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Abstract 
 

Smart mobility and transportation is a critical 

component of smart cities. One barrier to the smart 

transportation is a lack of charging stations that can 

empower a huge amount of electric vehicles, especially 

autonomous ones. Battery storage technology provides 

a buffer to a charging station network; however, how 

battery storage can serve a crucial role in enabling 

fast-charging stations to fulfill customer demand and 

providing a profit for charging station operators is 

unclear. This paper reports a discrete event simulation 

model to determine the optimum network of battery 

storage system including the battery type, size, and 

exchange range, considering construction costs. A case 

study of Detroit Area in the State of Michigan is 

provided to demonstrate the usage of the model. 

Results show that a small number but big size of 

battery units is optimal. Findings suggest that a 

condensed network of charging stations benefits more 

through battery units connected to a microgrid 

network. The work provides a decision support for 

planners, designers, and engineers to design and build 

battery storage systems in smart cities. 
 
1. Introduction  
 

 Smart cities and infrastructure represent the future 
of urban development. The concept of smart cities 
becomes increasingly popular in literature and policies 
since the 1990s [1, 2]. As a critical component of smart 
city, smart mobility allows urban resources to achieve 
efficient mobility and economic advantages. Electric 
vehicles (EVs) including autonomous ones will be a 
significant part of smart transportation in future urban 
systems. In addition, greater adoption of EVs may help 
address climate change and bring energy savings.  The 
EVs include hybrid EVs (HEVs), plug-in hybrid EVs 
(PHEVs), and battery EVs (BEVs). According to the 
Electric Drive Transportation Association, EV sales in 
the United States jumped by 37% in 2016 with a total 

sale of 159,139 vehicles [3]. To address this trend, the 
U.S. government has pledged $22 million to accelerate 
the development of plug-in EVs (PEVs) [4].  

However, one critical barrier to the smart mobility 
is the shortage of infrastructure to support the growth 
of EVs, particularly a lack of charging stations that can 
empower a large amount of EVs. An energy gap often 
exists between energy supplied by the electric grids 
and the expected demand for a charging station during 
peak hours [5]. In such a case, EV users have to wait 
for a long time to fully charge their cars as less energy 
can be supplied. This problem even occurs when a 
charging station is functionally capable of the energy 
supply to its maximum rated value.  

Advances in battery storage technology provide an 
opportunity to address the barrier to the shortage of 
charging stations; however, the planning decision to 
layout the battery storage in an EV charging station 
network is not clear to ensure optimum functional and 
economic performance. Of great interest to charging 
station operators and electric utilities is how charging 
infrastructure with insufficient energy supply can take 
advantage of stored energy from batteries to bridge the 
energy supply gap. In other words, the design and 
construction of battery storage units turn to a key for 
charging station networks to address the energy supply 
shortage and to meet the increasing demand from EVs. 

Therefore, the overall goal of this work is to 
develop a discrete event simulation model that can 
determine the features of a battery storage system to 
support a given network of charging stations. The 
features of a battery storage system include battery 
type, battery size, and the number of batteries. In a 
construction management perspective, the work 
addresses two specific research questions: (1) What are 
the optimum battery type, battery size, and the number 
of battery units in a battery storage system that 
minimizes the construction cost of the charging station 
network and satisfies the energy load to the grid? (2) 
What are the favorable factors that are critical to the 
improvement of planning and design for EV charging 
station networks? 
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2. Background 
 
2.1. Smart Mobility   
 

A variety of researchers identify the components of 
a smart city, for example, the economy, environment, 
governance, infrastructure, and the quality of life [6]. 
Fernandez-Anez, et al. [7] defines a smart city using 
six components which are the smart governance, smart 
economy, smart people, smart mobility, smart 
environment, and smart living. Smart mobility plays a 
vital role and directly or indirectly contributes to a 
smart city’s other five components. The smart mobility 
provides an efficient and effective public transportation 
network to residents and ensures they are satisfied with 
the quality and accessibility of public transportation.   

Smart cities highlight smart mobility as a strategy 
which shed light on EVs. EVs are expected to be the 
vehicles of future and many companies are involved in 
research and development of EVs. Companies also 
attempt to produce EVs to be driverless in order to 
increase their competitiveness. According to Lane, et 
al. [8], governments have two motivations to 
encourage the use of EVs, which are “risk 
management” and “industrial policy.” Risk 
management relies on the perception that EVs 
represent an opportunity to decrease the adverse effects 
of oil dependence. Industrial policy explains that EV 
technology can create innovative manufacturing 
industries for governments and improve the economy 
by improving one or more industrial sectors. To sustain 
a strong economy, the opening of new business areas, 
innovation, and new technologies are needed [6].  

EVs contribute to multiple components of a smart 
city except smart mobility. For example, EV industry 
creates new employment positions and leads to 
promising economic growth for the smart economy [5].  
As an emerging area, the EV industry is responsible for 
the creation of many sub-sectors leading to innovations 
and inventions. The EV industry also influences the 
expansion of sub-sectors such as automotive batteries. 
Besides, EVs contribute to the smart people because 
EVs can promote creative ideas, industries, and people. 
Compared to conventional vehicles, EVs produce 
fewer emissions that affect climate change and smog 
for the smart environment.  

 
2.2. EV Charging Station   
 

Although the interest in EVs is rapidly rising 
nowadays, the idea of using electric propulsion for cars 
is not new. The first electric car was invented in the 
1830s, many years before the invention of gasoline and 
diesel engines. At the beginning of the 1900s, the 

number of automobiles using electricity was nearly two 
times more than the number powered by gasoline in the 
United States. However, in the 1920s electric cars 
began to disappear due to the reasons such as range 
anxiety, the decline in the oil prices and innovations in 
the gasoline engines. Although the interest in the 
electric cars revived in the 1960s, most cars have been 
low-range neighborhood electric cars at that time. In 
the first decade of the 2000s, Tesla Motors launched 
the first highway electric car and in the following 
decade, car companies have been conducting R&D 
activities on the efficiency improvement of electric 
cars.  

Although there are different genres of EVs in the 
market, PEVs—collective of PHEVs and BEVs—
provide a number of benefits to the environment. They 
reduce reliance on fossil fuels, which accounts for 
more than 90% of the total U.S. transportation energy 
consumption [3]. PEVs can serve as energy storage 
facilities to address grid demand response [2]. The 
PEV sales in the United States increased by 40% in 
2016, reaching a total stock of 500,000 vehicles.  
Nevertheless, a widespread market adoption of PEVs 
remains hindered by many factors, such as the limited 
availability of models and styles, the higher cost 
compared with conventional vehicles, and the lack of 
convenient and ubiquitous network of charging stations 
[3]. Therefore,  deploying widespread and efficient 
PEV charging stations is critical to promoting PEVs, 
alleviating range anxiety of drivers, and providing an 
opportunity for long-distance travel. 

As an increased number of EVs enter the market, 
the buildout of proper charging infrastructure becomes 
critical. An EV charging station supplies electricity for 
the recharging of PEVs. The distance that an EV can 
travel relies on whether a facility for refueling exists 
when battery power dwindles [9]. Currently, three 
types of EV charging stations exist: (1) the Level 1 for 
residential homes, (2) the Level 2 for parking and 
public buildings, and (3) the Level 3 for DC fast 
charging stations. The Level 1 residential charging 
enables drivers to charge in their homes but it requires 
a long charging time and does not provide a long 
range. Drivers often prefer to charge quickly and 
conveniently on the road to avoid range anxiety [11]. 
The Level 2 charging is faster than Level 1 and 
provides more range per hour than Level 1 charging. 
As of 2015, approximately 70% of public EV charging 
outlets are of the Level 2 type, 21.5% are Level 1, and 
8.5% are Level 3 [10]. Despite being the least-adopted 
charger type, the Level 3 charging, often termed fast-
charging station, is able to charge a PEV battery up to 
80% within minutes. The prime advantage of DC fast 
charging is that charge time is drastically reduced and 
adds 50–70 miles of range in approximately 20 

Page 1958



 

 

minutes [12]. Therefore, among the various types of 
charging, the Level 3 fast-charging stations are 
particularly required to boost EV sales and usage. 

 
2.3. Charging Infrastructure in the U.S.   
 

According to a report from the U.S. Department of 
Energy (DOE) [3], developing a U.S. network of non-
residential EV supply equipment (EVSE) that enables 
broader PEV adoption and maximizes PEV use. In the 
report, the National Renewable Energy Laboratory’s 
(NREL’s) Electric Vehicle Infrastructure Projection 
tool is used to estimate the non-residential charging 
requirements for a baseline scenario of 15 million 
PEVs on U.S. roads in 2030. Shortly, the estimation 
shows the bottom line of EV charging stations that 
need to be built and installed. The fast charging station 
estimation are obtained in two steps. The first step is to 
estimate the fast-charging station in cities and towns, 
and the second step is to estimate the fast charging 
station on interstate freeways to enable long-distance 
continued transportation.  

The DC fast charging is advantageous for range and 
charging time. The DOE report highlights that at least 
8,072 fast charging stations (4,861 in cities and 3,211 
in towns) are required in the United States. The station 
density is applied to the 108,246 square miles occupied 
by cities and towns in the United States. Figure 1 
displays the interstate corridor network. The thick red 
lines indicate the 70-mile-radius red buffer areas that 
would be served by the projected national EV charging 
infrastructure network.  

 

 
 

Figure 1 Estimated Charging Station Network in the U.S. 

 
Scenarios used in the NREL’s estimation do not 

consider the Level 1 charging although they assume 
most consumers prefer to charge at home. The Level 2 
is assumed to be primarily used for charging within 
walking distance from a destination. The estimated 
consumer demand of the Level 2 charging is estimated 
at 600,000 plugs necessary to support 15 million PEVs 

(approximately 40 plugs per 1,000 PEVs). The 
estimated coverage assume the charging infrastructure 
is uniformly spaced on a square grid across a two-
dimensional area within each community. PEV drivers 
cannot be more than 3 linear miles from a charging 
station in a given city, 56 stations per 1,000 square 
miles would be required (for reference, there are 
currently 960 gasoline stations per 1,000 square miles 
in U.S. cities). For example, a case study of Columbus 
in the state of Ohio shows that PEV charging 
infrastructure in the Columbus area reduces range 
anxiety as a barrier to PEV sales and provides 
stakeholders guidelines to effectively invest PEV 
charging infrastructure, regardless of private and public 
resources [13]. 

 
2.4. Battery Storage Technology 
 

As EVs gain traction, energy storage becomes a 
necessary component of urban infrastructure [14]. 
However, it is unclear whether and how battery storage 
can serve a crucial role in enabling charging stations to 
fulfill customer demand and be a profitable investment 
to charging station operators. Many options of battery 
storage technologies are available in the market.  Each 
claims to be competitive in terms of safety, cost, and 
technical performance. Thus, the decision making of 
appropriate technology for a particular application is 
critical to the investors. Many factors are involved in 
assessing the optimal size of storage and the locations 
of charging stations that are suitable for deployment. 
An increasing need emerges asking for decision tools 
and data analytics that evaluate the costs, benefits, and 
values of a battery storage project within a given urban 
area [15]. 

However, little extant research has addressed the 
construction of battery storage technologies within a 
network of charging infrastructure. Deng, et al. [16] 
presented a method for creating high-power fast-
charging batteries controllable using two energy 
storage units. But the study only addresses the energy 
regulation problem. Rogge, et al. [17] conducted an 
analysis using real-world bus network data in Germany 
and explained the tradeoff between battery capacity 
and charging power. The study does not consider the 
economic implications of employing energy storage 
units for that network. Ding, et al. [18] proposed a 
mixed-integer nonlinear programming formulation to 
extract the monetary value of energy storage used in 
coordination with charging infrastructure but the study 
does not apply the model to a real-time network of 
charging infrastructure to validate the model’s 
reliability. Bashiri and Bahadori [19] presented a fast 
charging station with a flywheel energy storage system 
to meet demand charge, improve and develop the load 
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profile, and minimize the operational costs of a fast 
charging station. Although they used a lifecycle cost 
analysis approach to comparing different storage 
systems, the operational costs of fast chargers were not 
discussed. Momtazpour, et al. [20] demonstrated a 
systematic data-mining method that can be used to 
identify locations for placing charging and storage 
infrastructure; but they did not consider some 
important measures such as battery life, energy storage, 
and economic performance. In summary, most studies 
do not integrate the battery storage system into the EV 
charging infrastructure’s design and construction 
process. 

 
3. Data and Methods  
 

To address the aforementioned knowledge gap, we 
developed a discrete event simulation (DES) –based 
model to determine the battery storage for urban 
charging infrastructure. We applied the model to the 
Detroit area in the state of Michigan to explore the 
charging station network. The model is developed 
using Python programing language.  Figure 2 displays 
the programming interface.  

 

 
 

Figure 2 Programming Interface in Python 
 
The model considers varying energy demand and 

different battery units. The installation cost range of 
each battery type and vendor are used as model inputs, 
and the model parameters (i.e., location and power 
output) are based on the geographic locations of a 
network of fast chargers in a given urban area. To 
address the energy gap of charging infrastructure, 
battery units are installed to supply energy to the 
nearby charging stations and exchange stored energy. 
The model evaluates the optimal configuration of 
battery units that are required to meet the energy 
demand for the whole network while containing the 
minimum cost. The configuration depends on the 
network structure such as the battery size, battery type, 
and energy exchange range.  

 

3.1. Discrete event simulation 
 

Technically, DES creates a system as a 
chronological sequence of events where each event can 
be defined as an instant in which a significant state 
change occurs in the system [21, 22]. DES has been 
used to tackle a wide range of problems, including 
project planning [23, 24], optimization of construction 
operations [25], resource allocation [25, 26] and 
strategic construction management [27]. The 
fundamental components of DES are as follows: 

• Entities – Entities are items that flow through the 
simulation [28].  

• Events – Events are another major element of a 
DES. These are broadly defined as anything that 
can happen during the simulation [28]. The 
addition of each battery unit marks an event in the 
simulation. 

• Time – Another major component of a DES is 
time. The simulation clock tracks the passage of 
time. 

• Resources – A major element for economic 
evaluation is handling of resources, which are 
incorporated directly into a DES. An entity may 
consume a resource, and this consumption 
involves a defined number of resource units. In the 
model in this study, energy units are resources. 

 
Most steps in the DES development procedure are 

common to all modeling approaches. First, formulate 
the problem and include the simulation goals [28]. The 
process of events is the crucial part for a DES program. 
This process is ideally to be completed using a general-
purpose programming language such as Fortran or 
Python.  Both conduct the simulation by applying the 
given logic to each entity. The model is run until the 
system stabilizes to a steady state or a pre-specified 
condition. 

 
3.2. Monte Carlo simulation 

 
In a Monte Carlo simulation, each simulation run 

generates random numbers that determine whether an 
event occurs. We used scikit-monaco (v0.2.1), a library 
of Monte Carlo integration in Python, to complete the 
simulation. In this study, the lognormal distribution is 
used to simulate the cost value of power line network 
(e.g., a microgrid network). In contrast to a normal 
distribution that can take both positive and negative 
values, a lognormal distribution is widely used to 
represent the distribution of financial assets (e.g., good 
prices) as they cannot be negative [29].  

 
3.3. Modeling 
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In the model, each charging station has two 
attributes: its geographic location, and a fixed demand–
supply energy gap. The coordinates (i.e., the latitude 
and longitude values) are known for all 15 charging 
stations in the Detroit Area, Southeast Michigan 
(Figure 3). The energy demand-supply gap is assumed 
that every fast charging has a constant demand that is 
equal to the maximum rated power of that charging 
station. The supply range for each charging station is 
obtained from comments by EV drivers who use the 
charging stations. The energy demand-supply gap for a 
charging station is calculated by taking the difference 
in demand and minimum supply.  
 

 
 

Figure 3 A Network of Charging Stations in the Detroit 
Area, Michigan. 

 
Table 1 shows the inputs used in the model. The model 
considers the installation and construction costs of the 
battery storage system and the cost of setting up a new 
distribution line (grid cost) to enable the exchange of 
energy from batteries. The characteristics of the 
charging infrastructure network in Southeast Michigan 
are integrated into the input values based on which the 
model is developed. The integration is implemented in 
Python using the scikit-monaco library for Monte 
Carlo simulation.  
 

Table 1.  Inputs and Values 
 

Input 

Category 

Inputs Input values 

Battery Battery type cost See Table 2 

Battery size (1–100) kW 

Station Location (x, y) coordinates 

Demand gap constant (kW) 

Network Exchange range (0.00–1) unit distance  

New distribution 

line cost 

$ 8,325,000 per unit 

distance 

 

Table 2 shows the installation cost range of various 
battery types. The construction and network costs are 
fixed for all battery types. In the interface, user need to 
select the battery type. Based on the selected battery 
type, the installation cost range of that battery is 
chosen and converted into a lognormal distribution. 
Next, the model calculates total costs and selects 
10,000 total cost values from a lognormal distribution. 
The model varies battery size from 1kW to 100kW in 
increments of 1kW and the exchange radius varies 
from 0.00 to 1 in increments of 0.01 units. As a result, 
the simulation generates 100*100*10,000 input points. 
The model then calculates the required number of 
batteries, battery size, and exchange range for all input 
points in an attempt to achieve the lowest cost. The 
researchers run the simulation model twice for every 
battery type: one considering the network cost and the 
other do not consider network costs. In the first case 
(i.e., considering network costs), new distribution lines 
are constructed within an existing microgrid network. 
In the second case (i.e., no network costs), all batteries 
and charging stations are connected to an existing 
microgrid network within new distribution lines. 
 

Table 2.  Battery Type and Cost 
 

Battery Type Installation Cost 
($/kW) 

Construction 
Cost ($) 

Lithium-ion 1,000–2,100 20,000 per 
installation 

Lead-acid 500–2,500 20,000 per 
installation 

Vanadium redox 800–1,100 20,000 per 
installation 

Sodium-sulfur 500–600 20,000 per 
installation 

Sodium-nickel-
chloride 

700–1,200 20,000 per 
installation 

Zinc-bromine 300–1,600 20,000 per 
installation 

Zinc-air 200–300 20,000 per 
installation 

Iron-chromium 300–500 20,000 per 
installation 

 
The optimum network will meet the energy demand for 
all charging stations while reaching the lowest costs, as 
listed in Eq. 1. 
 
Ct = Ci + Cc + Cn       (1) 
 
where: 
Ct = Total cost of energy supply 
Ci = Installation cost  
Cc = Construction cost  
Cn = Network cost  
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4. Results 
 

Table 3 lists the simulation results of the battery 
storage system in the Detroit area. (1) Results show 
that the Li-ion battery storage systems has the highest 
total cost while the Zinc-air battery storage system has 
the lowest total cost when the energy exchange among 
stations occurs without new power lines. Regardless of 
battery type, the observed energy exchange range is 
less than 5 miles (i.e., 0.1 units). The finding indicates 
that a short range of energy exchange (radius < 5 
miles) is viable to reduce the overall costs. (2) Results 
also show that the battery size of 29 kW is desirable for 
most battery types. The size is smaller than expected 
given that the energy exchange does not need new grid 
lines. (3)  Results show that the Zinc-air battery storage 
is an exemption. For the Zinc-air battery, a bigger size 
of 53 kW with a smaller number (i.e., 6 battery units) 
and a longer exchange range of 49 miles (i.e., 0.98 
units) are desirable. The finding indicates that when the 
battery installation costs decrease, the battery storage 
system favors a few number of big battery units to 
meet a long-range of energy exchange. (4) Results 
show that the number of battery unit is consistently 10 
units for most battery types except for the Li-ion (13 
units) and Zinc-air (6 units). This finding indicates that 
least two-thirds of the 15 charging stations in the 
Detroit area need a battery storage system. 
 

Table 3.  Simulation Results 
 

Battery 
Type 

Total 
Cost ($) 

Size 
(kW) 

Range 
(units) 

Number  

Lithium-

ion 

4,218,274 22 0.81 13 

Lead-acid 3,548,833 29 0.67 10 

Vanadium 

redox 

2,889,329 29 0.36 10 

Sodium-

sulfur 

1,786,008 29 0.36 10 

Sodium-

nickel-

chloride 

2,784,694 29 0.73 10 

Zinc-

bromine 

2,323,296 29 0.95 10 

Zinc-air 877,810 53 0.98 6 

Iron-

chromium 

1,295,707 29 0.5 10 

 
Figure 4 visualizes the above findings, exhibiting the 
tradeoff of cost, battery size, and exchange range 
through 3D graphs. The graphs are obtained from the 
simulation results for each of the eight battery type.  

  

 
 

 
 

 
 

 
 

Figure 4. 3D graphs of Network by Battery Type 
 
5. Discussion and Conclusion   

 
This paper describes a DES model that is used to 

support the decision of the planning and design of a 
charging station network. In the network, battery 
storage units are introduced to address the energy 
supply and demand gap for fast charging stations.  A 
case study of Detroit area in the southeast Michigan is 
used to demonstrate the model’s usage with an attempt 
to achieve a zero gap in the energy storage. In such a 
network, an EV charging station within the battery 
storage system’s range receives energy. The battery 
storage system provides a buffer to the charging station 
network. In this manner, the energy exchange can meet 
the energy demand for the whole charging station 
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network using a small number of battery units. 
Findings show that, given the energy demand gap and 
the locations of the EV charging stations, the model 
can identify the optimum design of the battery storage 
system including the battery type, size, and exchange 
range that can result in the lowest total construction 
cost. This model provides a powerful decision support 
for planners, designers, and engineers when 
considering the construction of battery storage systems 
in smart cities.   

The results from the case reveal many valuable 
factors and implications that help improve the design 
strategy of battery storage systems for a network of 
charging stations. (1) The construction cost of 
distribution lines are too high that, in this case, no 
energy exchange is feasible between the charging 
station and the battery storage system, regardless of 
battery type. (2) More than one battery unit is required 
for each EV charging station to address the whole 
network’s demand when choosing a small battery size. 
(3) The battery storage system of a small number but a 
big size of battery units would lower the cost when 
only existing distribution lines are used. Overall, the 
coupling findings suggest that the battery storage 
systems largely benefit the condensed network of EV 
charging stations by supplying stored energy to the 
stations during peak hours and recharging battery units 
during off-peak hours. 

In practice, the model can be applied to other urban 
areas to determine the battery size, number of units, 
and exchange range for reaching a decision of high 
cost-benefit investment. The information from the 
network cost help planners decide the best battery type 
for a given network of charging stations. In addition, 
the model is useful for EV charging station owners and 
operators when selecting vendors and contractors 
considering restrictions of the battery storage space, 
battery size and amount, and the overall cost. In a long 
run, the improvement of the EV charging infrastructure 
will ultimately contribute to the economic growth of 
automobile industry, the redevelopment of the nation’s 
urban environment, and the well-being of people who 
are living in the U.S. cities and towns.  
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