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Abstract 
 

To predict air quality (PM2.5 concentrations, et al), 
many parametric regression models have been 
developed, while deep learning algorithms are used less 
often. And few of them takes the air pollution emission 
or spatial information into consideration or predict 
them in hour scale. In this paper, we proposed a spatial-
temporal GRU-based prediction framework 
incorporating ground pollution monitoring (GPM), 
factory emissions (FE), surface meteorology monitoring 
(SMM) variables to predict hourly PM2.5 
concentrations. The dataset for empirical experiments 
was built based on air quality monitoring in Shenyang, 
China. Experimental results indicate that our method 
enables more accurate predictions than all baseline 
models and by applying the convolutional processing to 
the GPM and FE variables notable improvement can be 
achieved in prediction accuracy.  

 
 
1. Introduction  
 

PM 2.5 refers to airborne particles less than 2.5 μm 
in the aerodynamic diameter which has been linked to 
many adverse health impacts, including cardiovascular 
and respiratory morbidity [13]. Hence, PM 2.5 plays a 
crucial role in addressing many public health and 
environmental concerns. And obtaining accurate local 
PM 2.5 concentrations prediction and developing early 
warning system to provide air quality information 
towards the citizen have become an obvious and 
imperative need.  

Shenyang is the capital of Liaoning Province and the 
largest city in the Northeast China. It is also an 
important heavy industry base in China that focuses on 
equipment manufacturing. In recent years, the air 
quality in Shenyang has improved gradually, but still at 

a nationally backward level, especially during the 
heating season in winter. 

China's environmental supervisors have recently 
issued the country's most comprehensive and toughest 
plans to control and reduce air pollution by the year 
2018, setting stricter limits on the levels of PM2.5 in 
some regions. Many cities have already announced their 
updated targets to control PM2.5 and the target for 
Shenyang is the number of days with good air quality to 
reach 270 days in 2018. 

A series of work is needed to attain the air quality 
targets, including establishing monitoring networks for 
providing actual concentrations, developing emission 
inventory, calculating air quality indices, computer 
modeling for predicting future PM trends, and so on. In 
this area PM2.5 concentration forecasting has been of 
great significance. First, when a high PM concentration 
level occurs, accurate prediction can help notice 
residents to reduce regulatory outdoor activities in 
advance which may decrease pollution and mitigate 
adverse healthy impact [21]. Secondly, predicting the 
future trends in PM.5 concentration is an effective way 
to provide information for deciding whether an area will 
meet the PM2.5 standards and quantifying the amount 
of reductions needed to meet those standards. 

In this paper, we propose an innovative spatial-
temporal PM2.5 concentration prediction framework, in 
which the ground monitoring air quality data sets are 
selected to construct time panels. And we take the 
factory emission data and meteorological data as 
supplements. In this framework, we select gated-loop 
unit (GRU), which is an extension of recurrent neural 
networks (RNN), to implement mining of data features 
and hidden patterns. The experiment was conducted on 
relevant data sets collected from the air monitoring 
project in Shenyang city. 

The rest of the paper is organized as follows. In 
Section 2, we review the related work on air quality 
prediction and discuss the main differences between our 
study and previous researches. In Section 3, we 
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introduce a framework for PM2.5 concentration 
prediction in which features extracted from multiple 
data sources combine for air quality emergency 
management. Section 4 introduces study area, data, 
evaluation metrics and experimental results. Finally, 
Section 5 summarizes the paper and make further 
research suggestions.   

 
2. Literature review  
 

High-quality air pollutant concentration prediction is 
an important basis of air pollution early warning and 
effective emergency management. The goal is to track 
and simulate the propagation process of pollutants by 
analyzing the generation mechanism of pollutants, 
transmission pathways, and historical data. Thus, we 
can predict the concentration of pollutants in a certain 
place at a certain time. In the past few decades, many 
researchers have devoted themselves to exploring trends 
in the concentration of pollutants. These existing 
prediction studies can be divided into two categories 
through modeling methods: numerical models and 
statistical models. 

Numerous studies have used numerical models to 
study the main chemical reactions during pollutant 
movement, and then to predict the concentration of 
pollutants through the real-time emission data of 
pollutants. McKeen et al. [15] stablished seven air 
quality prediction models based on emission inventories 
and applied them to ozone and particulate concentration 
predictions in eastern Texas and adjacent states in the 
United States, and the collection of chemical and aerosol 
measurement data through aircraft helps diagnose the 
source of model bias. Shimadera et al. [24] used off-line 
prediction of community multi-scale air quality model 
(CMAQ) in East Asia and found that the extreme 
pollution of PM2.5 was mainly attributed to 
meteorological (wind power and wind direction) 
conditions rather than emission increase. However, they 
did not rule out the cause of large emissions created by 
winter heating in cold regions of China. Chuang et al. [4] 
used a new generation of regional air quality model 
(WRF/Chem) that uses on-line fully coupled 
meteorological models and chemical models to predict 
air quality in the southeastern United States and adds 
biogenic volatile organic compounds (BVOCs) variable. 
And adding emissions data of biogenic volatile organic 
compounds (BVOCs) effectively improves the accuracy 
of predictions. However, numerical models are 
computationally intensive models that are costly for 
routine prediction. 

With the development of artificial intelligence and 
big data analysis, prediction models based on data 
mining and machine learning technologies are 

becoming more and more common. This type of model 
directly explores hidden patterns from the data. It does 
not require in-depth understanding of the physical and 
chemical properties of pollutants, and both 
computational efficiency and forecasting accuracy have 
been effectively improved. Commonly used machine 
learning methods include multiple linear regression 
(MLR) [2][17], Hidden Markov Model (HMM) [28], 
Geographic Weighted Regression (GWR) [13], Land 
Use Regression (LUR) [9], Support Vector Machine 
(SVM) [27], Neural Network Model [2][6][7] and so on. 
Mishra et al. [17] selected air pollutant data and 
meteorological data as independent variables, applied 
neural fuzzy model (NF) to develop a pollutant 
concentration prediction model based on historical data 
and weather conditions, and its predictions were better 
than those using MLR and artificial neural network 
(ANN) models. Ong et al. [19] introduced a deep 
recursive neural network (DRNN) to propose a new type 
of automatic encoder pre-training method for time series 
prediction tasks. Its prediction results are superior to the 
traditional training methods and it exceeds the forecast 
accuracy of the VENUS system currently being used by 
the Japanese government. However, these existing 
machine learning methods ignore the characteristics of 
the pollution sources, especially the pollutant data of the 
nearby pollutant discharge sites, and rarely consider the 
distances between the pollution sources and the 
monitoring points. In machine learning models, the 
absence of independent variables will have an adverse 
effect on the prediction results. 

This paper presents a spatial-temporal prediction 
model of air quality based on GRU neural network, 
which is a spatial and temporal   expansion of traditional 
air quality prediction model. GRU is an improved 
encoder-decoder model of the recurrent neural network 
(RNN) that performs well on many sequence learning 
problems. Compared with traditional RNNs and other 
common improved RNN models (such as long-term and 
short-term memory model), GRU has the advantages of 
simpler network structure, fewer parameters, and 
dealing with overfitting problems more effectively [3]. 
As GRU's computational efficiency and learning effects 
have gradually gained attention and recognition, they 
have begun to be applied in many different fields 
[10][29][31].  

The main contributions of this study are the 
following. Firstly, estimating and predicting PM2.5 
concentrations on an hourly time scale. Secondly, 
considering the impact of historical pollutants 
concentration, pollutants emission and meteorological 
condition on current and future PM2.5 concentrations. 
Thirdly, introducing GRU, a new deep learning 
technique, which is suitable for sequence learning 
modeling to PM2.5 concentrations forecasting. At last, 
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apply real-time plant emissions data instead of 
emissions inventory to represent the effect of point 
pollution source on PM2.5 concentration. 

 
3. Materials and methods  
 

Numerous studies indicate that PM2.5 has a 
considerable negative impact on human health and more 
accurate PM2.5 concentration predictions can help 
mitigate its effects[18]. Considering that the formation 
and propagation process of PM2.5 is complicated and 
has correlations with environments, we proposed a 
spatiotemporal framework which incorporating ground 
pollutant measurement, factory emission, surface 
meteorological measurement, date and time data into the 
hourly PM2.5 concentration forecasting model. In 

particular, we introduced recurrent neural network 
model to capture the temporal autocorrelations of 
PM2.5 concentrations more effectively. The proposed 
framework consists of four main processes, namely data 
collection, data integration, data modeling, and 
spatiotemporal prediction (Figure 1). 

 
 3.1. Data Collection 
 

Data collection is the first step in our framework 
during which we collected the data sets of variables 
required for PM2.5 concentration estimating. The 
selected data sets consist of monitoring data which are 
collected from related government departments and 
dummy data which are set to account for the monthly, 

Figure 1. A framework for PM2.5 concentration forecasting 
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daily and hourly variation due to the human activities 
and meteorology.  

 
3.1.1. Monitoring Variables. China established its 
ground monitoring network for air pollutants in late 
2012 [11]. As the highest mean PM2.5 concentration 
always appears in winter and is believed mainly due to 
the heating, we took the ground pollutant measurement 
and factory emission data in winter from 2015 to 2017.  

According to previous researches, PM2.5 
concentrations are highly associated with the 
meteorological data and it is feasible to predict PM2.5 
concentrations based on various surface meteorological 
measurement variables [2][4].  

 
3.1.2. Dummy Variables. Atmospheric mechanism is 
complex and the relationship between monitoring 
variables and PM2.5 concentrations are time-dependent. 
In order to explore the implicit relationship better, we 
used monthly, daily and hourly dummy variables to 
illustrate the temporal variations.  

The specific selections of variables are listed in 
Table 1. 

 
3.2. Data Integration 
 
3.2.1. Convolutional Processing. It is indisputable that 
local PM2.5 concentrations are affected by nearby point 
source pollutant emission and nearby PM2.5 
concentrations and taking spatial information into 
consideration can improve model performance. We used 
convolutional processing incorporating these nearby 
variables to account for PM2.5 measurement and 

factory emission spatial correlations and PM2.5 
measurement spatial autocorrelations. This 
convolutional processing was developed from the 
distance-inversed weighted average function proposed 
by Di et al [5]. We improved this process from two 
aspects.  

First, unlike previous papers which only considered 
the influence of distances, we utilized the azimuth 
between nearby sites and local site to group nearby sites 
and combined wind direction data with the grouping 
results in the GRU model. The introduction of azimuth 
can help better simulate the spread of pollutants in the 
atmosphere and interpret the influence of nearby sites 
on local PM2.5 concentrations. We divided the emission 
factory sites or nearby pollutant monitor sites into eight 
groups according to the azimuths, taking 0, 45, 90, 135, 
180, 225, 270 and 315 as the dividing point (Figure 2). 

Second, we defined an attenuation coefficient λ for 
the process of pollutants passing through the atmosphere 
to describe the dissipation of pollutants from nearby 
sites to the local site. The coefficients are affected by 
distance, wind speed, humidity, air pressure, and 
temperature. For each group g of nearby site j, the kernel 
function can be expressed in general terms as 

���� = ∑ ������
�
���                                  (1) 

����� =
∑ �������

�
���

�
                            (2) 

��� = �
��

������
�����

����                                (3) 

where ���� and �����  are the values of convolutional 

layer, which represent pollutant levels at local site � in 
certain directions, and in each direction g there will be 
n  nearby sites, ���  is the emission of factory �  and 

Table 1. Independent variables 

Variable types Variables Data source 

Monitoring 

Ground Pollutants 
Measurement 

(GPM) 

Hourly concentrations of CO, NO, 
NO2, NOX, SO2, O3, PM2.5, PM10 

Related 

government 

departments 

Factory Emissions 

(FE) 

Hourly emissions of particles, SO2, 

NOX (kg/h) 

Hourly benchmark gas flow (m3/h) 

Surface Meteorological 
Measurement 

(SMM) 

Hourly atmospheric pressure (hpa), 

temperature (℃), humidity (%), wind 

direction (deg), wind speed (m/s) 

Dummy 
Date 

Month 

 Day 

Time Hour 
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����  is the pollutant concentration of nearby 
monitoring station � . ���  is the attenuation coefficient 

from nearby site � to local site �, and ��� ∝ ���. Formula 

(3) is the function form of λ, where Λ is the attenuation 
constant, ��� is the angle between azimuth of nearby site 

� and local site � and wind direction at local site �, ���  is 

the distance between nearby site � and local site �, and 
ℎ�, ��, ��, ��  represent the humidity, wind speed, air 

pressure and temperature at local site � respectively.  
We incorporated the convolutional processing 

results for nearby factory emissions and ground 
pollutant measurements with surface meteorological 
measurements as predictor variables to fit the recurrent 
neural networks. 

 
3.2.2. Data fusion. Data fusion is a technology that 
makes full use of time and space information to integrate 
multi-source data together to obtain a unified 
representation, which improve data quality and help 
mine data value better.  

We first conducted spatial data fusion on both 
original data sets and convolutional processing data sets 
based on longitude and latitude of monitoring sites. 
Among them, the original data sets include two 
categories: air quality hour data set and meteorological 
hour data set. And the convolutional processing data sets 
are consisted of air quality convolutional data set and 
factory emission convolutional data set. The air quality 
convolutional data set is obtained by convolving the 
hourly concentration of each pollutant in the air quality 

hour data set, while the factory emission convolutional 
dataset is obtained by convolving the hourly emissions 
of each pollutant in the factory emission hour data set.  

Then the spatial-fused data were arranged in 
chronological order to prepare for the time-series data 
mining. Here we took monitoring variable time series 
length T (last T hours data) as the key parameter to 
improve the predictive capabilities. Let us take the case 
of T=3 as an example. At this time, the sample included 
the PM2.5 concentration at moment t, and the 
meteorological variable, ground monitoring variable, 
and convolution variable data at times t-1, t-2, and t-3. 

 
3.2.3. Data preprocessing. In the data preprocessing 
stage, we performed four steps: data cleansing, data 
imputation, data transformation, and data 
standardization.  

During the data imputation process, our fill values 
are calculated according to the following formula 

������ = ������ + ����������� + ��������(4) 

where ������  is the imputation of missing data, 
����  is the average of all the data at h  o'clock, 
������ and ����� are the most recent valid value before 

and after the missing value, β is the weight determined 
by the distance between the missing value and the 
nearest before and after valid value, and α  is an 
experimentally determined weight that optimizes the 
filling effect. In our experiment, we took �� = �� = 0.5. 

Data preprocessing is an indispensable step before 
these input data applied to training. It can help reduce 
the noise present in the data and improve the training 
performance. After data preprocessing, the required 
features have been extracted from the original data set. 

 
3.3. Data Modeling 
 

As discussed above, air quality prediction can be 
regarded as a certain type of time-sequence learning 
problem. Machine learning methods aim for more 
accurate prediction results by investigating and 
exploring hidden air pollution reacting and propagating 
patterns. And various environmental monitoring 
variable time series are applied in the prediction process. 
Given that the vanishing gradient problem prevents 
traditional RNNs from learning long-term dependencies, 
in this paper, we design a spatial-temporal model based 
on GRU, which were designed to combat the RNN 
problem through a gating mechanism but simpler than 
LSTM. In this model, we normalized the environmental 
variables to ensure that the proposed model can deal 
with features evenly. Moreover, in order to improve 
prediction accuracy and enhance procedural bias, 
techniques including 10-fold cross validation are 
applied to construct base GRU models. 

Figure 2. A sketch map of grouping sites by 
azimuths concentration forecasting 
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When training the GRU model, back-propagation 
algorithm is applied to achieve the stochastic gradient 
descent according to the characteristics of the model 
structure. We reconstruct the dataset as dynamic time 
panel data and use the variable T to indicate the length 
of the time panel to see how the model's effect correlated 
with the time panel length. The training process 
continues until the weight matrix of the reaches 
convergence.  

 
3.4. Spatiotemporal Prediction 
 

After the training process, many GRU models are 
established to predict the future air quality. The final 
prediction model is selected by averaging calculations 
of several basic GRU predictors, which helps determine 
the dynamic time data panel length. We then make 
predictions in the condition of applying the determined 
length of time panel. The accuracy of predictions based 
on specific data set is compared to some baseline models 
to demonstrate the effectiveness of our proposed method. 

 
4. The empirical analysis  
 
4.1. Data description 
 

Shenyang is an important central city in Northeast 
China and one of the national heavy industry bases 
focusing on equipment manufacturing. After entering 
the heating season every year, Shenyang, the capital of 
Liaoning Province, ushered in continuous and severe air 
pollution.  

We define Shenyang as our study area and take 
ground pollutants measurements variables (GPM), 
factory emissions variables (FE), surface 
meteorological measurement variables (SMM) and 
temporal dummy variables into consideration. 

 

4.1.1. Ground pollution measurement variables 

(GPM). Ground pollution measurement variables are 
used to reveal the PM2.5 concentration historical trends 
and the possible impact from other pollutants. We 
obtained ground pollutants measurement data from 
related government departments. Measurements data 
were collected from 11 monitoring sites and included 
hourly concentrations of eight pollutants (CO, NO, NO2, 
NOX, SO2, O3, PM2.5, PM10) from 2015 to 2017.  
 

4.1.2. Factory emissions variables (FE). Factory 
emissions variables are used to reveal the level of 
pollutant emissions from factories which are considered 
as the main source of pollution in Shenyang. Factory 
emissions were also obtained from related government 
departments. Hourly emissions of particles, SO2, NOX 
and benchmark gas flow data were collected from 187 
plants in Shenyang during winter from 2015 to 2017. 

 
4.1.3. Surface meteorological measurement variables 

(SMM). Surface meteorological measurement variables 
is known to be a key factor that influences the formation 
and propagation process of PM2.5. Surface 
meteorological measurement were also obtained from 
related government departments. We selected hourly 
data of atmospheric pressure, temperature, humidity, 
wind direction and wind speed from 11 monitoring sites 
from 2015 to 2017. 

 
4.1.4. Temporal dummy variables. The PM2.5 
concentrations have been shown to exhibit some hourly 
variations. Hence, we include monthly, daily and hourly 
dummy variables to account for temporal variations. 
 
4.2. Evaluation metrics 
 

The 10-fold cross-validation (CV) technique is 
employed in the prediction results obtaining and 
validating process in our study. The entire training data 

Table 2 Performances of various methods with all variables 

Models MAE MSE MAPE 

MLR 8.7299 39.2241 21.54% 

RF 6.5903 19.7879 10.44% 

SVM 7.8910 21.3049 11.72% 

ANN 8.0317 22.8971 12.85% 

RNN 7.9118 22.9674 13.98% 

LSTM 6.4810 18.0304 10.51% 

GRU 4.6147 15.7878 6.29% 
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set was randomly divided into ten subsets, each subset 
containing approximately one tenth of the training data. 
In each round of cross-validation, we took nine subsets 
as training data and to make predictions for the 
remaining subset as testing data. The process was 
repeated 10 times until every subset was tested. Each 
trial will yield the correct rate (or error rate). The 
average value of the correct rate (or error rate) of the 10 
times is used as an estimate of the accuracy of the 
algorithm.  

When evaluating the model, we first arranged the 
data in chronological order and then take the last 30% 
as the hold-out test set. Model was trained on the rest 70% 
data and 10-fold CV was applied in this process. The 
averages of the CV evaluations verify the effectiveness 
of the model on the new dataset. And we can tune the 
model's parameters and complete model selection by 
comparing the average evaluations.  

We calculated statistical indicators such as mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and root-mean-square error (RMSE) between 
predictions and observations in hold-out test set to 
assess the prediction accuracy of the proposed model for 
the entire study area and study period.  

 
4.3. Experimental results 
 

The experimental results under different parameter 
and variable settings are shown in this section.  

 
4.3.1. Results of Model Validation. Previous studies 
have mainly applied multiple linear regression (MLR), 
random forest (RF), support vector machine (SVM) and 
artificial neural network (ANN) to investigate the 
hidden pattern of PM2.5 propagation. And as we take 
GRU, one of the traditional RNN models’ extensions, as 
the base model in our framework, traditional RNN was 
also selected as baseline model in this comparative 
experiment. And as LSTM is the most popular version 
of RNN extension, we took LSTM as the benchmark 
model as well. All models run on our specific dataset 
under the framework we proposed. The result (Table 2) 
indicate that both GRU and LSTM have attained better 
prediction accuracy and our GRU-based prediction 
models are the most efficient.  
 

4.3.2. Contribution of convolutional processing.  We 
compared the evaluation scores between GRU-based 
models and all baseline models. The results of models 
with and without the data obtained by convolutional 
processing are shown in Figure 4.The results show that 
if we add variables which were produced by convoluting 
ground pollution monitoring data (Air quality 
convolutional variables) or factory emissions data 

(Emission convolutional variables) only, the 
performance will be slightly improved or even not be 
improved. And the effect of adding in emission 
convolutional variables were significantly better than 
the effect of adding in the air quality convolutional 
variables. However, when we add those two kinds of 
convolutional variables together, models show 
enhanced performances, especially in the GRU-based 
model we proposed with MAPE fallen rapidly from 
53.74% to 10.18%, MAE fallen rapidly from 44.2176 to 
4.6147 and RMSE fallen rapidly from 54.3399 to 6.2999. 
And overall, our proposed model performs best in all 
models. 

 

4.3.3. Evaluation of time-series modeling. The effects 
of dynamic time panel length T on the proposed GRU-
based model is studied. The meaning of the key 
parameter T in the prediction framework has been 
described in Section 3.2.2. In the case of T = 1, 2, 3, 4, 
5, the values of the evaluation metrics MAE, RMSE and 
MAPE of the proposed prediction model are obtained. 
The results are shown in Figure 3. As T increases, 
MAPE declines at the beginning and then slowly 
increases. The MAE curves and MSE curves have 
similar trends. When the length of the dynamic time 
panel is equal to 3, the proposed model achieves the best 
performance. The above experimental results show that 
the historical data of the hours before the predicted time 
does have effects on the PM2.5 concentration, because 
essentially RNN model learns the influence of the last-
T-hour time series on the prediction target through the 
fixed time window. However, these performance 
metrics do not change significantly as the length of the 
dynamic panel changes.  

 
4.4. Discussion 

 
Experiments show that our proposed GRU-based 

framework for PM2.5 concentration prediction is 
effective. GRU-based deep learning models 

Figure 3. Impact of the length of the TIME 
panel 
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demonstrate their advantages in time series modeling, 
gradient disappearance problem solving, and model 
training efficiency. Based on the Shenyang City Air 
Pollution Monitoring Data from 2015 to 2017, we 
constructed a specific data set with relevant variables 

and PM2.5 concentrations. The comparative 
experimental groups conducted on this data set has 
revealed that the proposed learning framework 
promotes the improvement of PM2.5 prediction 
performance. 

Figure 4. The performance of each model under different combinations of variables 
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Results of the model validation experiment indicate 
that GRU model is superior to traditional statistical 
methods and general RNN techniques in time series 
modeling.  

Comparative experiments for the contribution of 
convolutional processing reveals that the inclusion of 
pollution emission information can improve the 
prediction capabilities more than the air quality 
convolutional variables which were the air pollutant 
concentration information at other monitoring sites. We 
think this is caused by the information loss in the 
process extracting original pollution information from 
the monitoring concentrations instead of using factory 
emissions directly. And when we add those two kinds of 
convolutional variables into the model in the meantime, 
the model may learn the propagation pattern from taking 
the hidden spatial information as a verification for the 
relationship between emissions and concentrations and 
use the pattern in prediction. 

 
5. Conclusions and future work  
 

In this paper, we propose a spatial-temporal GRU 
methods which is an extension of RNN in time and 
space to predict PM2.5. We use the characteristics of 
RNN to analyze the dependence of PM2.5 concentration 
time series. We design a convolution processing step to 
incorporate considerations of spatial information and 
pollution sources into the prediction process. The 
relevant experiments were carried out based on the data 
collected from the 2015-2017 Shenyang Air Pollution 
Project Monitoring Program. Empirical experiments 
validate the superiority of our proposed model and the 
significant improvements that convolutional variables 
can bring. 

There are still some potential problems to be settled 
in future work. For example, we can divide 24 hours a 
day into several time intervals and analysis if there are 
differences between different intervals, for we need 
more accurate prediction during the time people are 
more likely to be outdoor. Applying our prediction 
framework to city groups, provinces, even nations is 
also meaningful work. And we can add remote sense 
data, like aerosol optical depth (AOD) data, into our 
framework, for these variables have been proved useful 
in PM2.5 estimation. It is believed that the performance 
of the PM2.5 prediction system for air quality 
emergency management can be improved to a new step 
with the inclusion of more comprehensive information. 
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