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Abstract 

 
In this paper a novel multilayer model is 

proposed for assessing driving risk. Studying 

aggressive behavior via massive driving data is 

essential for protecting road traffic safety and 

reducing losses of human life and property in smart 

city context. In particular, identifying aggressive 

behavior and driving risk are multi-factors combined 

evaluation process, which must be processed with 

time and environment. For instance, improper time 

and environment may facilitate abnormal driving 

behavior. The proposed Dynamic Multilayer Model 

consists of identifying instant aggressive driving 

behavior that can be visited within specific time 

windows and calculating individual driving risk via 

Deep Neural Networks based classification 

algorithms. Validation results show that the proposed 

methods are particularly effective for identifying 

driving aggressiveness and risk level via real dataset 

of 2129 drivers’ driving behavior. 

 

1. Introduction  

 
With the development of smart city and Internet 

of vehicles (IOV), more and more organizations 

including government agents and IT companies are 

paying attention to leverage information technology 

and big data to improve driving safety. 

Driving risk varies potentially among drivers. 

Identifying and predicting driving risk will greatly 

benefit the research area of safety driving and driving 

risk control [1]. Driving risk assessment has been one 

of the major objectives in daily life for both 

individual drivers and insurance agents. During the 

last two decades, practitioners and scholars have been 

devoting themself to improve the effectiveness of 

identifying the driving risk level and predicting the 

driving behavior.  

 An accurate and effective driving risk assessment 

method could not only keep drivers safer but also 

bring more economic benefits for insurance agents 

and society. However, it is difficult to measure 

driving behavior in real-world driving situations [1] 

as driving styles are various in drivers. At the same 

time, this variation attracts researchers to study the 

classification of the drivers according to their risk 

levels. The variables such as demographic indicators, 

driver personalities and behaviors [2-4] are essential 

for evaluating driving risk level.  

In recent years, technological advance of On 

Board Diagnostic (OBD) brings us a new insight to 

deal with this issue. Acquiring a comprehensive 

understanding of the OBD data could help 

researchers to reveal the individual driving behaviors 

[5]. A practicable data-driven classification model for 

driving risk assessment is needed and beneficial to 

traffic safety, traffic simulation and driving pattern 

recognition [6]. Hence, in this research, we propose a 

scenario based behavior-centric classification model 

for driving risk assessment using the real-world 

driving behavior data that collected from the OBD. 

To evaluate the proposed model, we compare the 

efficiency and effectiveness of it with benchmark 

methods. 

This paper is organized as follows. Section 2 

presents the related works. Section 3 proposes the 

behavior-centric driving risk classification model. 

Section 4 validates the model. Section 5 gives the 

conclusion to this paper. 
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2. Literature review 

 
2.1 On-board device records for driving risk 

evaluation 

 
The potential variation in individual driving risk 

has been documented in prior studies [1, 7-9]. 

However, with the development of information 

technology and telecommunication, OBD systems 

have been incorporated into the computers on-board 

new vehicles to monitor vehicle components and 

driving behaviors in recent years.  

The OBD system is designed to capture the 

detailed driving information such as vehicle speed, 

engine rpm, battery voltage, engine coolant 

temperature, diagnostic trouble codes, fuel 

consumption, etc. [10]. It gives the vehicle owner or 

repair technician access to the status of various 

vehicle subsystems. Researchers improved the 

efficiency of data usage from on-board devices by 

providing data collection and its applications [11]. 

Initial exposure of OBD data has a significant impact 

on driving behavior assessment [12, 13], and learning 

the feedback from driving behavior data has several 

benefits. For example, it can improve drivers’ driving 

behaviors and reduce fuel consumption [14]. With 

the development of OBD and the emergence of new 

techniques, more detailed understanding of these 

vehicle-related behavior records becomes possible, 

providing greater insight into individual driving 

behavior [5]. 

From the implication perspective of OBD, Shaout 

and Bodenmille [15] proposed a measurement and a 

prototype for inefficient and unsafe driving using 

OBD data. Similarly, Li et, al. [16] proposed a 

driving behavior monitoring and analysis system via 

OBD data records. The work proposed in Hong and 

Dey [17] generated an aggressive driving behavior 

assessment model based on the driving-related 

features provided by OBD and smartphones. 

The work in [18] identified a qualitative driving 

behavior feature set with the in-car portable device 

data. They made an insightful comparison between 

the behavior data and the CAN-bus signal data. The 

results showed that detailed sensor data could achieve 

higher accuracies compared to the previous feature 

set.  

The driving behavior features such as fuel 

consumption and driving style are closely related 

with each other [19, 20]. And the fuel consumption 

can be reduced by improving driving behavior [21]. 

Some other driving data extracted from OBD also 

have a strong power in reflecting driving behavior. 

For instance, vehicle speed, engine RPM, throttle 

position, and calculated engine load [11]. 

The influential parameters that are extracted from 

OBD in prior studies are summarized in Table 1. 

These variables are employed in many research 

directions such as behavior analysis, system 

designing, event recognition and driving 

improvement. Specifically, this study defines two 

categories of the OBD variables, namely, 

unidirectional and bidirectional. For a unidirectional 

variable, the numerical value of the parameter is 

linear to its abnormal degree. The value of a 

unidirectional variable has a positive (+) or negative 

(-) relationship with the abnormal degree directly. 

Take the variable engine load as an example, the 

burden of an engine will be higher with the numerical 

value of engine load increases. For bidirectional 

variable, the value is only considered as reasonable in 

a certain range. A value either higher or lower than 

the range will increase the abnormal degree of the 

variable. For instance, when engine temperature 

becomes too hot or too cold, it is considered as 

abnormal.  
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Table 1. Influential Instant Driving related Variables from OBD 

Variables Type Variables 

  

Behavior 

Analysis 

System 

designing 

Accident risk 

accessing 

Driving event 

recognition 

Gas emission 

/Fuel-usage 

Behavior 

improvement 

Unsafe driving 

monitoring 

[11] [10] [39, 40] [18] [19] [14] [15] 

Location    * * * *  * 

Speed Bidirectional * * *  *  * 

Engine load Unidirectional (+) *       

Throttle 

position 
Bidirectional *    *   

Engine 

temperature 
Bidirectional  *   *   

Engine speed  Bidirectional * *   *  * 

Miles per 

gallon 
Unidirectional (-)       * 

Battery voltage Bidirectional  *      

Diagnostic 

trouble codes 
Unidirectional (+)  *      

Turns Unidirectional (+)    *    

Orientation 

change 
Unidirectional (+)    *    

Sudden break  Unidirectional (+)    * * *  

Acceleration Unidirectional (+)     *  * 

Deceleration Unidirectional (+)     *  * 

Positive kinetic 

energy 
Unidirectional (+)     *   

Fuel usage Unidirectional (+)     * *  

Emissions Bidirectional     *   
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2.2 Driving behavior classification and 

Prediction 

 
Researchers from insurance and actuarial science 

investigated the driver classification according to their 

behavior risk level to facilitate auto insurance 

premium. These studies tried to predict driving risk 

based on driver’s age, gender, personality and some 

other relevant demographic variables [1, 22]. 

However, the keys of the driving risk assessment 

are not only driver demographic but also driving 

behavior analysis [11]. In terms of driving behavior 

classification methods, the Hidden Markov Model 

(HMM), Support Vector Machine (SVM), Decision 

Trees, Logistic Regression, Neural Network, Bayesian 

Networks and ensemble learning-based approach are 

usually adopted by researchers [11, 23-26].  

Kumagai and Akamatsu [24] used to present a 

method of predicting driving behavior using Bayesian 

networks. Shi, et al. [27] proposed a way of driving 

style identification and used neural networks to learn 

driver features and different driving styles. Similarly, 

Di Lecce and Calabrese [28] studied and classified the 

driving style into several categories using neural 

networks. In particular, a multilayer perceptron with 

back-propagation learning algorithm is used in their 

study. For the same purpose, Qi, et al. [6] employed 

clustering method and topic model to extract latent 

driving states, in order to elaborate the commonness 

and individuality of behavior characteristics. They 

highlighted that the analysis of driving behaviors is 

very crucial. Multiple data mining techniques were 

adopted to analyze the driving behavior data collected 

by the instrumented vehicle, including ensemble 

clustering method based on the kernel fuzzy C-means 

algorithm and the modified latent Dirichlet allocation 

model. 

Wang and Lukic [29] argued that driving style and 

driving condition are closely related to vehicle 

parameters such as fuel economy and emission 

reduction. They pointed out that statistic and cluster 

analysis, jerk analysis, Gaussian mixture models, and 

fuzzy classification methods can be used to identify 

drivers' driving styles. Wakita, et al. [30] proposed a 

driver identification method based on driving behavior 

signals of the accelerator pedal, brake pedal, vehicle 

velocity, and distance from the vehicle. Hong, et al. 

[17] used data and features extracted from smartphone 

and some other measurement units to characterize the 

driving behavior and predict the aggressive behaviors. 

The results indicated that more detailed driving data 

could help to achieve higher prediction accuracy 

through a machine learning method.  

The authors of [18] used several techniques to 

evaluate the effectiveness of sensor information and to 

recognize driving behaviors. In their study, linear 

discriminant analysis is used for feature 

transformation. K-nearest neighbor algorithm and 

support vector machine are applied to classify the 

vehicle sensor information. Meanwhile, forward 

sequential feature selection is utilized for selecting the 

most influential subset of the features. In Shi, et al. 

[31]’s work, the authors proposed a very interesting 

driver identification framework for identifying a driver 

style by using inertial sensor data such as acceleration, 

location, and device touching. Chen, et al. [11] tried to 

analyze driving behavior via AdaBoost algorithms and 

the results showed that the behavior data is essential 

for classifying driving behavior. Guelman (2012) 

employed the Gradient Boosting classification method 

to predict auto accident cost with a real dataset 

obtained from a Canadian insurance company. The 

proposed method can train the model parameters with 

little data, and the experimental result has an advantage 

over the Generalized Linear Model approach. Fifteen 

location-based driving features were applied to three 

kinds of classification models for risk-level prediction 

in Paefgen’s study (there are 984 accident-free vehicles 

and 583 accident-involved vehicles in this case). The 

experimental results indicated that vehicle sensor data 

has great application potential to predict a driver’s 

insurance cost. The supervised neural network 

achieved the best performance for insurance cost 

estimation, while logistic regression classification has 

better fitness from an actuarial view [23].  

As for driving environment, few prior researches 

indicated different driving risk standards for different 

road types. Meseguer, et al. [32] implemented a neural 

network based algorithm that is able to detect the type 

of road on which the vehicle is moving. They divided 

the road type into 3 categories: urban, suburban and 

highway. However, the road conditions are sometimes 

different from each other even in one category. 

Besides, the analysis of road types should be more 

specific and detailed as the road condition and traffic 

flow in the same route can be changing every month, 

week and even every hour. Moreover, most prior 

works focused on the overall differences in driving 

behavior instead of behavior changing. However, a 

driver’s driving style and risk level vary. One point 

that has largely been overlooked in the literature is 

how to design a dynamic driving risk assessment 

system for evaluating driving behavior of individual 

drivers.  

 

3. The Behavior-centric Driving Risk 

Classification Model  
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Driving process involves drivers, vehicles and 

environment. Giving consideration to personal 

behavior mode, a more accurate and objective driving 

behavior classification model, namely, Behavior-

centric Driving Risk Classification Model is introduced 

for assessing individual driving risk in this section. 

 

3.1 Design logic and general framework 

 
The proposed model as shown in figure 1 contains 

two parts, trip based driving behavior analysis, and 

deep learning based classification. In trip based driving 

behavior analysis, we specifically propose an approach 

to identify the instant aggressive driving behavior and 

evaluate the time-sequenced driving risk by using the 

geographical and behavior data. Further, we leverage 

Deep Neural Networks (DNN) method to do follow-up 

classification of driving risk based on analysis results. 

 

 
Figure1. Design logic of Behavior-centric Risk 
Level Classification Model 
 

Traditional driving risk classification models are 

focusing on the data extraction and classifying similar 

driving behaviors. The proposed model improves the 

classification accuracy and efficiency by answering the 

detailed questions such as “What kinds of driving 

behaviors are bad manners?” “How much higher is the 

speed over the limit for a given area?” Thus, our model 

contains trip-based driving behavior analysis (TDBA) 

and DNN based risk level classification. 

 

3.2 Scenario based instant aggressive driving 

behavior identification 

 

The driving area and driving time are two factors 

that may influence individual driving risk. Usually, 

these two factors are constantly changing and difficult 

to capture. This study proposes a GPS based instant 

aggressive behavior identification approach utilizing 

instant OBD driving parameters and instant GPS 

signals. Specifically, we employ the average value of 

instant driving parameters in a given driving area 

around the target vehicle to evaluate the instant 

aggressive degree of the target driver. The process to 

identify instant aggressive driving behaviors of drivers 

is described as follows: 

Step 1: Capturing instant behavioral parameters and 

vehicle GPS signals of target drivert (vehicleT) from 

OBD (time interval: 1 second). 

Step 2: Collecting instant behavioral parameters of 

nearby vehicles, which maintain the same direction 

with target vehicleT in a certain distance range. Based 

on the GPS data of the target vehicle, we find the 

specific road where the vehicle locates. Then, we 

collect the behavioral data of the driving vehicles 

(vehicle1, vehicle2 … vehiclen) within M miles in 

coverage area as sample set S1. All the selected 

vehicles have the same direction with VehicleT at the 

same time. We calculate the distance between the 

candidate vehicles (vehicle1, vehicle2… vehiclen) and 

the target VehicleT as Dk (1,2, ..., N). The instant 

behavior data of candidate vehicles is captured when 

Dk ≤ M (M=1,000 meters). The instant behavioral 

parameters of all the running vehicles in coverage area 

were collected as sample set S1. The captured statistic 

parameters of nearby vehicles are usually similar and 

the overall evaluation of driving behaviors in S1 offers 

certain references to evaluate driving behavior 

volatility of target driver. 

Step 3: Calculating driver t’s instant aggressive 

behavior degree of statistic parameter relative to 

overall S1 for each captured behavioral variable at T1. 

The calculation process is based on the proposed AVE- 

RANSAC algorithm. 

AVE-RANSAC algorithm A computational 

problem arises here is estimating the parameters of a 

model from the captured data that has been 

contaminated by noises and outliers. Sometimes 

outliers caused by a few drivers may influence the 

overall estimation in a certain area. Thus, we use the 

Random sample consensus (RANSAC) algorithm to 

calculate the instant aggressive behavior degree of 

driver t. The Random Sample Consensus (RANSAC) 

algorithm is one of the most popular tools for robust 

estimation. Moreover, one advantage of RANSAC 

algorithm is its steady performance when little data is 

available. Given that the captured data set may have 

small size, especially in the rural area, we consider 

RANSAC appropriate. The basic RANSAC is an 

Deep Learning based Classification Method

Behavioral 

Data

(OBD record)

Geographical 

Data

(GPS signal)

Trip based Driving Behavior Analysis

Deep Neural Networks(DNN)

Route Tracking  Feature Extraction

GPS-based instant aggressive 

behavior identify

Time-sequenced longitudinal 

driving risk assessment

Behavior-centric Driving 

Risk Classification
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iterative method used to estimate parameters of a 

mathematical model from a set of observed data with 

outliers. In our calculating scenario, some extreme 

abnormal driving behaviors will affect our modeling 

process, so we remove the maximum and minimum 

values to avoid the impact on the average calculation. 

The removal can accelerate the convergence rate of 

models. The proposed AVE-RANSAC algorithm aims 

to capture the instant normal driving behavioral 

parameters that reflect the average value of nearby 

drivers. 

The volatility of instant driving behavior reflects 

the target driver’s aggressive degree. This study 

defines instant driving aggressive behavior degree 

(volatility) of behavioral variable α  at n second as 

𝑎𝛼𝑛 . The value of 𝑎𝛼𝑛  depends on the nearby vehicle 

conditions at the same time. The average value of all 

the drivers in a certain area could offer a reasonable 

baseline for evaluating the dynamic driving behavior. 

A larger value of 𝑎𝛼𝑛  represents a more aggressive 

driving behavior.  

 

3.3 Longitudinal aggressive behavior 

assessment  
 

The instant driving parameters will be captured 

every one second through OBD, thus the dynamic 

driving behavior could be measured during each trip 

consecutively. 
Thus, the historical driving behavior volatility 

(aggressiveness degree) of parameter 𝛼 can be defined 

as:  

𝐴𝜶 = (∑|𝑎𝛼𝑖 |
2

𝑛

𝑖=1

)

1 2⁄

       , ∀𝑎𝛼 ∈ 𝑆𝛼 

We argued that 𝐴𝜶  reflects the driving 

aggressiveness degree more accurately than 

unprocessed driving feature 𝛼  itself. The scenario 

based aggressive behavior assessment provides us an 

approach for accessing a driving behavior closer to real 

life. The aggressiveness degree, as a measuring 

criterion of detailed driving behavior factor, indicates 

the driving habits and plays an essential role in driving 

risks level classification. 

 
3.4. Driving behavior based DNN 

 
Deep learning, as a subfield of machine learning 

[33], has attracted researchers’ attention in recent 

years. By simulating the function of the deep 

architecture of the biological brain, deep learning 

attempts to model high-level abstractions in data by 

using model architectures composed of multiple 

nonlinear transformation learning [34]. Deep Neural 

Networks (DNN) is a feed-forward, artificial neural 

network that has more than one layer of hidden units 

between its inputs and outputs layers [35]. The input 

layer accepts the input attributes and passes them to the 

hidden layers. Each of the hidden layers receives the 

output from the previous layer as an input, and the 

output will be transformed by the activation function 

and passed to the next layer. In order to alleviate the 

occurrence of gradient vanishing in neural networks, 

DNN uses ReLU as the activation function. New 

attributes will be extracted in the process of passing 

from one hidden layer to another to help the operation 

of the algorithm. Then, the data is passed to the output 

layer and form the result. By comparing the results of 

the algorithm with the actual data (ground truth), the 

error is transmitted backwards and the parameters are 

adjusted to obtain more accurate results. 

The DNN-based classification model fits the 

research objective in this study appropriately. The 

driving behavior attributes are mapped in the hidden 

layers for transforming. The model extracts OBD 

features to guarantee that the new features in hidden 

layers can best describe the driving behavior to output 

the risk levels. For example, the model may select 

driving speed and fuel consumption as inputs at the 

first time. However, in practical driving condition, 

there may be hidden features that have vital impacts on 

driving risk. These hidden influential features will be 

explored via the nonlinear transformation of DNN 

effectively. The potential relationship is verified and 

used to improve the accuracy of the model. 

Another unsolved question of dynamic driving risk 

assessment is multi-data-source issue. Thus, 

developing a mechanism to employ data from different 

sources and produce effective features is essential. 

Through the multi-layer neural network learning, DNN 

shows a better performance than traditional machine 

learning algorithms in selecting behavioral features, 

making it possible to extract data from multi-sources 

and generate new features in accessing driving risk. 

The behavior-centric risk level classification model 

contains 4 layers, namely, feature abstracting layer, 

input layer, hidden layer and output layer. We train the 

deep neural network architecture in an end-to-end 

fashion. Several layers of feature extraction process the 

input variables. In feature abstracting layer, behavior 

features are extracted from multi-data-sources. The 

calculation persuaders are mapped by “TensorFlow” 

and the training outcomes will be turned to the output 

layer.  

 

4. Validation and Results 
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The aim of the validation is to test the effectiveness 

of proposed behavior-centric risk level classification 

model. The proposed model contains two parts, trip-

based driving behavior analysis (TDBA) and DNN 

based risk level classification. The validation 

procedure contains two steps. The fist step is to 

evaluate the effectiveness of trip-based driving 

behavior analysis. The second step is to test our deep 

learning based driving behavior classification model. 

We conduct our validation procedure based on 

objective data. 

 

4.1 Sample description and data processing 
 

This research collected real driving behavior data 

from one of the largest OBD provider company located 

in China. Our dataset contains 3 parts: driver’s 

geographical and driving behavioral data (extracted 

from OBD device) and matched traffic violation 

records. The selected behavior features include 

Mileage, Nighttime driving, Speed, Engine load, 

Engine temperature and Fuel consumption. 

Instant driving behavior data and geographic 

location (GPS signals) are updated per second when 

driving. Specifically, we choose 2129 drivers and 

extracted their behavior in three months (August 2016 

and November 2016). Then, we process the 

observations as follows: (1) Match the documented 

violation records with 2129 drivers’ behavioral records 

during the same period of time; we eventually obtain 

23,805,192 records of 1347 drivers; (2) Match the 

violation records with drivers’ behavior data; (3) 

Process the missing data and errors in data recording. 

Finally, we get 1174 individual observations with 

20,801,041 trip records in total. 

Drivers are divided into four risk levels according 

to their traffic violation records. The observations are 

classified into five risk levels (Level I - Level V) 

according to drivers’ traffic accident involvement 

frequencies.  

 

4.2 Evaluation criterion 

 
To evaluate the performance of our model, four 

criteria are used, namely, TP Rate, Precision, F1 and 

FP Rate. The evaluation criteria are based on each risk 

level. Therefore, in order to evaluate classification 

ability of our model, we add weights to different 

criteria. 

CriterionG = ∑
ni

N
Criterioni

4

i=1

 

CriterionG  refers to one of the four evaluation 

criteria. Criterioni  refers to the value of criterion in 

risk level i. N refers to the number of all drivers and ni 

refers to the number of drivers in risk level i. 

 

 

4.3 Comparative evaluation results with two 

benchmark classification models 
 

To evaluate the effectiveness of the proposed 

behavior-centric driving risk level classification model, 

we employ two state-of-the-art classification models, 

namely, SVM [36] and RF [37] as the baseline for 

classifying driving risk. The comparison results of 

these three models are as shown in Table 2. 

 

TABLE 2. Comparison of Classification Models 

 TP 

Rate 

Precision F1 FP 

Rate 

SVM 0.671 0.718 0.65 0.339 

RF 0.671 0.673 0.671 0.328 

DNN 0.717 0.717 0.717 0.284 

DNN+TDBA 0.836 0.854 0.834 0.173 

Table 2 explains that DNN based classification 

with TDBA performs better than SVM and RF in 

general. With the help of TDBA, DNN are 15% better 

than SVM and RF according to their values of TP Rate 

and F1. As for precision, DNN based classification 

with TDBA is 14% higher than the second best 

classification model SVM. What’s more, the value of 

FP Rate shows that the misjudgment of DNN based 

classification with TDBA is lower than SVM, RF and 

DNN. Our experimental results indicate that the 

proposed behavior centric model is an appropriate 

method for driving risk level classification. 

 

5. Conclusion and future research 

 
This study proposed a Behavior-centric Driving 

Risk Classification Model for evaluating potential 

driving risk with driving behavior data, demographic 

data, and geological data. Based on the geographic 

trajectories and instant behavior parameters obtained 

from 2129 vehicles, we have developed and validated 

our proposed methods. Our combination of the trip-

based driving behavior analysis method and deep 

learning based classification model performs well and 

improves the accuracy and reliability compared with 

benchmark methods 
This study makes contributions in several ways. 

First of all, it proposed an approach for evaluating the 

aggressiveness degree of driving behavior at a given 

time. This measurement could be applied as long as the 
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real driving behavior data or engine-related parameters 

are available, such as mileage, driving time, speed, 

engine load, etc. This approach can also be used to 

design better warning and monitoring tools that could 

monitor driving patterns for each trip in real time and 

remind drivers to intervene on aggressive driving 

behavior in a timely manner. 

Second, the trip-based driving behavior assessment 

mechanism opens a new venue for assessing driving 

risk by identifying aggressive driving behavior of 

drivers. Instead of driving variable itself, the behavior 

aggressiveness of driving related variable could 

directly reflect the real driving behavior. The results in 

Section 4 showed that a significant improvement could 

be obtained by using TDBA. The trip-based driving 

behavior analysis could not only be employed in many 

risk assessment processes, but also have a strong 

correlation with individual driving risk. 

Third, this study extended the existing research 

scope of driving risk classification by designing a deep 

learning based classification model. A multi-layer 

network structure and multi-source processing method 

are integrated into the DNN based model. By testing 

our model via real driving data, this study validated the 

performance of the proposed method. The Behavior-

centric Classification Model can be applied in a more 

complicated scenario in assessing driving risk and 

other domain problems. 

We acknowledge principal limitations of this study. 

Our proposed model is subject to the volume of 

vehicles in a dataset. The calculation of driving 

aggressiveness degree of target vehicle is closely 

related to the nearby vehicles. Thus, the model may 

become more effective in dealing with big-size dataset. 

Besides, since our data sets are all collected from the 

vehicles in Mainland China and Hong Kong, one 

should be cautious when generalizing our findings to 

other region. The nature of driving risk also depends 

on the various traffic rules and regulations in different 

areas [38]. For this reason, we do not want to over 

generalize our findings without cautions. However, we 

believe our approach is capable of evaluating real 

driving risk in general because we minimize the 

abnormal variation by comparing the target vehicle 

with nearby vehicles (all of them are facing the same 

traffic regulations). As such, our study is a good 

starting point to understand aggressive driving 

behavior. 
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