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Figure 1. A partial screen capture of the DBL SmartCity user interface.

Abstract

The ‘smart city’ approach has been promoted
as an effective way to manage urban environments.
Information and communication technology in general,
as well as ‘Internet of Things’ systems in particular,
constitute an essential component of all smart city
initiatives. However, many past and current smart city
implementations place only an insufficient emphasis on
the geo-spatial and 3D nature of data. In order to fill
this gap, we present DBL SmartCity, an open-source
smart city IoT platform that is based on open standards
and designed from the ground-up to effectively store,
manage, and present large sets of BIM and 3D
geo-referenced data.

1. Introduction

Contemporary urban environments at different
scales (neighborhoods, university campuses, airports,
and towns, as well as cities, megacities, and

metropolises) nowadays face a number of management
challenges, such as energy consumption, air quality,
waste management, noise levels, building structure
monitoring, and traffic congestion [1]. Furthermore,
cities and urban environments should be able to maintain
their competitiveness, develop human capital, encourage
civic participation, and improve on quality of life [2].

To meet these challenges, various smart city
initiatives have been proposed both in industry and
academia [3, 4, 5]. As one distinguishing characteristic
of such initiatives, the information and communication
technology (ICT) as well as ‘Internet of Things’(IoT)
networks in particular have been deemed to be one of
their essential components [6, 2, 3].

However, as new IoT smart city systems
and platforms continue to be proposed both in
academia and industry, there remains a dearth of
IoT implementations that place a strong emphasis
on the 3D and spatio-temporal aspects characteristic
for built environments, and that are open-sourced as
well as firmly based on open data standards. To that
end, we introduce DBL SmartCity, an IoT platform
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for managing IoT data that is open, customizable,
scalable, and strongly geared towards 3D geospatial
and georeferenced data.

In the remainder of this article, we discuss the
high-level design principles that guided us during the
conceptualization phase. We also discuss some of
the decisions we faced when defining the platform’s
architecture, as well as detail the overall data model, and
some of the main data transforms.

2. Motivation and Related Work

Our motivation for implementing the DBL SmartCity
platform is to provide an open-source smart city
system/environment for managing and interacting with
large, heterogeneous, and temporal 3D geospatial and
IoT datasets. Such datasets may include but are not
limited to temporal 3D representations of buildings,
infrastructure, vegetation, as well as point clouds,
photogrammetry, and general 3D vector and scalar data
related to various georeferenced IoT sources and sinks
of data.

2.1. Smart City

In the first place, we are inspired by the ‘smart city’
vision, and how technology can help fulfill the same. To
that end, what constitutes a ‘smart’ city?

In an early analysis, Giffinger et al [6, 2] consider
that ‘smart’ cities are those that rank highly along
the six dimensions of: (i) economy, (ii) people,
(iii) governance, (iv) mobility and ICT, (v) natural
environment, and (vi) quality of life. Nam and Pardo
[3] similarly suggest that smart cities excel along the
three dimensions of (i) technology, (ii) people, and (iii)
institutions. Chourabi et al [7] identify eight factors
underlying smart city initiatives, that of (i) management
and organization, (ii) technology, (iii) governance,
(iv) policy context, (v) people and communities, (vi)
economy, (vii) built infrastructure, and (viii) natural
environment. Schaffers et al [8] regard smart cities
as ‘living labs’ that encourage user-driven innovation.
An exhaustive overview of prior smart city initiatives is
beyond the scope of this article, however we point the
reader to an excellent introductory survey by Cocchia
[4].

2.2. Internet of Things (IoT)

The expression ‘Internet of Things’ refers to a
novel technological paradigm where billions of objects
connected through the Internet have the ability to sense,
actuate, communicate, and process information. IoT
represents one of the cornerstones of any smart city

initiative [1, 9]. The very concept of IoT itself was
initially suggested in the context of an early supply chain
management application [10]. However, many other
applications of IoT are possible, including of course
smart cities [9] and smart buildings [11]. Survey papers
such as [12, 11] provide lists of additional potential
future applications, such as infrastructure monitoring,
energy management, and vehicle fleet management.

One aspect of IoT systems and platforms that we
are particularly interested in are the architectures of IoT
systems and platforms. For instance, Khan et al [12]
present a generic IoT architecture that consists of five
layers (perceptual, network, middleware, application,
and business layer). Li et al [13] propose a generic
service-oriented architecture (SoA) which consists of
four layers (sensing, network, service, and interface
layer). In a survey paper, Al-Fuqaha et al [14]
describe four different ways to conceptualize IoT system
architectures: (a) three-layer (perception, network,
and application layers), (b) middleware based (edge,
access, backbone network, coordination, middleware,
and application layers), (c) service-oriented architecture
(SOA) based (objects, object abstraction, service
management, service composition, and applications
layers), and (d) five-layer architecture (objects, object
abstraction, service management, application, and
business layer). Krylovskiy et al [15] on the other
hand report an IoT architecture based on microservices,
and list its relative advantages when compared to more
generic SOA approaches (such as simplified design and
implementation of individual services, the ability to
work independently on different features, and reduced
amount of coordination), as well as disadvantages
(increased system complexity, and delayed ‘eventual
consistency’ of data). Rathore et al [9] present a ‘big
data’ IoT approach to urban planning and design of
smart cities, suitable for storing and processing large
amounts of data inherent to any IoT platform. In
industry, influential reference IoT platform architectures
have been proposed by IBM [16], Cisco [17], Microsoft
[18], Amazon [19], and Google [20].

Although these projects come a long way in
realizing the vision of IoT, no single architecture
exists that is suitable across all vertical and horizontal
applications [21]. In addition, there is a dearth of
IoT implementations that support 3D data generated
in the context of urban environments from the outset.
The recently announced ‘Cesium ion’ cloud architecture
[22] supports management and streaming of large
3D geo-referenced datasets, however with no native
support for IoT. In addition, the Cesium ion is a
commercial, closed-source platform, while our DBL
SmartCity implementation is non-commercial and based
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on open source.

2.3. Open Standards for Geospatial Data

In order to promote interoperability and free data
exchange, we are also interested in creating an IoT
platform that adopts open data formats and open data
exchange protocols. In the realm of geospatial, building
information modeling (BIM), and the architecture,
engineering and construction (AEC) disciplines, some
of the most relevant organizations that maintain open
standards include:

• Open Geospatial Consortium (OGC) [23]
• Joint W3C/OGC Committee (JWOC) [24]
• Open Source Geospatial Foundation (OSGeo) [25]
• Cesium Consortium [22]
• Khronos Group [26] and
• buildingSMART [27]

For instance, OGC maintains CityGML, an open
data model and data exchange format for encoding
different aspects of urban environments and landscapes,
such as semantics, geometry, topology, and appearance
[28, 29]. As one serious shortcoming however,
CityGML does not support interaction with large
datasets. The 3D City Database, based on CityGML and
running atop spatially-enabled SQL databases (Oracle
and Postgres), is an open source project that maintains
a relational database schema for storing 3D city models
and other geospatial data [30] but which likewise lacks
large-dataset capabilities.

Yet another open format, that of Keyhole Markup
Language (KML), was initially developed by Google
for its Google Earth product, and has in the meantime
been adopted as an OGC standard for expressing 2D/3D
annotation and visualization of geospatial data [31].
While KML can be considered to be complementary
to CityGML/GML, the vector data (*.vctr) format in
the Cesium 3D Tiles specification [32] was specifically
devised as a replacement for KML, and is suitable for
deployment in large-datasets scenarios.

In architecture, engineering and construction (AEC)
industry, the Industry Foundation Classes (IFC) data
model [33] is a commonly used collaboration format in
Building Information Modeling (BIM) which promotes
interoperability by providing a platform-neutral, open
format for building and construction data. While
semantically rich, IFC format is likewise ill-suited for
encoding and interacting with large datasets of 3D
building and infrastructure models.

2.4. Interacting with Large Streaming 3D
Datasets in Browser-Based Applications

Although existing standards fulfill many important
requirements such as openness and interoperability, they
are unsuitable for the purposes of efficiently interacting
with voluminous datasets typically generated in smart
city, IoT scenarios. In a major recent development,
Analytical Graphics Inc. (AGI) present 3D Tiles
[32], an open specification and reference JavaScript
implementation for streaming massive heterogeneous
3D geospatial datasets. Considering its overall aims, we
adopted Cesium 3D Tiles as one of the cornerstones of
our platform, since it provides an efficient way to load,
visualize, expose to interaction, and unload only subsets
of any large set of geo-referenced 3D geometric data.

Related work confirms the effectiveness of the 3D
Tiles specification. For instance, Chaturvedi et al
[34] successfully utilized Cesium in order to visualize,
explore, and interact with large 3D city models
integrated with time series of sensor data. Schilling
et al [35] likewise discussed how to convert CityGML
models into 3D Tiles format in order to efficiently
stream large sets of city models. In another application,
Gan et al [36] integrated digital surface models (DSM)
of oblique photogrammetry with 3D Tiles models, in
order to enhance 3D presentations of buildings.

3. Platform Design

In concordance with the above, our high-level design
requirements include: the use of open source licensing,
the use of open data formats and exchange protocols,
powerful 3D capabilities, and scalability.

I. Open-sourced. The platform’s source code should
be released under a permissive license so that it
can be easily inspected, corrected, and extended by
any interested party. This allows for unrestricted
extensibility and customizability, limited only by a
programmer’s skillfulness and time. Additionally,
the platform itself should be implemented using only
open-sourced libraries, data stores, and processing
frameworks.

II. Open data standards. Interoperability and data
exchange in IoT is difficult, due to the existence of
proprietary data formats and protocols [37]. This
requirement, accordingly, stipulates that the platform
should be based on open data standards, including:

• Open data formats. The system should use open,
non-proprietary formats to encode data, in order to
prevent interoperability issues and vendor lock-in. As
an example, the platform should be able to support
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Figure 2. Summary architecture of the DBL SmartCity platform.

both the XML markup language and the JSON format
[38] to encode IFC BIM data.

• Open data exchange protocols. The system should
use open data exchange protocols in order to enable
free, unencumbered communication.

III. Powerful 3D visualization abilities. The
environment should provide for effective 3D
visualization capabilities, including (a) representations
of objects, entities, and processes commonly
encountered in urban environments, as well as (b)
means to annotate and style such representations based
on derived data such as statistical measures, indicators,
and other types of secondary data.

IV. Scalability. “Big data” and “big analytics” are
essential capabilities of effective IoT systems [39]. The
DBL SmartCity platform should thus provide for the
ability to scale [40] effortlessly with a growing amount
of data or processing load. This includes:

1. Data and processing scalability. From (a) data
scalability from low to high data volumes, as well as
(b) backend processing load scalability, from low to
high processing (compute) demands.

2. Interaction scalability. The user interface should be
able to efficiently handle interaction with even very
large geospatial temporal datasets.

To cover the data and processing scalability
requirement, the DBL SmartCity platform is architected
so that it can run on a range of computing devices, from
a personal computer to a large cluster of inexpensive

computers running ‘big data’ computing frameworks.
For the interaction scalability, we achieve that in the first
place by adopting the Cesium library for streaming of
large 3D sets of data.

4. Platform Architecture

The platform follows a multi-tier architecture
(Figure 2) through which data is collected, processed,
and finally presented to the users for interaction. The
tiers include: (i) ‘things’, (ii) management of ‘things’,
(iii) event streaming, (iv) data storage, (v) data querying,
(vi) platform services, (vii) APIs, and (viii) applications.

4.1. ‘Things’ (IoT Devices)

This layer includes various ‘things’ in the Internet
of Things, which in turn control a variety of nodes
that can act either as sources of data (such as sensors),
or sinks of data (such as actuators), or both (such
as a memory location describing the intensity of a
light source). Things incorporate devices which are
in many cases under-powered and possess limited
networking capabilities. (In further text, we use the
term ‘IoT device’, or simply ‘device’ when clear from
the context, to denote a ‘thing’ in the Internet of
Things.) The schema (ontology) of ‘things’ or IoT
devices has been heavily influenced by the Sensor
Model Language (SensorML), which is maintained by
OGC within its Sensor Web Enablement (SWE) stream,
and which was itself later drafted as the ISO 19156:2011
standard. SensorML defines components and processes
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associated with the measurement and post-measurement
transformation of observations [41].

In terms of implementation, various types of
hardware device can be registered with the platform,
by first creating a unique device id and then using
a unique, automatically-generated ‘connection string’
within a software client running on the hardware.

4.2. Management of Things

Within the DBL SmartCity platform, this layer
includes the following main functions:

• Discovery, registration, and de-registration of devices
to be used with the platform.

• Receiving data from devices, for instance by polling
a published sensor data feed, or public transit feed.

• Sending data to devices, for instance sending a
command to an actuator.

In the platform, all the registered (deregistered) IoT
devices are stored into (and, respectively, removed from)
a corresponding database schema. A server-side process
written in Node.js iterates over this schema, and either
(a) receives ‘pushed’ message from registered devices,
or (b) periodically polls registered public data feeds
(such as those provided by public transit agencies).

4.3. Event Streaming

Both the devices as well as users generate various
types of events, such as for instance the event of
generating a sensor value (in the case of devices), or the
event of clicking on a GUI element such as a hyperlink
or button (in the case of users). This layer is in charge
of asynchronously collecting and processing data (or
‘messages’) generated by such events.

For serialization of queue messages, due to its low
memory footprint and exception performance we used
NATS.io message broker, and the associated NATS
Streams library for stream processing. For clustered
instances, we used Apache Kafka in conjunction
with Kafka Streams, a combination which provides
for scalable, high-throughput, fault-tolerant stream
processing of live data streams.

4.4. Data Storage

Once the streaming data has been ingested through
the Event streaming layer, it is serialized into the data
layer.

Filesystems. For storing files such as web
pages, client-side scripts, style sheets, BIM data (both
proprietary and open), and 3D model data. Converters

are used in order to convert 3D and BIM data, in both
open (IFC) as well as proprietary (Autodesk Revit)
formats, into an open format such as 3D tiles format.

Databases. Various databases (SQL and NoSQL)
store both the real-time (RT) as well as historical
time-series data collected from, and sent to, ‘things’
registered with the platform.

External data stores. We use external data sources
(providers) foremostly for 2D data such as maps,
satellite imagery, and terrain datasets. Such datasets
are very large, and are thus partitioned into hierarchical
tiles. The Cesium virtual globe library provides the
means to easily include surface imagery from a number
of third-party providers, such as MapBox and Microsoft
Bing.

4.5. Data Querying

In the data querying layer utilizes both (a) built-in
engines (such as those provided by databases natively),
(b) as well as more specialized search engines, such as
elasticsearch and Apache Drill.

Built-in search engines work well for low to
moderate volumes of data. For large volumes of
data, Apache Drill offers the ability to connect to all
sources of data, including sources of structured (SQL),
partially structured (NoSQL, JSON, CSV, XML), and
unstructured data (filesystems containing various files
such as documents, images, and photos). It also scales
well over many computers, with fast-executing queries.

4.6. Platform Services

This layer contains various computational services
that connect to data stores through the data querying
layer, retrieve data, perform processing on data, and
potentially write processed data back into the stores.
Services themselves can be written in any language
(JavaScript, Python, Scala, Java, Go, shell scripting,
. . . ), and then executed within environments and
frameworks such as Node.js, MapReduce, and Spark.

4.7. Exposed APIs

A selection of services implemented at the lower
level are exposed through their own public REST API.
In general, user-level applications interface with this
layer, implemented using Node.js, in order to implement
required functionality. For instance, an API allows the
user to both read (download) as well as write (upload)
3D models and datasets.
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4.8. Applications

Finally, using the exposed APIs, developers can
write applications, or ‘apps’, which allow their users
to view data and issue task commands, manage
3D/IoT/geospatial data, register and register IoT
devices, navigate regions of Earth, conduct real-time
monitoring and analytics on geo-referenced and
3D-object-linked sensor data, as well as visualize
energy simulation data, again in the context of
3D/georeferenced/building models. Within this layer,
the application logic sub-layer contains logic for the
applications built on top of the system. For networking
and web serving capabilities on the backend, we
again used Node.js, an event-driven, asynchronous
environment for building scalable network applications,
such as web servers. Node.js is particularly well-suited
for stateful applications, where network communication
between the application and the server must persist
during an interaction session. Finally, the application
UI (or presentation) sub-layer offers the means
to implement user interfaces in various interaction
paradigms, such as command-line, menu-driven,
graphical, web-based, 3D user interfaces, Virtual
Reality (VR), Augmented Reality (AR), and Mixed
Reality (MR) interfaces.

To demonstrate the platform’s viability, we
prototyped several ‘apps’ that showcase interactive
features, such as (a) choosing the time interval, (b)
choosing the source of data, and (c) choosing the
visualization type (chart, histogram), as follows:

1. Real-time monitoring and alerting. This bundled app,
already shown on the first page (Figure 1), allows the
user to monitor and manage event data as they stream
into the real-time data pipeline.

2. Analytics. This app (Figure 3) enables the user to
analyze and study cold (historic, consolidated) data
in order to obtain insights, perceive trends, and thus
acquire a better understanding beyond the ‘merely’
operational sense, as provided by the real-time event
monitoring app.

Figure 3. Visual analytics app.

3. Energy modeling app. This app allows the user
to visualize the proportions and amounts of both
as-measured as well as simulated energy expenditure
data, using pie-charts as well as superposed line
charts (Figure 4). The energy simulation data
is currently being imported from EnergyPlus [42]
and OpenStudio applications [43], with a backend
simulation planned for a future version of the
platform.

Figure 4. Energy modeling app.

4. Public transit app. This app polls a public feed issued
by a transit agency serving a large metropolitan area
in south-eastern United States, and allows the user to
visualize real-time locations of active vehicles.

Figure 5. Public transit app.

Figure 5 depicts a total of 299 buses being active at
the time of writing, while showing most of the agency’s
coverage area as seen from a high attitude.

5. Data Model

In addition to the overview of physical stores of data
given in the previous section, this section provides an
abstracted, logical view of the data managed in the DBL
SmartCity platform.

5.1. Cesium 3D Tiles

All the data managed in the DBL SmartCity platform
is anchored around the concepts of nested, hierarchical
tiles. Tiling, as a way to progressively decompose
(and then load) parts of the Earth surface, has been a
known concept for years in digital mapping. Building
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upon the glTF format by Kronos, the ‘3D Tiles’
format by the Cesium Consortium supports streaming of
massive heterogeneous 3D and geospatial data. As per
specification, features are packed into 3D tiles. 3D Tiles
are packed, in turn, into hierarchical structures called 3D
tilesets, which follow the same precepts at those for 2D
mapping tiles.

3D “Features.” A feature is the smallest addressable
component of any 3D tile. For example, a feature may
represent a 3D model of a building, a 3D instance of
a tree model, a point in a 3D point cloud, or a vector
(polyline, rectangle, sphere, . . . ) embedded in 3D space.

3D Tiles. A number of features may be packed into
a Cesium 3D tile which is, in essence, a container that
encloses a region of 3D space in the WGS84 terrestrial
reference system. It is defined by the six parameters of
west, south, east, north, minimum height, and maximum
height:

{
"boundingVolume": {
"region": [

-1.3197351054587685, // (in radians)
0.698829173006603,
-1.3196243108779218,
0.6989177498576029,
0.0, // (in meters)
271.4

]
}, ...

}

Other parameters defining a Cesium 3D tile include
the ‘refine’ property which stipulates whether the tile’s
3D geometry, as the user zooms into it, is refined
by either (a) replacing it fully with children tiles’ 3D
geometry (value ‘REPLACE’), or (b) by adding children
tiles’ 3D geometry to it (‘ADD’).

A 3D tile can contain any of the following: a batch
of 3D models (*.b3dm) normally used for buildings, a
set of 3D instances (*.i3dm), 3D point cloud (*.pnts),
and 3D vector data (*.vctr). For each feature, its
attributes (such as latitude, longitude, height, . . . ) must
be encoded as a data structure called batch table, and
that is embedded into any *.b3dm tile, for example:

...
{

"id" : "47",
"name" : "Architecture Building (West)",
"longitude": "-84.396109",
"latitude": "33.776099",
"zip" : "30318",
... (other attributes)

},
{

"id" : "48",
"name" : "John and Joyce Caddell Building",
"longitude": "-84.397024",
"latitude": "33.777548",
"zip" : "30318",
... (other attributes)

},
...

The partial JSON snippet above defines which
attributes will be associated with what features (i.e.,
buildings) in the resulting 3D tile.

3D Tileset. A 3D ‘tileset’ is a set of tiles that are
organized into a hierarchical, spatially coherent data
structure (such as octrees and k-d trees). A 3D tileset’s
bounding volume thus encloses all the constituent tiles’
bounding volumes. A 3D tileset is basically defined
by its associated tileset.json file with the following
structure:

{
"root": {

"refine": "add",
"content": {
"url": "0/0/0.b3dm"

},
"children": [{
"content": {
"url": "1/0/0.b3dm",

},
"children": [...]
}, {
"content": {
"url": "1/1/0.b3dm",

},
"children": [...]

}, {
"content": {
"url": "1/1/1.b3dm",

},
"children": [...]

}]}
}

As seen above, the tileset root contains a number
of children tiles, which in turn may contain their own
children tiles, and so on. (For brevity, some attributes
in tileset.json, such as bounding volumes, have been
omitted.)

5.2. Database Schemas

A number of different database schemas are used
in the DBL SmartCity platform. All of these schemas
can co-exist in a single database such as Postgres,
with PostGIS and TimescaleDB extensions installed.
Alternatively, each database schema may be installed in
its own separate cluster of computers, if there is a need to
scale out a particular deployment of the DBL SmartCity
platform.

Hot data. This database schema stores recent,
high-velocity data, for the purposes of real-time
monitoring, alert management and response, as well as
real-time analytics. The incoming, high-velocity data
can either be of low volume, or high-volume (in this
case, a separate cluster for hot data intake may be
required). In both cases, however, incoming data is a
time-series data, or data that is timestamped according
to the exact date and time of production, or ingestion, or
both. In DBL SmartCity, we implemented the ingestion
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Figure 6. A data transform example: the sequence of steps for re-generating a 3D tileset.

of time series data through TimescaleDB, a time-series
database (TSDB) extension for Postgres. For large-scale
installations, we implemented an Apache Cassandra
cluster.

Cold data. This schema is concerned with storing,
processing, and accessing historical data, which
includes both the real-time as well as past data. For
small installations, the cold data database schema is
equivalent to the hot data database schema, and can be
merged with the hot data schema. In big data scenarios,
however, the cold data schema may be migrated to
a specialized cluster running a ‘big data’ storage and
processing framework. In some cases, cold data may
also be further de-normalized for effective storage,
retrieval, and analytics over long periods of time.

Meta-data. For efficient and speedy intake, storage,
indexing, and retrieval, both the hot data and cold data
schemas are normalized. In other words, as the data
is queried, additional relational tables, or columns and
documents in the case of NoSQL databases, must be
consulted in order to fully present data.

Search indexes. For modest use cases, search indexes
can be stored in the single database (Postgres).
Alternatively, external search indexes can be used, as is
the case with Cesium’s geocoding service, which in turn
uses the Bing Maps Locations API offered by Microsoft
Inc. In case of large installations, DBL SmartCity
utilizes elasticsearch, an open-source, distributed search
engine built on Apache Lucene.

6. Data Transforms

This section reviews some of the data transforms
that take place within the DBL SmartCity platform.
By ‘transforms’ we denote computational processes
(implemented as ‘services’) that change or alter the form
or appearance of data.

6.1. Generating Cesium 3D Tiles

We have implemented a set of routines for generating
3D tilesets that contain buildings at level-of-detail
(LOD) level 100, and which mirror the series of steps
shown in Figure 6. Higher LOD levels (200, 300, 400
and 500) are planned for future revisions of the platform.
A 3D tileset is best understood as a depository of data
(or a spatial database) that facilitates interaction with
3D geo-referenced data. For maintaining the ‘ground
truth’ (including the associated meta-data) we utilize
semantically richer types of data such as BIM data
(IFC, Revit) as well as 3D model data, including the
OpenStreetMap (OSM) export files [44]. 3D tiles are
regenerated, modified, and updated whenever the user
updates any of the ‘ground truth’ sources of data (Figure
6), such as for example an OSM extract:

1. Obtain a regional OSM extract (tile). Since our
intent is to first visualize buildings at highest LOD
level in our area, we first obtained a regional OSM
extract, containing all entities present in such a
format (buildings, roads, infrastructure, and other
entities).

2. Obtain initial OSM 3D buildings tile. From the
initial OSM extract, we derive a filtered OSM extract
containing just the 3D building data.

3. Convert OSM tile to OBJ tile. We convert the filtered
OSM extract tile into .OBJ Wavefront format.

4. Convert OBJ tile to a set of 3D objects. We loop over
all objects in the OBJ tile, and then calculate/generate
parameters for each object, for instance its name,
geographic coordinates, bounding box, its height,
followed by exporting those parameters into a JSON
batch table, listing parameters per each object.

5. Convert each OBJ tile into a 3D tile. We convert
each OBJ tile into a Cesium .B3DM file as well as
the associated tileset.json file, using the batch tables
generated in the previous step.

6. Combine 3D tiles. Finally, we merge separate
tiles into a combined tileset, thus producing a
generalized tileset.json file that reference each single
tiles’ tileset.json files as ‘external’ tilesets.
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Re-generating 3D tiles. Any time a ‘ground truth’
3D building model (such as a geo-referenced Autodesk
Revit model) has been modified, the corresponding 3D
tile must be regenerated too, following the same series
of steps shown in Figure 6. Within the platform, a Revit
model is first converted into an IFC file, and then into an
.OBJ Wavefront file.

6.2. Styling of 3D Tiles

In order to support rich 3D visualizations of
streaming geometrical and other data, Cesium provides
means through which features can be dynamically
(i.e., at runtime) styled by changing their color and
transparency, as well as setting their visibility. A style
is defined using JSON and (optionally) a small subset of
JavaScript. Moreover, styling can be linked to attributes
that have been previously encoded with features into a
3D tile (see §5.1).

{
"show" : "${zip} === '94301'",
"color" : {
"conditions" : [

["(${height} > 100.0)", "color('red')"],
["(${height} > 50.0)", "color('blue')"],
["(${height} > 10.0)", "color('green')"]

]}
}

As an example, the snippet above will hide all
buildings except those with ZIP code equal to 94301.
Moreover, shown buildings will be rendered in red color
if they are taller than 100.0 m, in blue if taller than 50.0
m, and in green if taller than 10.0 meters.

The final Cesium scene, as displayed to the user in
the DBL SmartCity platform, consists of a number of
superposed 2D tilesets generated from various surface
imagery datasets, as well as a global, styled 3D tileset
containing the following types of data:

1. Building exteriors / envelopes. These show features
(shells or envelopes of buildings) at different LOD
levels, and with a combination of ADD and
REFINE modes determining how the current point
of navigation and children tiles affect the subset
rendered.

2. Building interiors. Building interiors, especially for
large buildings, can be substantial in terms of data.

3. Thermal zones. Thermal zones are spaces within
building that represent a unit of spatial decomposition
for the purposes of energy simulations. However,
thermal zones are not always in 1:1 mapping
with existing spaces and rooms in a building.
A separate layer of information represents spatial
decompositions of buildings customized for this
particular implementation.

In addition to the types of 3D data above, and as
a final step in the generation of the complete Cesium
scene, 3D tiles are frequently annotated using Cesium
non-tiles formats and data types (Cesium ‘Entities’), as
required by a specific application module.

7. Conclusions and Future Work

We have presented the DBL SmartCity platform, an
open and scalable IoT implementation that was designed
from ground-up for efficient managing, streaming, and
scalable interaction with large 3D, geo-referenced, and
IoT datasets. In future work, we plan to conduct
performance evaluations of the platform, as well as
conduct formative usability evaluations of presented
applications.
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