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Abstract

Workload modeling in public cloud environments
is challenging due to reasons such as infrastructure
abstraction, workload heterogeneity and a lack of
defined metrics for performance modeling. This paper
presents an approach that applies statistical methods
for distribution analysis, parameter estimation and
Goodness-of-Fit (GoF) tests to develop theoretical
(estimated) models of heterogeneous workloads on
Amazon’s public cloud infrastructure using compute,
memory and IO resource utilization data.

1. Introduction

As more organizations migrate their technology
services from local data centers to public cloud
infrastructure, the need to minimize cost while
maintaining Quality of Service (QoS) guarantees
becomes critically important. However, due to the
opaqueness, heterogeneity, scale and tenancy issues
with public cloud environments, the development of
resource management policies for optimal workload
resource allocation is difficult. The evaluation of
these policies is even more challenging because
of the difficulty in reproducing and controlling the
environment in which they can be evaluated. As a
result, cloud workload resource allocation is often a
heuristic process. This approach increases the risk of
over-provisioning and under-provisioning of resources
which consequently result in increased Total Cost of
Ownership (TCO) and Service Level Agreement (SLA)
violations, respectively.

Rather than relying on heuristics for the allocation
of workloads to cloud resources, the adoption of an
analytic approach is likely to yield better long term
results. There are two critical requirements for this
to be successful. The first is that the environment
requires extensive and continuous analysis in order for
its characteristics to be understood and quantified. The
second is that the quantified parameters have to be

exploited in order to develop simulation models which
accurately represent operational conditions.

2. Problem Definition & Importance

Several prior efforts have attempted to address
workload analysis and modeling by developing
mechanisms to characterize workload patterns in public
cloud infrastructure [1], [2], [3]. However, most of
these efforts are predominantly based on coarse-grained
statistics [4] over a short period of time [5] and
simply focus on analyzing cloud workload diversity
by classifying tasks using critical characteristics [6],
[7], [8]. Most of the approaches lack a comprehensive
model that has sufficient detail about the parameters
derived from the analyses.

The first objective of this paper is to present
an approach for the in-depth empirical analysis and
modeling of public cloud workloads. Building on
the previous work done by [9] and [10], our effort
uses metrics gathered over a 14 month period from
an Amazon Web Services (AWS) Virtual Private
Cloud (VPC) to develop statistical distributions of
the workload patterns, estimate the parameters of the
distributions in order to create a target function (model)
and validate the simulated theoretical model against
the empirical data. An important contribution of
the simulated models is that they are not a simple
replay of the collected data but rather models with
random patterns based on realistic parameters. This
allows for a dynamic simulation of the operational
environment in order to understand the impact of
proposed optimization policies so they can be validated
before being implemented in real world environments.

The second objective of this research is the
development of a pipeline for the continuous extraction,
transform and load (ETL) of utilization metrics for the
cloud workloads.

The final objective of this research is the practical
application of the models developed in this work as
input to our previous work [11]. In our previous effort,
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we developed an Integer Linear Programming (ILP)
model for resource allocation based on the location
(mean) and spread (standard deviation) of the workload
data. The simplifying assumption in that effort was
that the workload parameters of CPU, Memory and IO
are normally distributed. However, in this research, we
use a more fine-grained approach to modeling workload
data by fitting them against theoretical distributions and
estimating their parameters. This allows us to generate
simulations that help validate the resource management
policies generated by our ILP model before making
them operational.

The remainder of this paper is organized as follows:
In the rest of this section we discuss some of the
challenges and importance of workload modeling in the
Cloud. Section III presents some of the previous work
on cloud workload modeling. Section IV describes our
data set and the relevant metrics used in our analysis.
In sections V, VI and VII we discuss our methodology
for cluster and distribution analysis. Our results are
presented in section VIII, followed by our conclusion
and future work in sections IX and X, respectively.

2.1. Challenges of Workload Modeling in the
Cloud

Workload modeling and analysis is especially
challenging in a heterogeneous, large and highly
dynamic environment such as a public cloud data center
for several reasons. Some of these reasons include:

• Opaqueness: While users are able to interact
with their services in AWS, they have no visibility
or access to the physical infrastructure that
hosts them. As a result, a user has limited
knowledge about which specific servers, network
components and storage devices service their
workloads. This lack of visibility can lead
to inaccurate assumptions about the capacity
of compute, memory or IO when attempting
to develop resource management or allocation
policies.

• Tenancy: Amazon, like most public cloud
providers, makes use of an over-subscription
model [12]. With this approach, the underlying
hardware is shared by multiple service subscribers
which in turn, can result in competition for shared
resources (such as storage and networking). Users
have no knowledge of the behavioral patterns
or resource needs of the other workloads on
the shared platform. While over-subscription
is useful for cloud providers in order to
leverage under utilized capacity, it can lead to

overload conditions which have adverse impact
on subscribers [12]. Multi-tenancy can result
in unexplained or unpredictable behaviors in
workload performance patterns.

• Scale: As a leader in the IaaS (Infrastructure
as a Service) space [13], AWS operates at a
massive scale in terms of the number of physical
data centers and devices managed. An empirical
failure-analysis of large-scale cloud computing
environments shows that with an increase in
the number components managed, the failure
characteristics for workloads and servers are
highly variable [14]. This leads to an issue
of differential observability, which is a key
component of gray failure [15]. Differential
observability implies that due to scale, system
failures may not be apparent to consumers even
if their services are being affected by the failures.
This can manifest as unpredictable performance
patterns in services.

• Heterogeneity: Workloads can be broadly
classified according to their consumption of CPU,
memory and IO resources [16]. Workloads can
also be classified based on their interaction with
end-users as either latency-sensitive or batch [17].
Cloud workloads can be submitted at any time
and have different characteristics and profiles with
different resource needs. This high degree of
variability makes it difficult to predict patterns
over time.

2.2. Importance of Workload Modeling in the
Cloud

As an abstraction of reality, cloud workload
modeling increases the understanding of the behavioral
patterns of workloads, consequently leading to more
informed decision making with regards to resource
allocation policies [8], [4]. As mentioned previously,
workload modeling also allows for the simulation and
evaluation of resource management policies without
deploying them in production environments.

Modeling permits sensitivity analysis, which allows
a focus on the assumptions and parameters which impact
performance in a meaningful way, and not on those that
do not.

In order to generate realistic models, it is critical that
the data used to create the workload models are curated
from real-world cloud metrics. This helps to capture the
intrinsic diversity, dynamism and nuanced interaction
between the components of the system, within the limits
of the challenges mentioned in the previous section.
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Table 1. Summary of related work
Authors Trace Size Modeling Approach Workload Type Model Parameters Parameters Analyzed

Kavulya [4] 10 months Distribution analysis MapReduce Yes Duration

Zhang [5]
30 days

(5 day sample) Coarse-grain MapReduce Yes (partially) CPU, Memory and Disk

Mishra [6] 4 days Cluster centroids MapReduce No CPU, Memory and Disk

Aggarwal [7] 24 hours Cluster centroids MapReduce No Disk Usage

Moreno [8][9] 29 days Cluster centroids & distribution analysis MapReduce Yes CPU, Memory, Length

Maghalhaes [10] - Distribution analysis Web Yes CPU, Memory, Disk, Response time

Smith [18] 7 hours Distribution analysis MapReduce No Duration

Our Approach 14 months
(3 month sample) Distribution analysis Heterogenous Yes CPU, Memory and Disk IO

3. Related Work

Several prior efforts have engaged in the analysis and
modeling of workload patterns on cloud infrastructure
from different perspectives. In this section, we will
discuss the most relevant approaches to our work, as
well as their limitations and gaps.

Based on the analysis of the first version of the
Google tracelog, both [1] and [19] classify jobs and
tasks by duration using statistical data from cloud
computing workloads on the Hadoop ecosystem. This
work is limited in application to the study of timing
problems and unsuitable to the analysis of cloud
resource utilization patterns.

The statistical analysis of 10 months of MapReduce
traces done by [4] presents a description of distributions
as they relate to job completion times. Though the work
presents the statistical characteristics of the data as it
relates to resource utilization, job patterns and source
of failures, it fails to go into enough detail in exploring
other factors that impact resource consumption such as
capacity constraints and user demand patterns.

In [5], the authors present a study which evaluates
the suitability of the mean values for task waiting
time, CPU, memory and disk consumption to the
representation of the performance characteristics of real
traces. The work is based on historical trace data
from six Google compute clusters spanning five days
of operations. While the work shows that overall task
usage can be described using mean values of runtime
tasks, it does not address how the boundaries for task
classification were made.

The authors of [6] use task resource consumption
data generated by five Google clusters over four days
to develop cloud computing workload classifications.
The work proposes an approach that identifies workload
characteristics, constructs the task classification,

identifies the qualitative boundaries of each cluster
and merges adjacent clusters to reduce the number of
clusters. While very useful in classifying tasks, this
work does not perform an analysis of the actual clusters
formed.

Using data from one of Yahoo’s production clusters
over a 24 hour period, the work done by [7] describes
an approach to characterize Hadoop jobs. The main
objective of this effort was to use clustering techniques
to group jobs with similar characteristics. The work is
limited to a focus on the storage system and neglects
other critical resources such as CPU and memory.

[8] and [9] provide an approach for characterizing
cloud workloads in the context of both users and tasks
using Google tracelog. While this work does use real
production data curated from Google tracelogs [8], it
is limited to a two day sample and [9] ignores storage
resource utilization.

The work done by [10] presents an approach to
model resource utilization for interactive applications
such as a web server. The work makes use of
the RUBiS [20] benchmark to evaluate the impact of
users on resource consumption patterns. While the
model developed by the work defines distributions and
parameter estimates, it is based on a simulation of user
behavior on a private cloud environment.

From the analysis of the related work, it is clear
that previous analyses present gaps and limitations that
need to be addressed in order to achieve more realistic
workload patterns. Table 1 presents a summary of the
related work and how each compares to our approach.
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4. Data

4.1. CloudWatch Metrics

Amazon CloudWatch [21] is a service for
monitoring AWS resources such as Amazon Elastic
Cloud Compute (EC2) instances, Amazon Elastic Block
Store (EBS) volumes, Load Balancers, and Amazon
Relational Database Service (RDS) instances. By
default, CloudWatch provides metrics such as CPU
utilization, latency, and request. Alarms can also
be set using CloudWatch and it can also be used to
automatically react to predefined conditions.

For our research, we collected and curated Amazon
CloudWatch metrics for both Windows and Linux
EC2 instances on a weekly basis. These metrics are
extracted from CloudWatch into an S3 bucket and then
transformed and downloaded using a combination of
Python and R scripts. For the Linux-based instances,
a locally installed monitoring perl script was used to
collect memory, swap, and disk space utilization data,
which was then remotely reported to CloudWatch as
custom metrics [22]. EC2Config was used for the
Windows systems, to collect and send memory and disk
metrics to CloudWatch Logs [23].

Our working data set includes CloudWatch metrics
collected from 522 Windows and Linux servers running
individually unique workloads over a 14 month period.
From the overall data set, we analyze subsets of data
which represent metrics for the previous one-week
period, previous two-week period, previous one-month
period and the previous three-month period.

The EC2 CloudWatch metrics collected and used in
our work are as follows:

• EC2 Compute Utilization: The average
percentage compute units that are used by an EC2
instance for a defined period (every 30 minutes).
This is the processing power required to run an
application or workload on a particular instance
[24]. Over the last 14 months, we have collected
8,070,886 records for this metric. We normalize
this metric for our work as the variable CPU.

• EC2 Memory Utilization: The average
percentage memory capacity used by an
EC2 instance for a defined period (every 30
minutes). This is the memory consumed to run an
application or workload on a particular instance
[24]. Over the last 14 months, we have collected
5,173,491 records for this metric. We normalize
this metric for our work as the variable MEM.

Similar to the EC2 CloudWatch metrics, we also
collect data for each of the EBS volumes attached to an

EC2 instance. EBS metrics are reported to CloudWatch
only when the volume is attached to an instance and
active. The EBS CloudWatch metrics collected and used
in our work are as follows:

• EBS Disk Read Operations: The average
number of completed read operations from an
EBS device for a defined period (every 5 minutes).
We can determine the average read I/O operations
per second (IOPS) from this metric by dividing
by 300 [25]. This metric is only available for
instances and instance types that use instance
store volumes. Over the last 14 months, we have
collected 15,363,265 records for this metric.

• EBS Disk Write Operations: The average
number of completed write operations to an EBS
device for a defined period (every 5 minutes). We
can determine the average write I/O operations
per second (IOPS) from this metric by dividing
by 300 [25]. This metric is only available for
instances and instance types that use instance
store volumes. Over the last 14 months, we have
collected 15,363,258 records for this metric.

For our work, we use the sum of these two metrics at
each collection period as the variable IOPS.

4.2. AWS Price List Service

Amazon provides an API (AWS Price List Service)
for users to get up-to-date data on pricing and other
attributes of specific AWS services [26]. Using this
service, we extracted the following EC2 and EBS
attributes: Instance Family, vCPU, Clock Speed,
Elastic Compute Units (ECU) and Memory Capacity.

5. Methodology

Reliable performance evaluations require the use of
representative workloads [27]. As we mention in section
II, this is a difficult task because of the variations and
complexity in user workloads and the great number of
interrelated attributes and structures of workloads. Our
objective is to present an approach for capturing and
modeling the behavioral patterns of different application
workloads on production public cloud infrastructure.
Our effort can be described in three phases: data
collection, data exploration and preparation, and data
modeling and evaluation (see Figure 1). In the next
two sections of our paper, we will focus on the last
two phases of our process, which deal with cluster and
distribution analysis.
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Figure 1. Data collection, analysis, modeling and evaluation workflow.

6. Cluster Analysis

The cluster analysis phase is focused on describing
the characteristics and behavior of the data clusters that
we analyze. This involves a study of the statistical
properties of each of the parameters (CPU, Memory
and IO) within each cluster. Each cluster is made up
of metrics for workloads of the same instance type (or
capacity), operating system and observational period.
In order to access the variability or stability of our
workloads over time, we partitioned the clusters using
observational periods of one week each and generated
summary statistics for each of them. Our results were as
expected - using the most recent week as the baseline,
the farther away the observed window is from the
baseline, the more the workload behavior differed from
the baseline (as illustrated in Figure 2). While there
wasn’t a meaningful change in the variance for CPU
between periods, the farther back we go, we observe
an appreciable shift in the location of each cluster’s
distribution. Both Memory and IO (to a lesser degree)
metrics exhibit the same pattern.

Due to the observed variability in the behavior and
characteristics of workloads over time, we decided
to use four overlapping observational periods instead:
a one-week period, a two-week period, a one-month
period and a three-month period. This resulted in
168 different clusters. A correlation analysis between
the metrics of the clusters showed a moderate to
high correlation between CPU and Memory, as well
as between CPU and IOPS. However, the correlation
between Memory and IOPS was consistently low.

For illustrative purposes, we will limit our discussion
to one of the clusters - an m4.large Windows workload
for the one-week observational period. We will use this
cluster to illustrate our process for the remainder of the
paper, albeit for different observational periods. For
our sample cluster, the correlation coefficient between
CPU and Memory of 0.45 shows that as CPU resource
consumption goes up so does Memory consumption.
The same relationship exists between CPU and IOPS,
which show a correlation of 0.55. This can be explained
by the fact that as Memory demand increases, systems
tend to start writing to disk more often to compensate

Figure 2. Change in the weekly distribution for CPU, Memory and IO over four time periods (current week, one

week prior, four weeks prior and twelve weeks prior)
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for resource constraints. This increase in read and
write activity consequently results in an increase in
CPU utilization. There is little to no direct correlation
between Memory and IOPs (-0.02). While we do
observe some correlation between our measures, to
simplify our model, we decided to apply a naive
independence to them. Therefore, we limit ourselves in
the distribution analysis phase to univariate theoretical
distributions.

7. Distribution Analysis

This phase consists of analyzing the data
distributions for each of the 3 measures of each
cluster and fitting the data to a theoretical distribution
using a statistical Goodness-of-Fit (GoF) test [28].
From the parameters of the distribution we develop
a Probabilistic Distribution Function (PDF), which is
used as a representative target function (or model) for
the data distribution of each cluster.

Building on the work done by [10], [29] and [27],
the analysis was done in three major steps:

1. Statistical analysis of the data characteristics to
determine the candidate distributions to represent
the model;

2. Parameter estimation to set the parameters of
the model using estimation methods against the
selected distribution from the sample data;

3. GoF tests to evaluate whether the selected
distributions and their respective parameters
approximate the empirical data adequately.

We evaluated the usefulness of 21 different
theoretical univariate distributions against our data.
Some of the distributions evaluated include: Lambda,
Generalized Lambda (GLD) [30], Burr, Kappa,
4-parameter Kappa (4P-Kappa), Generalized Extreme
Value (GEV) [31], Generalized Weibull (GWD) [32],
3-parameter Error distribution (3P-Error) [33], and 6
types of the Pearson distribution system.

7.1. Parameter Estimation

Building on the work done by [34], we used seven
different parameter estimation methods: Maximum
Log-Likelihood (MLE), Histogram Fitting (HIST),
Quantile Matching (QM), Probability Weighted
Moments (PWM) [35], Method of Moments (MoM),
Method of L-Moments (MoL) and Maximum Product
of Spacing Estimator (MPS) [36]. Here we discuss four
of the methods we used:

• Method of Moments (MoM)
We start by using the Method of Moments
parameter estimation approach to fit a distribution
to the CPU utilization data (empirical data). We
then compare the four moments of the fitted
distribution with those of the empirical data.

• Method of Maximum Likelihood (MLE)
According to [37], the method of maximum
likelihood is the preferred method for providing
definitive fits to data using distributions such as
GLD. Using this approach against our data, we
also get the four moments of the fit.

• Method of L-Moments (MoL)
Another promising parameter estimation
approach introduced in [38] and [39] is the
method of L-moments. According to [39], this
is a more suitable technique when dealing with
heavy-tailed distributions.

• Quantile Matching (QM)
We also apply quantile matching in our parameter
estimation process, with the goal of numerically
minimizing the sum of squared differences
between our observed and theoretical quantiles.

7.2. Goodness of Fit

After we identify a potential representative
distribution and its parameters, we then test if the
model fits the data. The goal is to verify that the
empirical and theoretical data belong to the same
distribution. We use three tests: the Q-Q plots technique
(graphical method), the Kolmogorov-Smirnoff (KS) test
as described in [27] and the Anderson-Darling (AD)
test.

• Kolmogorov-Smirnoff (KS) Test
We use the Kolmogorov-Smirnoff (KS) resample
test as described in [27]. This test is based on the
sample statistic Kolmogorov-Smirnoff Distance
(D) between the data in the sample and the fitted
distribution. The null hypothesis is that the
sample data is drawn from the same distribution
as the fitted distribution. We run two different
tests based on this method. The first function
we use counts the number of times (out of a
1,000) that the KS test p-value exceeds 0.05 for
the null hypothesis. The second function runs a
one-sample KS test and returns the test statistic
(D) as well as the p-value.

• Graphical Comparison
To further evaluate goodness of fit, we look at the
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Quantile-Quantile (QQ) plots and the Probability
Density (PDF) plots derived from the different
estimation methods. By overlaying the PDF curve
of the fitted distribution on top of the histogram
of the CPU distribution data we can see which
estimation methods perform better than others.

• Anderson-Darling (AD) Test
The Anderson-Darling test [40] is a modification
of the KS test and gives more weight to tails than
the KS test. While the KS test is distribution free,
the AD test makes use of the distribution being
tested to calculate critical values. This makes it
a more sensitive test and better suited for skewed
distributions with long tails such as ours. Using
the AD test, we select the theoretical distribution
with the lowest AD-value to represent the data
distribution of each of the parameters in each
cluster.

8. Results

Table 2 shows the best-fit distributions, parameter
estimates and corresponding AD values based on
our distribution analysis and fitting process. From
the results, we can see significant diversity in the
characteristics of the workload as the observation
window expands or contacts. We see that the best-fit

distribution for CPU varies from the Pearson type IV
distribution, to the 4-parameter Kappa distribution, to a
Log Gamma distribution and to a 3-parameter Gamma
distribution. We see a similar level of heterogeneity
with Memory as well. However, we see a homogeneous
pattern with regards to the disk IO (IOPS) parameter.

The second observation we make is that both CPU
and IOPS are right-tailed as can be seen in both
Figures 3 and 4, while Memory is more normally
distributed. This indicates that both CPU and IO
resource consumption occurs in bursts followed by
periods of low activity. Memory resources, on the
other hand, are consumed at a more gradual pace.
This can likely be explained by the operating system’s
memory management mechanism which tends to cache
data in memory in order to limit expensive IO. These
mechanisms tend to allocate and hold on to memory
blocks in anticipation that it will be used in future
compute cycles.

Figure 3 shows the Cumulative Distribution
Function (CDF) comparing the theoretical distributions
to the empirical distributions for CPU, Memory and
IO for the one-week observation period. We can see
from visual inspection the similarity between the two
distributions for all the parameters. Similarly, Figure
4 shows the theoretical Probability Density Functions
generated from our parameter estimates in comparison
to the empirical PDFs of our data set.

Table 2. Best Fit distributions and parameter estimates
Distribution Parameters AD Value Distribution Parameters AD Value

1 Week
CPU Pearson IV

m = 2.1757,
ν = −18.5381,
λ = 18.5246,
α = 0.1376

0.4739

1 Month
CPU Log Gamma

α = 2141.1955,
λ = 735.1686

5.7394

Memory Burr
α = 1.9436,
γ = 248.0608,
θ = 0.0022

2.9577 Memory Burr
α = 0.4558,
γ = 219.5190,
θ = 0.0022

3.4414

IOPS Pearson IV

m = 1.2933,
ν = −3.4923,
λ = 243.9343,
α = 14.7534

0.8082 IOPS Pearson IV

m = 1.1889,
ν = −0.7064,
λ = 261.3269,
α = 29.6874

3.7380

2 Weeks
CPU 4P Kappa

α = −0.2684,
τ = −1.5195,
ξ = 0.3380,
λ = 19.1737

1.5477

3 Months
CPU 3P Gamma

α = 28.4381,
τ = 0.9699,
θ = 2.0320

24.1220

Memory Pearson VII
n = 3.0010,
λ = 445.4054,
s = 2.3671

3.1084 Memory 3P Gamma
α = 5.2173,
τ = 11.2417,
θ = 384.3967

13.5013

IOPS Pearson IV

m = 1.2639,
ν = −2.9577,
λ = 248.7673,
α = 15.6189

1.4966 IOPS Pearson IV

m = 1.6784,
ν = −33.1663,
λ = 172.6298,
α = 4.45019

24.9011
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Figure 3. Empirical and theoretical CDF of CPU, Memory and IO for the one-week observation period.

In order to validate the accuracy and usefulness
of our simulated models, we need to compare the
data generated by our model to the real data. This
requires that we compare the simulated distributions
from each of our models against the corresponding data
for each of the observation periods our models are based
on. To do this, we use the Wilcox Mann-Whitney
statistical test (WMW) [41] [42]. This test is commonly
applied instead of the two-sample t-test to non-gaussian
distributions, which is the case with our dataset. The
WMW test is based on the null hypothesis (H0) that the
distributions of two unspecified populations are equal
against the hypothesis that the distributions have the
same shape but are shifted. So if the p-value is greater
than 0.05, then we can accept the hypothesis H0 of
statistical equality of the data distributions.

From the WMW test results in Table 3, it can
be observed that the simulated parameters for CPU,
Memory and IOPS follow the distributions of the real
data. The exception to this are the Memory parameters
of the 3-month observation period, for which we
have no statistical evidence to support the WMW null
hypothesis. This is as a result of the multimodal nature

of the 3-month memory distribution. Fitting it with a
single theoretical distribution is unsuitable.

9. Conclusion

This paper presents an approach for the analysis
and modeling of workloads on production public cloud
infrastructure. It describes the challenges that are
inherent with such an effort as well as the importance.
With Amazon Web Services as the IaaS service
provider, the work explains the CloudWatch metrics
and additional data relevant to successfully quantifying
workload behavior. Using different overlapping
observational period data clusters, this paper presents a
detailed process for developing a representative model
of a workload with the use of distribution analysis,
parameter estimation and GoF tests.

From the observations made and the results obtained,
we can make some reasonable conclusions. The
first is that workload patterns vary significantly across
observation periods. Secondly, CPU and IO behavior
are more sensitive to user patterns than Memory.
The third conclusion is that developing representative
simulation models that mimic actual cloud workload

Figure 4. Empirical and theoretical PDF of CPU, Memory and IO for the one-week observation period.
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behavior within a one-month window is possible. This
supports the evaluation of new operational resource
management policies before they are deployed in
production environments.

Table 3. Wilcox Mann-Whitney Test: Empirical vs

Theoretical Distributions
WMW Test CPU Memory IOPS

1 week
W 57696 55506 58075

p-value 0.6199 0.7081 0.5179

2 weeks
W 225720 226910 227030

p-value 0.9918 0.8747 0.8622

1 month
W 922290 888160 911880

p-value 0.3419 0.4555 0.6652

3 months
W 7976400 1.6e+ 07 7819200

p-value 0.8196 <2.2e− 16 0.8009

10. Future Work

As we observed in our model validation results, the
multimodal nature of the Memory distribution presents
some challenges to the approach used in this paper
which tries to fit the data to a single theoretical
distribution. Future work will include looking at the
use of multi-peak histogram analysis for region splitting
[43] in order to fit the derived dataset sub-regions to new
parametric distributions.

We also intend to continue building on our
previous work [11] by implementing a workflow
where we simulate and evaluate the resource allocation
recommendations from our Integer Linear Programming
(ILP) mechanism by using the techniques described in
this paper. This helps support better decision making
in the allocation of resources to workloads in the Cloud
environment.

Besides the usefulness of distribution fitting and
parameter estimation in the simulation and modeling of
future workloads, the work presented in this paper also
serves as a foundation for the classification of workloads
in order to better forecast future behavior patterns when
capacity constraints change. This work is in progress.
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