of simulation runs) indicate
a negative improvement, i.e. a degradation, through the
shift from provider- to system-oriented service delivery.
In those 203 cases, the average degradation of total
delivery-dependent system costs is 0.95% and can be
linked to heuristic solving. Due to heuristic solving,
it is possible that non-optimal technician schedules are
created, and, thus, result in higher system costs in
system-oriented service delivery.

Second—only looking at the mean improvement
regardless of the customer base’s slope
distribution—our results suggest that the added
value created through system-oriented service delivery
increases with increasing variance of the customer
base cost slopes. The mean improvement over all
distributions with a variance of 40000, 90000, 160000,
and 250000 is 2.69%, 4.11%, 5.53%, and 6.92%,
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respectively. This supports our initial example that the
potential of system-oriented service delivery with two
highly different customers is high. However, a more
sophisticated analysis is required here.

Third—as displayed in Figure 3—our results
indicate that the added value through system-oriented
service delivery is—regardless of cost slope
variation—the lowest in the case of a customer base
with uniformly distributed cost slopes. Furthermore,
the results of the simulation experiment suggest that
markets with different segments—modeled by the
mixture distributions—have the highest gain through
system-oriented service delivery. Surprisingly, the
degree of segment separability (factor X) has very little
impact on the magnitude of added value created. In our
study, the added value for all X was within 0.3%.

Figure 3. Experiment Results.

Furthermore, we want to point out that the utilization
of technicians does not change significantly between the
provider- and system-oriented service delivery. This
is an important benchmark and indicator that the
simulation model itself is valid, as utilization cannot
change drastically between the two solutions as the
ratio between demand (tasks) and delivery resources
(technicians) has not changed.

The low added value in a customer base with
uniformly distributed cost slopes can be explained as
follows: The uniform distribution results—compared
to the other distributions—in a far smaller range of
drawn values given the fixed provided overall variance.
Consequently, the potential of reducing total costs is
low, as customer’s cost slopes are fairly close one
another.

Our results indicate that the added value—computed
based on the comparison against a base case—is
the highest in two distinguishable segment markets.
However, in practice, the segment with cost slopes may
have agreed on certain service levels, and, consequently,
requires a different base case. Indeed, it is a very
interesting question to see how system-oriented service
delivery compares to provider-oriented service delivery

if certain service level agreements (e.g. in the form of
response time guarantees) and varying penalties are in
place. Whilst added value will still created, we believe
it to be smaller compared to the findings of this work.

Given those results, we conclude the following
with regard to the objectives of this work: First,
our findings indicate total system costs savings
through system-oriented service delivery. Assuming
appropriate compensation methods in place, a shift
from provider-oriented to system-oriented service
delivery will result in a Pareto improvement. Given
this illustrative scenario, cost savings of nearly
9% are possible, indicating the high potential of
system-oriented service delivery. Second, the overall
variance of the customers’ cost slopes seems to be
positively correlated with the added value, hence,
supporting previous thoughts on the range of cost
slopes influencing the added value. However, more
sophisticated analysis is required to further support this
indication. Third, regardless of the overall cost slope
variance, the distribution of the slope also impacts the
added value (ordering: uniform ≤ normal ≤ mixture).

5. Conclusion

In this section, we summarize this work and
highlight its contribution. Furthermore, we point out
limitations and give directions for further research.

5.1. Summary and Contribution

In this work, we present a simulation study to
elaborate on the magnitude of added value created
through system-oriented service delivery, a novel
approach in service delivery aiming at minimizing the
delivery-dependent costs over all system participants.
The idea is rooted in the argument that all participant
have individual and varying costs associated to service
delivery. In industrial maintenance, for example, those
costs reflect costs of downtime due to unavailable
production equipment. Using the simulation study, we
elaborate on the impact of different customer bases
with regards to their cost slopes (i.e. response time
sensitiveness of their costs of downtime). In other
words, we use different compositions of customers with
regards to their cost increase over response time and
measure the impact on the added value created through
system-oriented service delivery.

The findings of this work suggest that the
distribution of the customers’ cost slopes impacts the
magnitude of added value through system-oriented
service delivery significantly. Uniformly distributed
cost slopes (resulting in a small, yet evenly distributed
cost slopes) result in much smaller gains through
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system-oriented service delivery compared to normally
distributed cost slopes among customers. In a customer
base consisting of two distinguishable segments with
regard to their cost slopes (modeled by mixture
distributions), the added value was the greatest,
and, hence, system-oriented service delivery has the
highest impact. Furthermore, regardless of cost slope
distribution, slope variance seems to be positively
correlated with the added value.

By elaborating on the added value created through
system-oriented service delivery, this work contributes
to the new field of system-oriented service delivery
introduced by Wolff et al. [3]. In a broader sense,
this work also contributes to the field of service science,
service systems, and sharing economy as it demonstrates
and try to measure the benefit gained from multiple
participants not only interacting with each other, but also
sharing benefits and losses among them.

5.2. Limitations and Future Work

Even though this work marks an important step
towards the introduction of system-oriented service
delivery, it certainly has several limitations.

First, the simulation model is based on an illustrative
scenario. Even though insights can be generated using
an illustrative scenario [6], it still contains assumptions
and simplifications. For example, we neglected
technician skills and dispatching was done under
certainty. Future work can extend this work by adding
further complexity by, for example, including technician
skills, introduce uncertainty, add customer-dependent
service level agreements, extend the planning horizon,
or allow for online scheduling. Furthermore, we relied
on normally distributed task duration and travel times.
Depending on the actual use case, other distributions
may be better suited.

Second, we applied a simple model regarding
delivery-dependent costs. In industrial maintenance,
for example, costs of downtime may not increase
linearly as buffer capacities can compensate a short
downtime. Furthermore, costs also depend on the
current production schedule and production demand at
the time of failure. Consequently, more complex models
are required in future work.

Third, one must be careful in interpreting the results
of the simulation study. As method, simulation has the
limitation of only simulating individual samples of a
stochastic process, and, hence, no general statements
can be made. Even though researchers try to minimize
the risk of faulty results by increasing the number of
repetitions, results may still not represent reality well.

Fourth, we call for more sophisticated research

elaborating on the influence of the cost slope variance
on the added value. A thorough understanding of the
relationship between the customers’ cost slopes on the
added value is crucial for the successful implementation
of system-oriented service delivery in practice.

Fifth, as indicated by Wolff et al. [3], the question
of the distribution of the added value created through
system-oriented service delivery remains unanswered.
However, this is an important question that need
to be addressed for the successful introduction of
system-oriented service delivery in practice. During
distribution mechanism design, one should incorporate
game theoretical approaches and try to align participant
individual interests (profit maximization) with system
interests (minimal system costs).

Finally, the added value depends on various factors.
In this work, we only elaborated on the customer side,
namely, their cost slopes. However, the added value is
determined by the interchange of multiple variables, as,
for example, also the change of provider costs between
different delivery solutions and their ratio compared to
the customer costs. Therefore, this work only marks
first steps into this new field of research and we call
for further research elaborating on the added value
introduced through system-oriented service delivery.
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